src/HOL/IMP/Compiler.thy
author nipkow
Fri, 23 Nov 2001 17:19:14 +0100
changeset 12275 aa2b7b475a94
parent 11704 3c50a2cd6f00
child 12429 15c13bdc94c8
permissions -rw-r--r--
Isar conversion

(*  Title:      HOL/IMP/Compiler.thy
    ID:         $Id$
    Author:     Tobias Nipkow, TUM
    Copyright   1996 TUM

A simple compiler for a simplistic machine.
*)

theory Compiler = Natural:

datatype instr = ASIN loc aexp | JMPF bexp nat | JMPB nat

consts  stepa1 :: "instr list => ((state*nat) * (state*nat))set"

syntax
        "@stepa1" :: "[instr list,state,nat,state,nat] => bool"
                     ("_ \<turnstile> <_,_>/ -1\<rightarrow> <_,_>" [50,0,0,0,0] 50)
        "@stepa" :: "[instr list,state,nat,state,nat] => bool"
                     ("_ \<turnstile>/ <_,_>/ -*\<rightarrow> <_,_>" [50,0,0,0,0] 50)

translations  "P \<turnstile> <s,m> -1\<rightarrow> <t,n>" == "((s,m),t,n) : stepa1 P"
              "P \<turnstile> <s,m> -*\<rightarrow> <t,n>" == "((s,m),t,n) : ((stepa1 P)^*)"


inductive "stepa1 P"
intros
ASIN[simp]:
       "\<lbrakk> n<size P; P!n = ASIN x a \<rbrakk> \<Longrightarrow> P \<turnstile> <s,n> -1\<rightarrow> <s[x::= a s],Suc n>"
JMPFT[simp,intro]:
       "\<lbrakk> n<size P; P!n = JMPF b i;  b s \<rbrakk> \<Longrightarrow> P \<turnstile> <s,n> -1\<rightarrow> <s,Suc n>"
JMPFF[simp,intro]:
       "\<lbrakk> n<size P; P!n = JMPF b i; ~b s; m=n+i \<rbrakk> \<Longrightarrow> P \<turnstile> <s,n> -1\<rightarrow> <s,m>"
JMPB[simp]:
      "\<lbrakk> n<size P; P!n = JMPB i; i <= n; j = n-i \<rbrakk> \<Longrightarrow> P \<turnstile> <s,n> -1\<rightarrow> <s,j>"

consts compile :: "com => instr list"
primrec
"compile SKIP = []"
"compile (x:==a) = [ASIN x a]"
"compile (c1;c2) = compile c1 @ compile c2"
"compile (IF b THEN c1 ELSE c2) =
 [JMPF b (length(compile c1) + 2)] @ compile c1 @
 [JMPF (%x. False) (length(compile c2)+1)] @ compile c2"
"compile (WHILE b DO c) = [JMPF b (length(compile c) + 2)] @ compile c @
 [JMPB (length(compile c)+1)]"

declare nth_append[simp];

(* Lemmas for lifting an execution into a prefix and suffix
   of instructions; only needed for the first proof *)

lemma app_right_1:
  "is1 \<turnstile> <s1,i1> -1\<rightarrow> <s2,i2> \<Longrightarrow> is1 @ is2 \<turnstile> <s1,i1> -1\<rightarrow> <s2,i2>"
  (is "?P \<Longrightarrow> _")
proof -
 assume ?P
 then show ?thesis
 by induct force+
qed

lemma app_left_1:
  "is2 \<turnstile> <s1,i1> -1\<rightarrow> <s2,i2> \<Longrightarrow>
   is1 @ is2 \<turnstile> <s1,size is1+i1> -1\<rightarrow> <s2,size is1+i2>"
  (is "?P \<Longrightarrow> _")
proof -
 assume ?P
 then show ?thesis
 by induct force+
qed

declare rtrancl_induct2 [induct set: rtrancl]

