(* Title: Pure/codegen.ML
ID: $Id$
Author: Stefan Berghofer, TU Muenchen
Generic code generator.
*)
signature CODEGEN =
sig
val quiet_mode : bool ref
val message : string -> unit
val mode : string list ref
val margin : int ref
datatype 'a mixfix =
Arg
| Ignore
| Module
| Pretty of Pretty.T
| Quote of 'a;
type deftab
type node
type codegr
type 'a codegen
val add_codegen: string -> term codegen -> theory -> theory
val add_tycodegen: string -> typ codegen -> theory -> theory
val add_preprocessor: (theory -> thm list -> thm list) -> theory -> theory
val preprocess: theory -> thm list -> thm list
val preprocess_term: theory -> term -> term
val print_codegens: theory -> unit
val generate_code: theory -> string list -> string -> (string * string) list ->
(string * string) list * codegr
val generate_code_i: theory -> string list -> string -> (string * term) list ->
(string * string) list * codegr
val assoc_const: string * (term mixfix list *
(string * string) list) -> theory -> theory
val assoc_const_i: (string * typ) * (term mixfix list *
(string * string) list) -> theory -> theory
val assoc_type: xstring * (typ mixfix list *
(string * string) list) -> theory -> theory
val get_assoc_code: theory -> string * typ ->
(term mixfix list * (string * string) list) option
val get_assoc_type: theory -> string ->
(typ mixfix list * (string * string) list) option
val codegen_error: codegr -> string -> string -> 'a
val invoke_codegen: theory -> deftab -> string -> string -> bool ->
codegr * term -> codegr * Pretty.T
val invoke_tycodegen: theory -> deftab -> string -> string -> bool ->
codegr * typ -> codegr * Pretty.T
val mk_id: string -> string
val mk_qual_id: string -> string * string -> string
val mk_const_id: string -> string -> codegr -> codegr * (string * string)
val get_const_id: string -> codegr -> string * string
val mk_type_id: string -> string -> codegr -> codegr * (string * string)
val get_type_id: string -> codegr -> string * string
val thyname_of_type: string -> theory -> string
val thyname_of_const: string -> theory -> string
val rename_terms: term list -> term list
val rename_term: term -> term
val new_names: term -> string list -> string list
val new_name: term -> string -> string
val if_library: 'a -> 'a -> 'a
val get_defn: theory -> deftab -> string -> typ ->
((typ * (string * (term list * term))) * int option) option
val is_instance: typ -> typ -> bool
val parens: Pretty.T -> Pretty.T
val mk_app: bool -> Pretty.T -> Pretty.T list -> Pretty.T
val mk_tuple: Pretty.T list -> Pretty.T
val mk_let: (Pretty.T * Pretty.T) list -> Pretty.T -> Pretty.T
val eta_expand: term -> term list -> int -> term
val strip_tname: string -> string
val mk_type: bool -> typ -> Pretty.T
val mk_term_of: codegr -> string -> bool -> typ -> Pretty.T
val mk_gen: codegr -> string -> bool -> string list -> string -> typ -> Pretty.T
val test_fn: (int -> (string * term) list option) ref
val test_term: theory -> bool -> int -> int -> term -> (string * term) list option
val auto_quickcheck: bool ref
val auto_quickcheck_time_limit: int ref
val eval_result: (unit -> term) ref
val eval_term: theory -> term -> term
val evaluation_conv: cterm -> thm
val parse_mixfix: (string -> 'a) -> string -> 'a mixfix list
val quotes_of: 'a mixfix list -> 'a list
val num_args_of: 'a mixfix list -> int
val replace_quotes: 'b list -> 'a mixfix list -> 'b mixfix list
val mk_deftab: theory -> deftab
val add_unfold: thm -> theory -> theory
val get_node: codegr -> string -> node
val add_edge: string * string -> codegr -> codegr
val add_edge_acyclic: string * string -> codegr -> codegr
val del_nodes: string list -> codegr -> codegr
val map_node: string -> (node -> node) -> codegr -> codegr
val new_node: string * node -> codegr -> codegr
end;
structure Codegen : CODEGEN =
struct
val quiet_mode = ref true;
fun message s = if !quiet_mode then () else writeln s;
val mode = ref ([] : string list);
val margin = ref 80;
(**** Mixfix syntax ****)
datatype 'a mixfix =
Arg
| Ignore
| Module
| Pretty of Pretty.T
| Quote of 'a;
fun is_arg Arg = true
| is_arg Ignore = true
| is_arg _ = false;
fun quotes_of [] = []
| quotes_of (Quote q :: ms) = q :: quotes_of ms
| quotes_of (_ :: ms) = quotes_of ms;
fun args_of [] xs = ([], xs)
| args_of (Arg :: ms) (x :: xs) = apfst (cons x) (args_of ms xs)
| args_of (Ignore :: ms) (_ :: xs) = args_of ms xs
| args_of (_ :: ms) xs = args_of ms xs;
fun num_args_of x = length (List.filter is_arg x);
(**** theory data ****)
(* preprocessed definition table *)
type deftab =
(typ * (* type of constant *)
(string * (* name of theory containing definition of constant *)
(term list * (* parameters *)
term))) (* right-hand side *)
list Symtab.table;
(* code dependency graph *)
type nametab = (string * string) Symtab.table * unit Symtab.table;
fun merge_nametabs ((tab, used), (tab', used')) =
(Symtab.merge op = (tab, tab'), Symtab.merge op = (used, used'));
type node =
(exn option * (* slot for arbitrary data *)
string * (* name of structure containing piece of code *)
string); (* piece of code *)
type codegr =
node Graph.T *
(nametab * (* table for assigned constant names *)
nametab); (* table for assigned type names *)
val emptygr : codegr = (Graph.empty,
