(* Title: HOL/Predicate.thy
ID: $Id$
Author: Stefan Berghofer, TU Muenchen
*)
header {* Predicates *}
theory Predicate
imports Inductive
begin
subsection {* Converting between predicates and sets *}
definition
member :: "'a set => 'a => bool" where
"member == %S x. x : S"
lemma memberI[intro!, Pure.intro!]: "x : S ==> member S x"
by (simp add: member_def)
lemma memberD[dest!, Pure.dest!]: "member S x ==> x : S"
by (simp add: member_def)
lemma member_eq[simp]: "member S x = (x : S)"
by (simp add: member_def)
lemma member_Collect_eq[simp]: "member (Collect P) = P"
by (simp add: member_def)
lemma Collect_member_eq[simp]: "Collect (member S) = S"
by (simp add: member_def)
lemma split_set: "(!!S. PROP P S) == (!!S. PROP P (Collect S))"
proof
fix S
assume "!!S. PROP P S"
then show "PROP P (Collect S)" .
next
fix S
assume "!!S. PROP P (Collect S)"
then have "PROP P {x. x : S}" .
thus "PROP P S" by simp
qed
lemma split_predicate: "(!!S. PROP P S) == (!!S. PROP P (member S))"
proof
fix S
assume "!!S. PROP P S"
then show "PROP P (member S)" .
next
fix S
assume "!!S. PROP P (member S)"
then have "PROP P (member {x. S x})" .
thus "PROP P S" by simp
qed
lemma member_right_eq: "(x == member y) == (Collect x == y)"
by (rule equal_intr_rule, simp, drule symmetric, simp)
definition
member2 :: "('a * 'b) set => 'a => 'b \<Rightarrow> bool" where
"member2 == %S x y. (x, y) : S"
definition
Collect2 :: "('a => 'b => bool) => ('a * 'b) set" where
"Collect2 == %P. {(x, y). P x y}"
lemma member2I[intro!, Pure.intro!]: "(x, y) : S ==> member2 S x y"
by (simp add: member2_def)
lemma member2D[dest!, Pure.dest!]: "member2 S x y ==> (x, y) : S"
by (simp add: member2_def)
lemma member2_eq[simp]: "member2 S x y = ((x, y) : S)"
by (simp add: member2_def)
lemma Collect2I: "P x y ==> (x, y) : Collect2 P"
by (simp add: Collect2_def)
lemma Collect2D: "(x, y) : Collect2 P ==> P x y"
by (simp add: Collect2_def)
lemma member2_Collect2_eq[simp]: "member2 (Collect2 P) = P"
by (simp add: member2_def Collect2_def)
lemma Collect2_member2_eq[simp]: "Collect2 (member2 S) = S"
by (auto simp add: member2_def Collect2_def)
lemma mem_Collect2_eq[iff]: "((x, y) : Collect2 P) = P x y"
by (iprover intro: Collect2I dest: Collect2D)
lemma member2_Collect_split_eq [simp]: "member2 (Collect (split P)) = P"
by (simp add: expand_fun_eq)
lemma split_set2: "(!!S. PROP P S) == (!!S. PROP P (Collect2 S))"
proof
fix S
assume "!!S. PROP P S"
then show "PROP P (Collect2 S)" .
next
fix S
assume "!!S. PROP P (Collect2 S)"
then have "PROP P (Collect2 (member2 S))" .
thus "PROP P S" by simp
qed
lemma split_predicate2: "(!!S. PROP P S) == (!!S. PROP P (member2 S))"
proof
fix S
assume "!!S. PROP P S"
then show "PROP P (member2 S)" .
next
fix S
assume "!!S. PROP P (member2 S)"
then have "PROP P (member2 (Collect2 S))" .