lemma app_right:
  "is1 \<turnstile> <s1,i1> -*\<rightarrow> <s2,i2> \<Longrightarrow> is1 @ is2 \<turnstile> <s1,i1> -*\<rightarrow> <s2,i2>"
  (is "?P \<Longrightarrow> _")
proof -
 assume ?P
 then show ?thesis
 proof induct
   show "is1 @ is2 \<turnstile> <s1,i1> -*\<rightarrow> <s1,i1>" by simp
 next
   fix s1' i1' s2 i2
   assume "is1 @ is2 \<turnstile> <s1,i1> -*\<rightarrow> <s1',i1'>"
          "is1 \<turnstile> <s1',i1'> -1\<rightarrow> <s2,i2>"
   thus "is1 @ is2 \<turnstile> <s1,i1> -*\<rightarrow> <s2,i2>"
     by(blast intro:app_right_1 rtrancl_trans)
 qed
qed

lemma app_left:
  "is2 \<turnstile> <s1,i1> -*\<rightarrow> <s2,i2> \<Longrightarrow>
   is1 @ is2 \<turnstile> <s1,size is1+i1> -*\<rightarrow> <s2,size is1+i2>"
  (is "?P \<Longrightarrow> _")
proof -
 assume ?P
 then show ?thesis
 proof induct
   show "is1 @ is2 \<turnstile> <s1,length is1 + i1> -*\<rightarrow> <s1,length is1 + i1>" by simp
 next
   fix s1' i1' s2 i2
   assume "is1 @ is2 \<turnstile> <s1,length is1 + i1> -*\<rightarrow> <s1',length is1 + i1'>"
          "is2 \<turnstile> <s1',i1'> -1\<rightarrow> <s2,i2>"
   thus "is1 @ is2 \<turnstile> <s1,length is1 + i1> -*\<rightarrow> <s2,length is1 + i2>"
     by(blast intro:app_left_1 rtrancl_trans)
 qed
qed

lemma app_left2:
  "\<lbrakk> is2 \<turnstile> <s1,i1> -*\<rightarrow> <s2,i2>; j1 = size is1+i1; j2 = size is1+i2 \<rbrakk> \<Longrightarrow>
   is1 @ is2 \<turnstile> <s1,j1> -*\<rightarrow> <s2,j2>"
by (simp add:app_left)

lemma app1_left:
  "is \<turnstile> <s1,i1> -*\<rightarrow> <s2,i2> \<Longrightarrow>
   instr # is \<turnstile> <s1,Suc i1> -*\<rightarrow> <s2,Suc i2>"
by(erule app_left[of _ _ _ _ _ "[instr]",simplified])