((Symtab.empty, Symtab.empty), (Symtab.empty, Symtab.empty)));
(* type of code generators *)
type 'a codegen =
theory -> (* theory in which generate_code was called *)
deftab -> (* definition table (for efficiency) *)
codegr -> (* code dependency graph *)
string -> (* node name of caller (for recording dependencies) *)
string -> (* module name of caller (for modular code generation) *)
bool -> (* whether to parenthesize generated expression *)
'a -> (* item to generate code from *)
(codegr * Pretty.T) option;
(* parameters for random testing *)
type test_params =
{size: int, iterations: int, default_type: typ option};
fun merge_test_params
{size = size1, iterations = iterations1, default_type = default_type1}
{size = size2, iterations = iterations2, default_type = default_type2} =
{size = Int.max (size1, size2),
iterations = Int.max (iterations1, iterations2),
default_type = case default_type1 of
NONE => default_type2
| _ => default_type1};
val default_test_params : test_params =
{size = 10, iterations = 100, default_type = NONE};
fun set_size size ({iterations, default_type, ...} : test_params) =
{size = size, iterations = iterations, default_type = default_type};
fun set_iterations iterations ({size, default_type, ...} : test_params) =
{size = size, iterations = iterations, default_type = default_type};
fun set_default_type s thy ({size, iterations, ...} : test_params) =
{size = size, iterations = iterations,
default_type = SOME (Syntax.read_typ_global thy s)};
(* theory data *)
structure CodegenData = TheoryDataFun
(
type T =
{codegens : (string * term codegen) list,
tycodegens : (string * typ codegen) list,
consts : ((string * typ) * (term mixfix list * (string * string) list)) list,
types : (string * (typ mixfix list * (string * string) list)) list,
preprocs: (stamp * (theory -> thm list -> thm list)) list,
modules: codegr Symtab.table,
test_params: test_params};
val empty =
{codegens = [], tycodegens = [], consts = [], types = [],
preprocs = [], modules = Symtab.empty, test_params = default_test_params};
val copy = I;
val extend = I;
fun merge _
({codegens = codegens1, tycodegens = tycodegens1,
consts = consts1, types = types1,
preprocs = preprocs1, modules = modules1, test_params = test_params1},
{codegens = codegens2, tycodegens = tycodegens2,
consts = consts2, types = types2,
preprocs = preprocs2, modules = modules2, test_params = test_params2}) =
{codegens = AList.merge (op =) (K true) (codegens1, codegens2),
tycodegens = AList.merge (op =) (K true) (tycodegens1, tycodegens2),
consts = AList.merge (op =) (K true) (consts1, consts2),
types = AList.merge (op =) (K true) (types1, types2),
preprocs = AList.merge (op =) (K true) (preprocs1, preprocs2),
modules = Symtab.merge (K true) (modules1, modules2),
test_params = merge_test_params test_params1 test_params2};
);
fun print_codegens thy =
let val {codegens, tycodegens, ...} = CodegenData.get thy in
Pretty.writeln (Pretty.chunks
[Pretty.strs ("term code generators:" :: map fst codegens),
Pretty.strs ("type code generators:" :: map fst tycodegens)])
end;
(**** access parameters for random testing ****)
fun get_test_params thy = #test_params (CodegenData.get thy);
fun map_test_params f thy =
let val {codegens, tycodegens, consts, types, preprocs, modules, test_params} =
CodegenData.get thy;
in CodegenData.put {codegens = codegens, tycodegens = tycodegens,
consts = consts, types = types, preprocs = preprocs,
modules = modules, test_params = f test_params} thy
end;
(**** access modules ****)
fun get_modules thy = #modules (CodegenData.get thy);
fun map_modules f thy =
let val {codegens, tycodegens, consts, types, preprocs, modules, test_params} =
CodegenData.get thy;
in CodegenData.put {codegens = codegens, tycodegens = tycodegens,
consts = consts, types = types, preprocs = preprocs,
modules = f modules, test_params = test_params} thy
end;
(**** add new code generators to theory ****)
fun add_codegen name f thy =
let val {codegens, tycodegens, consts, types, preprocs, modules, test_params} =
CodegenData.get thy
in (case AList.lookup (op =) codegens name of
NONE => CodegenData.put {codegens = (name, f) :: codegens,
tycodegens = tycodegens, consts = consts, types = types,
preprocs = preprocs, modules = modules,
test_params = test_params} thy
| SOME _ => error ("Code generator " ^ name ^ " already declared"))
end;
fun add_tycodegen name f thy =
let val {codegens, tycodegens, consts, types, preprocs, modules, test_params} =
CodegenData.get thy
in (case AList.lookup (op =) tycodegens name of
NONE => CodegenData.put {tycodegens = (name, f) :: tycodegens,
codegens = codegens, consts = consts, types = types,
preprocs = preprocs, modules = modules,
test_params = test_params} thy
| SOME _ => error ("Code generator " ^ name ^ " already declared"))
end;
(**** preprocessors ****)
fun add_preprocessor p thy =
let val {codegens, tycodegens, consts, types, preprocs, modules, test_params} =
CodegenData.get thy
in CodegenData.put {tycodegens = tycodegens,
codegens = codegens, consts = consts, types = types,
preprocs = (stamp (), p) :: preprocs,
modules = modules, test_params = test_params} thy
end;
fun preprocess thy =
let val {preprocs, ...} = CodegenData.get thy
in fold (fn (_, f) => f thy) preprocs end;
fun preprocess_term thy t =
let
val x = Free (Name.variant (add_term_names (t, [])) "x", fastype_of t);
(* fake definition *)
val eq = setmp quick_and_dirty true (SkipProof.make_thm thy)
(Logic.mk_equals (x, t));
fun err () = error "preprocess_term: bad preprocessor"
in case map prop_of (preprocess thy [eq]) of
[Const ("==", _) $ x' $ t'] => if x = x' then t' else err ()
| _ => err ()
end;
fun add_unfold eqn =
let
val thy = Thm.theory_of_thm eqn;
val ctxt = ProofContext.init thy;
val eqn' = LocalDefs.meta_rewrite_rule ctxt eqn;
val names = term_consts (fst (Logic.dest_equals (prop_of eqn')));
fun prep thy = map (fn th =>
let val prop = prop_of th
in
if forall (fn name => exists_Const (equal name o fst) prop) names
then rewrite_rule [eqn'] (Thm.transfer thy th)
else th
end)
in add_preprocessor prep end;
val _ = Context.>>
(let
fun mk_attribute f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I);
in
Context.map_theory (Code.add_attribute ("unfold", Scan.succeed (mk_attribute
(fn thm => add_unfold thm #> Code.add_inline thm))))
end);
(**** associate constants with target language code ****)
fun gen_assoc_const prep_const (raw_const, syn) thy =
let
val {codegens, tycodegens, consts, types, preprocs, modules, test_params} =
CodegenData.get thy;
val (cname, T) = prep_const thy raw_const;
in
if num_args_of (fst syn) > length (binder_types T) then
error ("More arguments than in corresponding type of " ^ cname)
else case AList.lookup (op =) consts (cname, T) of
NONE => CodegenData.put {codegens = codegens,
tycodegens = tycodegens,
consts = ((cname, T), syn) :: consts,
types = types, preprocs = preprocs,
modules = modules, test_params = test_params} thy
| SOME _ => error ("Constant " ^ cname ^ " already associated with code")
end;
val assoc_const_i = gen_assoc_const (K I);
val assoc_const = gen_assoc_const CodeUnit.read_bare_const;
(**** associate types with target language types ****)
fun assoc_type (s, syn) thy =
let
val {codegens, tycodegens, consts, types, preprocs, modules, test_params} =
CodegenData.get thy;
val tc = Sign.intern_type thy s;
in
case Symtab.lookup (snd (#types (Type.rep_tsig (Sign.tsig_of thy)))) tc of
SOME (Type.LogicalType i, _) =>
if num_args_of (fst syn) > i then
error ("More arguments than corresponding type constructor " ^ s)
else (case AList.lookup (op =) types tc of
NONE => CodegenData.put {codegens = codegens,
tycodegens = tycodegens, consts = consts,
types = (tc, syn) :: types,
preprocs = preprocs, modules = modules, test_params = test_params} thy
| SOME _ => error ("Type " ^ tc ^ " already associated with code"))
| _ => error ("Not a type constructor: " ^ s)
end;
fun get_assoc_type thy = AList.lookup (op =) ((#types o CodegenData.get) thy);
(**** make valid ML identifiers ****)
fun is_ascii_letdig x = Symbol.is_ascii_letter x orelse
Symbol.is_ascii_digit x orelse Symbol.is_ascii_quasi x;
fun dest_sym s = (case split_last (snd (take_prefix (equal "\\") (explode s))) of
("<" :: "^" :: xs, ">") => (true, implode xs)
| ("<" :: xs, ">") => (false, implode xs)
| _ => sys_error "dest_sym");
fun mk_id s = if s = "" then "" else
let
fun check_str [] = []
| check_str xs = (case take_prefix is_ascii_letdig xs of
([], " " :: zs) => check_str zs
| ([], z :: zs) =>
if size z = 1 then string_of_int (ord z) :: check_str zs
else (case dest_sym z of
(true, "isub") => check_str zs
| (true, "isup") => "" :: check_str zs
| (ctrl, s') => (if ctrl then "ctrl_" ^ s' else s') :: check_str zs)
| (ys, zs) => implode ys :: check_str zs);
val s' = space_implode "_" (maps (check_str o Symbol.explode) (NameSpace.explode s))
in
if Symbol.is_ascii_letter (hd (explode s')) then s' else "id_" ^ s'
end;
fun mk_long_id (p as (tab, used)) module s =
let
fun find_name [] = sys_error "mk_long_id"
| find_name (ys :: yss) =
let
val s' = NameSpace.implode ys
val s'' = NameSpace.append module s'
in case Symtab.lookup used s'' of
NONE => ((module, s'),
(Symtab.update_new (s, (module, s')) tab,
Symtab.update_new (s'', ()) used))
| SOME _ => find_name yss
end
in case Symtab.lookup tab s of
NONE => find_name (Library.suffixes1 (NameSpace.explode s))
| SOME name => (name, p)
end;
(* module: module name for caller *)
(* module': module name for callee *)
(* if caller and callee reside in different modules, use qualified access *)
fun mk_qual_id module (module', s) =
if module = module' orelse module' = "" then s else module' ^ "." ^ s;
fun mk_const_id module cname (gr, (tab1, tab2)) =
let
val ((module, s), tab1') = mk_long_id tab1 module cname
val s' = mk_id s;
val s'' = if ML_Syntax.is_reserved s' then s' ^ "_const" else s'
in ((gr, (tab1', tab2)), (module, s'')) end;
fun get_const_id cname (gr, (tab1, tab2)) =
case Symtab.lookup (fst tab1) cname of
NONE => error ("get_const_id: no such constant: " ^ quote cname)
| SOME (module, s) =>
let
val s' = mk_id s;
val s'' = if ML_Syntax.is_reserved s' then s' ^ "_const" else s'
in (module, s'') end;
fun mk_type_id module tyname (gr, (tab1, tab2)) =
let
val ((module, s), tab2') = mk_long_id tab2 module tyname
val s' = mk_id s;
val s'' = if ML_Syntax.is_reserved s' then s' ^ "_type" else s'
in ((gr, (tab1, tab2')), (module, s'')) end;
fun get_type_id tyname (gr, (tab1, tab2)) =
case Symtab.lookup (fst tab2) tyname of