declare rtrancl_into_rtrancl[trans]
        rtrancl_into_rtrancl2[trans]
        rtrancl_trans[trans]
(* The first proof; statement very intuitive,
   but application of induction hypothesis requires the above lifting lemmas
*)
theorem "<c,s> -c-> t \<Longrightarrow> compile c \<turnstile> <s,0> -*\<rightarrow> <t,length(compile c)>"
        (is "?P \<Longrightarrow> ?Q c s t")
proof -
  assume ?P
  then show ?thesis
  proof induct
    show "\<And>s. ?Q SKIP s s" by simp
  next
    show "\<And>a s x. ?Q (x :== a) s (s[x::= a s])" by force
  next
    fix c0 c1 s0 s1 s2
    assume "?Q c0 s0 s1"
    hence "compile c0 @ compile c1 \<turnstile> <s0,0> -*\<rightarrow> <s1,length(compile c0)>"
      by(rule app_right)
    moreover assume "?Q c1 s1 s2"
    hence "compile c0 @ compile c1 \<turnstile> <s1,length(compile c0)> -*\<rightarrow>
           <s2,length(compile c0)+length(compile c1)>"
    proof -
      note app_left[of _ 0]
      thus
	"\<And>is1 is2 s1 s2 i2.
	is2 \<turnstile> <s1,0> -*\<rightarrow> <s2,i2> \<Longrightarrow>
	is1 @ is2 \<turnstile> <s1,size is1> -*\<rightarrow> <s2,size is1+i2>"
	by simp
    qed
    ultimately have "compile c0 @ compile c1 \<turnstile> <s0,0> -*\<rightarrow>
                       <s2,length(compile c0)+length(compile c1)>"
      by (rule rtrancl_trans)
    thus "?Q (c0; c1) s0 s2" by simp
  next
    fix b c0 c1 s0 s1
    let ?comp = "compile(IF b THEN c0 ELSE c1)"
    assume "b s0" and IH: "?Q c0 s0 s1"
    hence "?comp \<turnstile> <s0,0> -1\<rightarrow> <s0,1>" by auto
    also from IH
    have "?comp \<turnstile> <s0,1> -*\<rightarrow> <s1,length(compile c0)+1>"
      by(auto intro:app1_left app_right)
    also have "?comp \<turnstile> <s1,length(compile c0)+1> -1\<rightarrow> <s1,length ?comp>"
      by(auto)
    finally show "?Q (IF b THEN c0 ELSE c1) s0 s1" .
  next
    fix b c0 c1 s0 s1
    let ?comp = "compile(IF b THEN c0 ELSE c1)"
    assume "\<not>b s0" and IH: "?Q c1 s0 s1"
    hence "?comp \<turnstile> <s0,0> -1\<rightarrow> <s0,length(compile c0) + 2>" by auto
    also from IH
    have "?comp \<turnstile> <s0,length(compile c0)+2> -*\<rightarrow> <s1,length ?comp>"
      by(force intro!:app_left2 app1_left)
    finally show "?Q (IF b THEN c0 ELSE c1) s0 s1" .
  next
    fix b c and s::state
    assume "\<not>b s"
    thus "?Q (WHILE b DO c) s s" by force
  next
    fix b c and s0::state and s1 s2
    let ?comp = "compile(WHILE b DO c)"
    assume "b s0" and
      IHc: "?Q c s0 s1" and IHw: "?Q (WHILE b DO c) s1 s2"
    hence "?comp \<turnstile> <s0,0> -1\<rightarrow> <s0,1>" by auto
    also from IHc
    have "?comp \<turnstile> <s0,1> -*\<rightarrow> <s1,length(compile c)+1>"
      by(auto intro:app1_left app_right)
    also have "?comp \<turnstile> <s1,length(compile c)+1> -1\<rightarrow> <s1,0>" by simp
    also note IHw
    finally show "?Q (WHILE b DO c) s0 s2".
  qed
qed

(* Second proof; statement is generalized to cater for prefixes and suffixes;
   needs none of the lifting lemmas, but instantiations of pre/suffix.
*)
theorem "<c,s> -c-> t ==> 
 !a z. a@compile c@z \<turnstile> <s,length a> -*\<rightarrow> <t,length a + length(compile c)>";
apply(erule evalc.induct);
      apply simp;
     apply(force intro!: ASIN);
    apply(intro strip);
    apply(erule_tac x = a in allE);
    apply(erule_tac x = "a@compile c0" in allE);
    apply(erule_tac x = "compile c1@z" in allE);
    apply(erule_tac x = z in allE);
    apply(simp add:add_assoc[THEN sym]);
    apply(blast intro:rtrancl_trans);
(* IF b THEN c0 ELSE c1; case b is true *)
   apply(intro strip);
   (* instantiate assumption sufficiently for later: *)
   apply(erule_tac x = "a@[?I]" in allE);
   apply(simp);
   (* execute JMPF: *)
   apply(rule rtrancl_into_rtrancl2);
    apply(force intro!: JMPFT);
   (* execute compile c0: *)
   apply(rule rtrancl_trans);
    apply(erule allE);
    apply assumption;
   (* execute JMPF: *)
   apply(rule r_into_rtrancl);
   apply(force intro!: JMPFF);
(* end of case b is true *)
  apply(intro strip);
  apply(erule_tac x = "a@[?I]@compile c0@[?J]" in allE);
  apply(simp add:add_assoc);
  apply(rule rtrancl_into_rtrancl2);
   apply(force intro!: JMPFF);
  apply(blast);
 apply(force intro: JMPFF);
apply(intro strip);
apply(erule_tac x = "a@[?I]" in allE);
apply(erule_tac x = a in allE);
apply(simp);
apply(rule rtrancl_into_rtrancl2);
 apply(force intro!: JMPFT);
apply(rule rtrancl_trans);
 apply(erule allE);
 apply assumption;
apply(rule rtrancl_into_rtrancl2);
 apply(force intro!: JMPB);
apply(simp);
done

(* Missing: the other direction! *)

end