NONE => error ("get_type_id: no such type: " ^ quote tyname)
| SOME (module, s) =>
let
val s' = mk_id s;
val s'' = if ML_Syntax.is_reserved s' then s' ^ "_type" else s'
in (module, s'') end;
fun get_type_id' f tyname tab = apsnd f (get_type_id tyname tab);
fun get_node (gr, x) k = Graph.get_node gr k;
fun add_edge e (gr, x) = (Graph.add_edge e gr, x);
fun add_edge_acyclic e (gr, x) = (Graph.add_edge_acyclic e gr, x);
fun del_nodes ks (gr, x) = (Graph.del_nodes ks gr, x);
fun map_node k f (gr, x) = (Graph.map_node k f gr, x);
fun new_node p (gr, x) = (Graph.new_node p gr, x);
fun theory_of_type s thy =
if Sign.declared_tyname thy s
then SOME (the_default thy (get_first (theory_of_type s) (Theory.parents_of thy)))
else NONE;
fun theory_of_const s thy =
if Sign.declared_const thy s
then SOME (the_default thy (get_first (theory_of_const s) (Theory.parents_of thy)))
else NONE;
fun thyname_of_type s thy = (case theory_of_type s thy of
NONE => error ("thyname_of_type: no such type: " ^ quote s)
| SOME thy' => Context.theory_name thy');
fun thyname_of_const s thy = (case theory_of_const s thy of
NONE => error ("thyname_of_const: no such constant: " ^ quote s)
| SOME thy' => Context.theory_name thy');
fun rename_terms ts =
let
val names = List.foldr add_term_names
(map (fst o fst) (rev (fold Term.add_vars ts []))) ts;
val reserved = filter ML_Syntax.is_reserved names;
val (illegal, alt_names) = split_list (map_filter (fn s =>
let val s' = mk_id s in if s = s' then NONE else SOME (s, s') end) names)
val ps = (reserved @ illegal) ~~
Name.variant_list names (map (suffix "'") reserved @ alt_names);
fun rename_id s = AList.lookup (op =) ps s |> the_default s;
fun rename (Var ((a, i), T)) = Var ((rename_id a, i), T)
| rename (Free (a, T)) = Free (rename_id a, T)
| rename (Abs (s, T, t)) = Abs (s, T, rename t)
| rename (t $ u) = rename t $ rename u
| rename t = t;
in
map rename ts
end;
val rename_term = hd o rename_terms o single;
(**** retrieve definition of constant ****)
fun is_instance T1 T2 =
Type.raw_instance (T1, Logic.legacy_varifyT T2);
fun get_assoc_code thy (s, T) = Option.map snd (find_first (fn ((s', T'), _) =>
s = s' andalso is_instance T T') (#consts (CodegenData.get thy)));
fun get_aux_code xs = map_filter (fn (m, code) =>
if m = "" orelse member (op =) (!mode) m then SOME code else NONE) xs;
fun mk_deftab thy =
let
val axmss = map (fn thy' => (Context.theory_name thy', Theory.axiom_table thy'))
(thy :: Theory.ancestors_of thy);
fun prep_def def = (case preprocess thy [def] of
[def'] => prop_of def' | _ => error "mk_deftab: bad preprocessor");
fun dest t =
let
val (lhs, rhs) = Logic.dest_equals t;
val (c, args) = strip_comb lhs;
val (s, T) = dest_Const c
in if forall is_Var args then SOME (s, (T, (args, rhs))) else NONE
end handle TERM _ => NONE;
fun add_def thyname (name, t) = (case dest t of
NONE => I
| SOME _ => (case dest (prep_def (Thm.get_axiom_i thy name)) of
NONE => I
| SOME (s, (T, (args, rhs))) => Symtab.map_default (s, [])
(cons (T, (thyname, split_last (rename_terms (args @ [rhs])))))))
in
fold (fn (thyname, axms) => Symtab.fold (add_def thyname) axms) axmss Symtab.empty
end;
fun get_defn thy defs s T = (case Symtab.lookup defs s of
NONE => NONE
| SOME ds =>
let val i = find_index (is_instance T o fst) ds
in if i >= 0 then
SOME (List.nth (ds, i), if length ds = 1 then NONE else SOME i)
else NONE
end);
(**** invoke suitable code generator for term / type ****)
fun codegen_error (gr, _) dep s =
error (s ^ "\nrequired by:\n" ^ commas (Graph.all_succs gr [dep]));
fun invoke_codegen thy defs dep module brack (gr, t) = (case get_first
(fn (_, f) => f thy defs gr dep module brack t) (#codegens (CodegenData.get thy)) of
NONE => codegen_error gr dep ("Unable to generate code for term:\n" ^
Sign.string_of_term thy t)
| SOME x => x);
fun invoke_tycodegen thy defs dep module brack (gr, T) = (case get_first
(fn (_, f) => f thy defs gr dep module brack T) (#tycodegens (CodegenData.get thy)) of
NONE => codegen_error gr dep ("Unable to generate code for type:\n" ^
Sign.string_of_typ thy T)
| SOME x => x);
(**** code generator for mixfix expressions ****)
fun parens p = Pretty.block [Pretty.str "(", p, Pretty.str ")"];
fun pretty_fn [] p = [p]
| pretty_fn (x::xs) p = Pretty.str ("fn " ^ x ^ " =>") ::
Pretty.brk 1 :: pretty_fn xs p;
fun pretty_mixfix _ _ [] [] _ = []
| pretty_mixfix module module' (Arg :: ms) (p :: ps) qs =
p :: pretty_mixfix module module' ms ps qs
| pretty_mixfix module module' (Ignore :: ms) ps qs =
pretty_mixfix module module' ms ps qs
| pretty_mixfix module module' (Module :: ms) ps qs =
(if module <> module'
then cons (Pretty.str (module' ^ ".")) else I)
(pretty_mixfix module module' ms ps qs)
| pretty_mixfix module module' (Pretty p :: ms) ps qs =
p :: pretty_mixfix module module' ms ps qs
| pretty_mixfix module module' (Quote _ :: ms) ps (q :: qs) =
q :: pretty_mixfix module module' ms ps qs;
fun replace_quotes [] [] = []
| replace_quotes xs (Arg :: ms) =
Arg :: replace_quotes xs ms
| replace_quotes xs (Ignore :: ms) =
Ignore :: replace_quotes xs ms
| replace_quotes xs (Module :: ms) =
Module :: replace_quotes xs ms
| replace_quotes xs (Pretty p :: ms) =
Pretty p :: replace_quotes xs ms
| replace_quotes (x::xs) (Quote _ :: ms) =
Quote x :: replace_quotes xs ms;
(**** default code generators ****)
fun eta_expand t ts i =
let
val k = length ts;
val Ts = Library.drop (k, binder_types (fastype_of t));
val j = i - k
in
List.foldr (fn (T, t) => Abs ("x", T, t))
(list_comb (t, ts @ map Bound (j-1 downto 0))) (Library.take (j, Ts))
end;
fun mk_app _ p [] = p
| mk_app brack p ps = if brack then
Pretty.block (Pretty.str "(" ::
separate (Pretty.brk 1) (p :: ps) @ [Pretty.str ")"])
else Pretty.block (separate (Pretty.brk 1) (p :: ps));
fun new_names t xs = Name.variant_list
(map (fst o fst o dest_Var) (term_vars t) union
add_term_names (t, ML_Syntax.reserved_names)) (map mk_id xs);
fun new_name t x = hd (new_names t [x]);
fun if_library x y = if member (op =) (!mode) "library" then x else y;
fun default_codegen thy defs gr dep module brack t =
let
val (u, ts) = strip_comb t;
fun codegens brack = foldl_map (invoke_codegen thy defs dep module brack)
in (case u of
Var ((s, i), T) =>
let
val (gr', ps) = codegens true (gr, ts);
val (gr'', _) = invoke_tycodegen thy defs dep module false (gr', T)
in SOME (gr'', mk_app brack (Pretty.str (s ^
(if i=0 then "" else string_of_int i))) ps)
end
| Free (s, T) =>
let
val (gr', ps) = codegens true (gr, ts);
val (gr'', _) = invoke_tycodegen thy defs dep module false (gr', T)
in SOME (gr'', mk_app brack (Pretty.str s) ps) end
| Const (s, T) =>
(case get_assoc_code thy (s, T) of
SOME (ms, aux) =>
let val i = num_args_of ms
in if length ts < i then
default_codegen thy defs gr dep module brack (eta_expand u ts i)
else
let
val (ts1, ts2) = args_of ms ts;
val (gr1, ps1) = codegens false (gr, ts1);
val (gr2, ps2) = codegens true (gr1, ts2);
val (gr3, ps3) = codegens false (gr2, quotes_of ms);
val (gr4, _) = invoke_tycodegen thy defs dep module false
(gr3, funpow (length ts) (hd o tl o snd o dest_Type) T);
val (module', suffix) = (case get_defn thy defs s T of
NONE => (if_library (thyname_of_const s thy) module, "")
| SOME ((U, (module', _)), NONE) =>
(if_library module' module, "")
| SOME ((U, (module', _)), SOME i) =>
(if_library module' module, " def" ^ string_of_int i));
val node_id = s ^ suffix;
fun p module' = mk_app brack (Pretty.block
(pretty_mixfix module module' ms ps1 ps3)) ps2
in SOME (case try (get_node gr4) node_id of
NONE => (case get_aux_code aux of
[] => (gr4, p module)
| xs => (add_edge (node_id, dep) (new_node
(node_id, (NONE, module', cat_lines xs ^ "\n")) gr4),
p module'))
| SOME (_, module'', _) =>
(add_edge (node_id, dep) gr4, p module''))
end
end
| NONE => (case get_defn thy defs s T of
NONE => NONE
| SOME ((U, (thyname, (args, rhs))), k) =>
let
val module' = if_library thyname module;
val suffix = (case k of NONE => "" | SOME i => " def" ^ string_of_int i);
val node_id = s ^ suffix;
val (gr', (ps, def_id)) = codegens true (gr, ts) |>>>
mk_const_id module' (s ^ suffix);
val p = mk_app brack (Pretty.str (mk_qual_id module def_id)) ps
in SOME (case try (get_node gr') node_id of
NONE =>
let
val _ = message ("expanding definition of " ^ s);
val (Ts, _) = strip_type U;
val (args', rhs') =
if not (null args) orelse null Ts then (args, rhs) else
let val v = Free (new_name rhs "x", hd Ts)
in ([v], betapply (rhs, v)) end;
val (gr1, p') = invoke_codegen thy defs node_id module' false
(add_edge (node_id, dep)
(new_node (node_id, (NONE, "", "")) gr'), rhs');
val (gr2, xs) = codegens false (gr1, args');
val (gr3, _) = invoke_tycodegen thy defs dep module false (gr2, T);
val (gr4, ty) = invoke_tycodegen thy defs node_id module' false (gr3, U);
in (map_node node_id (K (NONE, module', Pretty.string_of
(Pretty.block (separate (Pretty.brk 1)
(if null args' then
[Pretty.str ("val " ^ snd def_id ^ " :"), ty]
else Pretty.str ("fun " ^ snd def_id) :: xs) @
[Pretty.str " =", Pretty.brk 1, p', Pretty.str ";"])) ^ "\n\n")) gr4,
p)
end
| SOME _ => (add_edge (node_id, dep) gr', p))
end))
| Abs _ =>
let
val (bs, Ts) = ListPair.unzip (strip_abs_vars u);
val t = strip_abs_body u
val bs' = new_names t bs;
val (gr1, ps) = codegens true (gr, ts);
val (gr2, p) = invoke_codegen thy defs dep module false
(gr1, subst_bounds (map Free (rev (bs' ~~ Ts)), t));
in
SOME (gr2, mk_app brack (Pretty.block (Pretty.str "(" :: pretty_fn bs' p @
[Pretty.str ")"])) ps)
end
| _ => NONE)
end;
fun default_tycodegen thy defs gr dep module brack (TVar ((s, i), _)) =
SOME (gr, Pretty.str (s ^ (if i = 0 then "" else string_of_int i)))
| default_tycodegen thy defs gr dep module brack (TFree (s, _)) =
SOME (gr, Pretty.str s)
| default_tycodegen thy defs gr dep module brack (Type (s, Ts)) =
(case AList.lookup (op =) ((#types o CodegenData.get) thy) s of
NONE => NONE
| SOME (ms, aux) =>
let
val (gr', ps) = foldl_map
(invoke_tycodegen thy defs dep module false)
(gr, fst (args_of ms Ts));
val (gr'', qs) = foldl_map
(invoke_tycodegen thy defs dep module false)
(gr', quotes_of ms);
val module' = if_library (thyname_of_type s thy) module;
val node_id = s ^ " (type)";
fun p module' = Pretty.block (pretty_mixfix module module' ms ps qs)
in SOME (case try (get_node gr'') node_id of
NONE => (case get_aux_code aux of
[] => (gr'', p module')
| xs => (fst (mk_type_id module' s
(add_edge (node_id, dep) (new_node (node_id,
(NONE, module', cat_lines xs ^ "\n")) gr''))),
p module'))
| SOME (_, module'', _) =>
(add_edge (node_id, dep) gr'', p module''))
end);
val _ = Context.>> (Context.map_theory
(add_codegen "default" default_codegen #>
add_tycodegen "default" default_tycodegen));
fun mk_tuple [p] = p
| mk_tuple ps = Pretty.block (Pretty.str "(" ::
List.concat (separate [Pretty.str ",", Pretty.brk 1] (map single ps)) @
[Pretty.str ")"]);
fun mk_let bindings body =
Pretty.blk (0, [Pretty.str "let", Pretty.brk 1,
Pretty.blk (0, separate Pretty.fbrk (map (fn (pat, rhs) =>
Pretty.block [Pretty.str "val ", pat, Pretty.str " =", Pretty.brk 1,
rhs, Pretty.str ";"]) bindings)),
Pretty.brk 1, Pretty.str "in", Pretty.brk 1, body,
Pretty.brk 1, Pretty.str "end"]);
fun mk_struct name s = "structure " ^ name ^ " =\nstruct\n\n" ^ s ^ "end;\n";
fun add_to_module name s = AList.map_entry (op =) name (suffix s);
fun output_code gr module xs =
let
val code = map_filter (fn s =>
let val c as (_, module', _) = Graph.get_node gr s
in if module = "" orelse module = module' then SOME (s, c) else NONE end)
(rev (Graph.all_preds gr xs));
fun string_of_cycle (a :: b :: cs) =
let val SOME (x, y) = get_first (fn (x, (_, a', _)) =>
if a = a' then Option.map (pair x)
(find_first (equal b o #2 o Graph.get_node gr)
(Graph.imm_succs gr x))
else NONE) code
in x ^ " called by " ^ y ^ "\n" ^ string_of_cycle (b :: cs) end
| string_of_cycle _ = ""
in
if module = "" then
let
val modules = distinct (op =) (map (#2 o snd) code);
val mod_gr = fold_rev Graph.add_edge_acyclic
(maps (fn (s, (_, module, _)) => map (pair module)
(filter_out (equal module) (map (#2 o Graph.get_node gr)
(Graph.imm_succs gr s)))) code)
(fold_rev (Graph.new_node o rpair ()) modules Graph.empty);
val modules' =
rev (Graph.all_preds mod_gr (map (#2 o Graph.get_node gr) xs))
in
List.foldl (fn ((_, (_, module, s)), ms) => add_to_module module s ms)
(map (rpair "") modules') code
end handle Graph.CYCLES (cs :: _) =>
error ("Cyclic dependency of modules:\n" ^ commas cs ^
"\n" ^ string_of_cycle cs)
else [(module, implode (map (#3 o snd) code))]
end;
fun gen_generate_code prep_term thy modules module =
PrintMode.setmp [] (Pretty.setmp_margin (!margin) (fn xs =>
let
val _ = (module <> "" orelse
member (op =) (!mode) "library" andalso forall (equal "" o fst) xs)
orelse error "missing module name";
val graphs = get_modules thy;
val defs = mk_deftab thy;
val gr = new_node ("<Top>", (NONE, module, ""))
(List.foldl (fn ((gr, (tab1, tab2)), (gr', (tab1', tab2'))) =>
(Graph.merge (fn ((_, module, _), (_, module', _)) =>
module = module') (gr, gr'),
(merge_nametabs (tab1, tab1'), merge_nametabs (tab2, tab2')))) emptygr
(map (fn s => case Symtab.lookup graphs s of
NONE => error ("Undefined code module: " ^ s)
| SOME gr => gr) modules))
handle Graph.DUP k => error ("Duplicate code for " ^ k);
fun expand (t as Abs _) = t
| expand t = (case fastype_of t of
Type ("fun", [T, U]) => Abs ("x", T, t $ Bound 0) | _ => t);
val (gr', ps) = foldl_map (fn (gr, (s, t)) => apsnd (pair s)
(invoke_codegen thy defs "<Top>" module false (gr, t)))
(gr, map (apsnd (expand o preprocess_term thy o prep_term thy)) xs);
val code = map_filter
(fn ("", _) => NONE
| (s', p) => SOME (Pretty.string_of (Pretty.block
[Pretty.str ("val " ^ s' ^ " ="), Pretty.brk 1, p, Pretty.str ";"]))) ps;
val code' = space_implode "\n\n" code ^ "\n\n";
val code'' =
map_filter (fn (name, s) =>
if member (op =) (!mode) "library" andalso name = module andalso null code
then NONE
else SOME (name, mk_struct name s))
((if null code then I
else add_to_module module code')
(output_code (fst gr') (if_library "" module) ["<Top>"]))
in
(code'', del_nodes ["<Top>"] gr')
end));
val generate_code_i = gen_generate_code Sign.cert_term;
val generate_code = gen_generate_code Sign.read_term;
(**** Reflection ****)
val strip_tname = implode o tl o explode;
fun pretty_list xs = Pretty.block (Pretty.str "[" ::
flat (separate [Pretty.str ",", Pretty.brk 1] (map single xs)) @
[Pretty.str "]"]);
fun mk_type p (TVar ((s, i), _)) = Pretty.str
(strip_tname s ^ (if i = 0 then "" else string_of_int i) ^ "T")
| mk_type p (TFree (s, _)) = Pretty.str (strip_tname s ^ "T")
| mk_type p (Type (s, Ts)) = (if p then parens else I) (Pretty.block
[Pretty.str "Type", Pretty.brk 1, Pretty.str ("(\"" ^ s ^ "\","),
Pretty.brk 1, pretty_list (map (mk_type false) Ts), Pretty.str ")"]);
fun mk_term_of gr module p (TVar ((s, i), _)) = Pretty.str
(strip_tname s ^ (if i = 0 then "" else string_of_int i) ^ "F")
| mk_term_of gr module p (TFree (s, _)) = Pretty.str (strip_tname s ^ "F")
| mk_term_of gr module p (Type (s, Ts)) = (if p then parens else I)
(Pretty.block (separate (Pretty.brk 1)
(Pretty.str (mk_qual_id module
(get_type_id' (fn s' => "term_of_" ^ s') s gr)) ::
maps (fn T =>
[mk_term_of gr module true T, mk_type true T]) Ts)));
(**** Test data generators ****)
fun mk_gen gr module p xs a (TVar ((s, i), _)) = Pretty.str
(strip_tname s ^ (if i = 0 then "" else string_of_int i) ^ "G")
| mk_gen gr module p xs a (TFree (s, _)) = Pretty.str (strip_tname s ^ "G")
| mk_gen gr module p xs a (Type (tyc as (s, Ts))) = (if p then parens else I)
(Pretty.block (separate (Pretty.brk 1)
(Pretty.str (mk_qual_id module (get_type_id' (fn s' => "gen_" ^ s') s gr) ^
(if member (op =) xs s then "'" else "")) ::
(case tyc of
("fun", [T, U]) =>
[mk_term_of gr module true T, mk_type true T,
mk_gen gr module true xs a U, mk_type true U]
| _ => maps (fn T =>
[mk_gen gr module true xs a T, mk_type true T]) Ts) @
(if member (op =) xs s then [Pretty.str a] else []))));
val test_fn : (int -> (string * term) list option) ref = ref (fn _ => NONE);
fun test_term thy quiet sz i t =
let
val _ = (null (term_tvars t) andalso null (term_tfrees t)) orelse
error "Term to be tested contains type variables";
val _ = null (term_vars t) orelse
error "Term to be tested contains schematic variables";
val frees = map dest_Free (term_frees t);
val frees' = frees ~~
map (fn i => "arg" ^ string_of_int i) (1 upto length frees);
val (code, gr) = setmp mode ["term_of", "test"]
(generate_code_i thy [] "Generated") [("testf", list_abs_free (frees, t))];
val s = PrintMode.setmp [] (fn () => "structure TestTerm =\nstruct\n\n" ^
cat_lines (map snd code) ^
"\nopen Generated;\n\n" ^ Pretty.string_of
(Pretty.block [Pretty.str "val () = Codegen.test_fn :=",
Pretty.brk 1, Pretty.str ("(fn i =>"), Pretty.brk 1,
mk_let (map (fn ((s, T), s') =>
(mk_tuple [Pretty.str s', Pretty.str (s' ^ "_t")],
Pretty.block [mk_gen gr "Generated" false [] "" T, Pretty.brk 1,
Pretty.str "i"])) frees')
(Pretty.block [Pretty.str "if ",
mk_app false (Pretty.str "testf") (map (Pretty.str o snd) frees'),
Pretty.brk 1, Pretty.str "then NONE",
Pretty.brk 1, Pretty.str "else ",
Pretty.block [Pretty.str "SOME ", Pretty.block (Pretty.str "[" ::
flat (separate [Pretty.str ",", Pretty.brk 1]
(map (fn ((s, T), s') => [Pretty.block
[Pretty.str ("(" ^ quote (Symbol.escape s) ^ ","), Pretty.brk 1,
Pretty.str (s' ^ "_t ())")]]) frees')) @
[Pretty.str "]"])]]),
Pretty.str ");"]) ^
"\n\nend;\n") ();
val _ = ML_Context.eval_in (SOME (Context.Theory thy)) false Position.none s;
fun iter f k = if k > i then NONE
else (case (f () handle Match =>
(if quiet then ()
else warning "Exception Match raised in generated code"; NONE)) of
NONE => iter f (k+1) | SOME x => SOME x);
fun test k = if k > sz then NONE
else (if quiet then () else priority ("Test data size: " ^ string_of_int k);
case iter (fn () => !test_fn k) 1 of
NONE => test (k+1) | SOME x => SOME x);
in test 0 end;
fun test_goal quiet ({size, iterations, default_type}, tvinsts) i assms state =
let
val thy = Proof.theory_of state;
fun strip (Const ("all", _) $ Abs (_, _, t)) = strip t
| strip t = t;
val (_, (_, st)) = Proof.get_goal state;
val (gi, frees) = Logic.goal_params (prop_of st) i;
val gi' = ObjectLogic.atomize_term thy (map_types
(map_type_tfree (fn p as (s, S) =>
let val T = the_default (the_default (TFree p) default_type)
(AList.lookup (op =) tvinsts s)
in if Sign.of_sort thy (T, S) then T
else error ("Type " ^ Sign.string_of_typ thy T ^
" to be substituted for variable " ^
Sign.string_of_typ thy (TFree p) ^ "\ndoes not have sort " ^
Sign.string_of_sort thy S)
end))
(Logic.list_implies (assms, subst_bounds (frees, strip gi))));
in test_term thy quiet size iterations gi' end;
fun pretty_counterex ctxt NONE = Pretty.str "No counterexamples found."
| pretty_counterex ctxt (SOME cex) =
Pretty.chunks (Pretty.str "Counterexample found:\n" ::
map (fn (s, t) =>
Pretty.block [Pretty.str (s ^ " ="), Pretty.brk 1, Syntax.pretty_term ctxt t]) cex);
val auto_quickcheck = ref false;
val auto_quickcheck_time_limit = ref 5000;
fun test_goal' int state =
let
val ctxt = Proof.context_of state;
val assms = map term_of (Assumption.assms_of ctxt);
val params = get_test_params (Proof.theory_of state);
fun test () =
let
val res = TimeLimit.timeLimit (Time.fromMilliseconds (!auto_quickcheck_time_limit))
(try (test_goal true (params, []) 1 assms)) state;
in
case res of
NONE => state
| SOME NONE => state
| SOME cex => Proof.goal_message (fn () => Pretty.chunks [Pretty.str "",
Pretty.mark Markup.hilite (pretty_counterex ctxt cex)]) state
end handle TimeLimit.TimeOut => (warning "Auto quickcheck: timeout."; state);
in
if int andalso !auto_quickcheck andalso not (!Toplevel.quiet)
then test ()
else state
end;
val _ = Context.>> (Specification.add_theorem_hook test_goal');
(**** Evaluator for terms ****)
val eval_result = ref (fn () => Bound 0);
fun eval_term thy t =
let val e = PrintMode.setmp [] (fn () =>
let
val _ = (null (term_tvars t) andalso null (term_tfrees t)) orelse
error "Term to be evaluated contains type variables";
val _ = (null (term_vars t) andalso null (term_frees t)) orelse
error "Term to be evaluated contains variables";
val (code, gr) = setmp mode ["term_of"]
(generate_code_i thy [] "Generated")
[("result", Abs ("x", TFree ("'a", []), t))];
val s = "structure EvalTerm =\nstruct\n\n" ^
cat_lines (map snd code) ^
"\nopen Generated;\n\n" ^ Pretty.string_of
(Pretty.block [Pretty.str "val () = Codegen.eval_result := (fn () =>",
Pretty.brk 1,
mk_app false (mk_term_of gr "Generated" false (fastype_of t))
[Pretty.str "(result ())"],
Pretty.str ");"]) ^
"\n\nend;\n";
val _ = ML_Context.eval_in (SOME (Context.Theory thy)) false Position.none s;
in !eval_result end) ();
in e () end;
fun print_evaluated_term s = Toplevel.keep (fn state =>
let
val ctxt = Toplevel.context_of state;
val thy = ProofContext.theory_of ctxt;
val t = eval_term thy (Syntax.read_term ctxt s);
val T = Term.type_of t;
in
Pretty.writeln
(Pretty.block [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.fbrk,
Pretty.str "::", Pretty.brk 1, Pretty.quote (Syntax.pretty_typ ctxt T)])
end);
exception Evaluation of term;
fun evaluation_oracle (thy, Evaluation t) =
Logic.mk_equals (t, eval_term thy t);
fun evaluation_conv ct =
let val thy = Thm.theory_of_cterm ct
in Thm.invoke_oracle_i thy "Pure.evaluation" (thy, Evaluation (Thm.term_of ct)) end;
val _ = Context.>> (Context.map_theory
(Theory.add_oracle ("evaluation", evaluation_oracle)));
(**** Interface ****)
val str = PrintMode.setmp [] Pretty.str;
fun parse_mixfix rd s =
(case Scan.finite Symbol.stopper (Scan.repeat
( $$ "_" >> K Arg
|| $$ "?" >> K Ignore
|| $$ "\\<module>" >> K Module
|| $$ "/" |-- Scan.repeat ($$ " ") >> (Pretty o Pretty.brk o length)
|| $$ "{" |-- $$ "*" |-- Scan.repeat1
( $$ "'" |-- Scan.one Symbol.is_regular
|| Scan.unless ($$ "*" -- $$ "}") (Scan.one Symbol.is_regular)) --|
$$ "*" --| $$ "}" >> (Quote o rd o implode)
|| Scan.repeat1
( $$ "'" |-- Scan.one Symbol.is_regular
|| Scan.unless ($$ "_" || $$ "?" || $$ "\\<module>" || $$ "/" || $$ "{" |-- $$ "*")
(Scan.one Symbol.is_regular)) >> (Pretty o str o implode)))
(Symbol.explode s) of
(p, []) => p
| _ => error ("Malformed annotation: " ^ quote s));
structure P = OuterParse and K = OuterKeyword;
val _ = OuterSyntax.keywords ["attach", "file", "contains"];
fun strip_whitespace s = implode (fst (take_suffix (equal "\n" orf equal " ")
(snd (take_prefix (equal "\n" orf equal " ") (explode s))))) ^ "\n";
val parse_attach = Scan.repeat (P.$$$ "attach" |--
Scan.optional (P.$$$ "(" |-- P.xname --| P.$$$ ")") "" --
(P.verbatim >> strip_whitespace));
val _ =
OuterSyntax.command "types_code"
"associate types with target language types" K.thy_decl
(Scan.repeat1 (P.xname --| P.$$$ "(" -- P.string --| P.$$$ ")" -- parse_attach) >>
(fn xs => Toplevel.theory (fn thy => fold (assoc_type o
(fn ((name, mfx), aux) => (name, (parse_mixfix
(Syntax.read_typ_global thy) mfx, aux)))) xs thy)));
val _ =
OuterSyntax.command "consts_code"
"associate constants with target language code" K.thy_decl
(Scan.repeat1
(P.term --|
P.$$$ "(" -- P.string --| P.$$$ ")" -- parse_attach) >>
(fn xs => Toplevel.theory (fn thy => fold (assoc_const o
(fn ((const, mfx), aux) =>
(const, (parse_mixfix (Sign.read_term thy) mfx, aux)))) xs thy)));
fun parse_code lib =
Scan.optional (P.$$$ "(" |-- P.enum "," P.xname --| P.$$$ ")") (!mode) --
(if lib then Scan.optional P.name "" else P.name) --
Scan.option (P.$$$ "file" |-- P.name) --
(if lib then Scan.succeed []
else Scan.optional (P.$$$ "imports" |-- Scan.repeat1 P.name) []) --|
P.$$$ "contains" --
( Scan.repeat1 (P.name --| P.$$$ "=" -- P.term)
|| Scan.repeat1 (P.term >> pair "")) >>
(fn ((((mode', module), opt_fname), modules), xs) => Toplevel.theory (fn thy =>
let
val mode'' = (if lib then insert (op =) "library" else I) (remove (op =) "library" mode');
val (code, gr) = setmp mode mode'' (generate_code thy modules module) xs
in ((case opt_fname of
NONE =>
ML_Context.eval_in (SOME (Context.Theory thy)) false Position.none
(cat_lines (map snd code))
| SOME fname =>
if lib then
app (fn (name, s) => File.write
(Path.append (Path.explode fname) (Path.basic (name ^ ".ML"))) s)
(("ROOT", implode (map (fn (name, _) =>
"use \"" ^ name ^ ".ML\";\n") code)) :: code)
else File.write (Path.explode fname) (snd (hd code)));
if lib then thy
else map_modules (Symtab.update (module, gr)) thy)
end));
val _ =
OuterSyntax.command "code_library"
"generates code for terms (one structure for each theory)" K.thy_decl
(parse_code true);
val _ =
OuterSyntax.command "code_module"
"generates code for terms (single structure, incremental)" K.thy_decl
(parse_code false);
val params =
[("size", P.nat >> (K o set_size)),
("iterations", P.nat >> (K o set_iterations)),
("default_type", P.typ >> set_default_type)];
val parse_test_params = P.short_ident :|-- (fn s =>
P.$$$ "=" |-- (AList.lookup (op =) params s |> the_default Scan.fail));
fun parse_tyinst xs =
(P.type_ident --| P.$$$ "=" -- P.typ >> (fn (v, s) => fn thy =>
fn (x, ys) => (x, (v, Syntax.read_typ_global thy s) :: ys))) xs;
val _ =
OuterSyntax.command "quickcheck_params" "set parameters for random testing" K.thy_decl
(P.$$$ "[" |-- P.list1 parse_test_params --| P.$$$ "]" >>
(fn fs => Toplevel.theory (fn thy =>
map_test_params (Library.apply (map (fn f => f thy) fs)) thy)));
val _ =
OuterSyntax.command "quickcheck" "try to find counterexample for subgoal" K.diag
(Scan.option (P.$$$ "[" |-- P.list1
( parse_test_params >> (fn f => fn thy => apfst (f thy))
|| parse_tyinst) --| P.$$$ "]") -- Scan.optional P.nat 1 >>
(fn (ps, g) => Toplevel.keep (fn st => Toplevel.proof_of st |>
test_goal false (Library.apply (the_default []
(Option.map (map (fn f => f (Toplevel.theory_of st))) ps))
(get_test_params (Toplevel.theory_of st), [])) g [] |>
pretty_counterex (Toplevel.context_of st) |> Pretty.writeln)));
val _ =
OuterSyntax.improper_command "value" "read, evaluate and print term" K.diag
(P.term >> (Toplevel.no_timing oo print_evaluated_term));
end;
val auto_quickcheck = Codegen.auto_quickcheck;
val auto_quickcheck_time_limit = Codegen.auto_quickcheck_time_limit;