thus "PROP P S" by simp
qed
lemma member2_right_eq: "(x == member2 y) == (Collect2 x == y)"
by (rule equal_intr_rule, simp, drule symmetric, simp)
ML_setup {*
local
fun vars_of b (v as Var _) = if b then [] else [v]
| vars_of b (t $ u) = vars_of true t union vars_of false u
| vars_of b (Abs (_, _, t)) = vars_of false t
| vars_of _ _ = [];
fun rew ths1 ths2 th = Drule.forall_elim_vars 0
(rewrite_rule ths2 (rewrite_rule ths1 (Drule.forall_intr_list
(map (cterm_of (theory_of_thm th)) (vars_of false (prop_of th))) th)));
val get_eq = Simpdata.mk_eq o thm;
val split_predicate = get_eq "split_predicate";
val split_predicate2 = get_eq "split_predicate2";
val split_set = get_eq "split_set";
val split_set2 = get_eq "split_set2";
val member_eq = get_eq "member_eq";
val member2_eq = get_eq "member2_eq";
val member_Collect_eq = get_eq "member_Collect_eq";
val member2_Collect2_eq = get_eq "member2_Collect2_eq";
val mem_Collect2_eq = get_eq "mem_Collect2_eq";
val member_right_eq = thm "member_right_eq";
val member2_right_eq = thm "member2_right_eq";
val rew' = Thm.symmetric o rew [split_set2] [split_set,
member_right_eq, member2_right_eq, member_Collect_eq, member2_Collect2_eq];
val rules1 = [split_predicate, split_predicate2, member_eq, member2_eq];
val rules2 = [split_set, mk_meta_eq mem_Collect_eq, mem_Collect2_eq];
structure PredSetConvData = GenericDataFun
(
type T = thm list;
val empty = [];
val extend = I;
fun merge _ = Drule.merge_rules;
);
fun mk_attr ths1 ths2 f = Attrib.syntax (Attrib.thms >> (fn ths =>
Thm.rule_attribute (fn ctxt => rew ths1 (map (f o Simpdata.mk_eq)
(ths @ PredSetConvData.get ctxt) @ ths2))));
val pred_set_conv_att = Attrib.no_args (Thm.declaration_attribute
(Drule.add_rule #> PredSetConvData.map));
in
val _ = ML_Context.>> (
Attrib.add_attributes
[("pred_set_conv", pred_set_conv_att,
"declare rules for converting between predicate and set notation"),
("to_set", mk_attr [] rules1 I, "convert rule to set notation"),
("to_pred", mk_attr [split_set2] rules2 rew',
"convert rule to predicate notation")])
end;
*}
lemma member_inject [pred_set_conv]: "(member R = member S) = (R = S)"
by (auto simp add: expand_fun_eq)
lemma member2_inject [pred_set_conv]: "(member2 R = member2 S) = (R = S)"
by (auto simp add: expand_fun_eq)
lemma member_mono [pred_set_conv]: "(member R <= member S) = (R <= S)"
by fast
lemma member2_mono [pred_set_conv]: "(member2 R <= member2 S) = (R <= S)"
by fast
lemma member_empty [pred_set_conv]: "(%x. False) = member {}"
by (simp add: expand_fun_eq)
lemma member2_empty [pred_set_conv]: "(%x y. False) = member2 {}"
by (simp add: expand_fun_eq)
subsubsection {* Binary union *}
lemma member_Un [pred_set_conv]: "sup (member R) (member S) = member (R Un S)"
by (simp add: expand_fun_eq sup_fun_eq sup_bool_eq)
lemma member2_Un [pred_set_conv]: "sup (member2 R) (member2 S) = member2 (R Un S)"
by (simp add: expand_fun_eq sup_fun_eq sup_bool_eq)
lemma sup1_iff [simp]: "sup A B x \<longleftrightarrow> A x | B x"
by (simp add: sup_fun_eq sup_bool_eq)
lemma sup2_iff [simp]: "sup A B x y \<longleftrightarrow> A x y | B x y"
by (simp add: sup_fun_eq sup_bool_eq)
lemma sup1I1 [elim?]: "A x \<Longrightarrow> sup A B x"
by simp
lemma sup2I1 [elim?]: "A x y \<Longrightarrow> sup A B x y"
by simp
lemma join1I2 [elim?]: "B x \<Longrightarrow> sup A B x"
by simp
lemma sup1I2 [elim?]: "B x y \<Longrightarrow> sup A B x y"
by simp
text {*
\medskip Classical introduction rule: no commitment to @{text A} vs
@{text B}.
*}
lemma sup1CI [intro!]: "(~ B x ==> A x) ==> sup A B x"
by auto
lemma sup2CI [intro!]: "(~ B x y ==> A x y) ==> sup A B x y"
by auto
lemma sup1E [elim!]: "sup A B x ==> (A x ==> P) ==> (B x ==> P) ==> P"
by simp iprover
lemma sup2E [elim!]: "sup A B x y ==> (A x y ==> P) ==> (B x y ==> P) ==> P"
by simp iprover
subsubsection {* Binary intersection *}
lemma member_Int [pred_set_conv]: "inf (member R) (member S) = member (R Int S)"
by (simp add: expand_fun_eq inf_fun_eq inf_bool_eq)
lemma member2_Int [pred_set_conv]: "inf (member2 R) (member2 S) = member2 (R Int S)"
by (simp add: expand_fun_eq inf_fun_eq inf_bool_eq)
lemma inf1_iff [simp]: "inf A B x \<longleftrightarrow> A x \<and> B x"
by (simp add: inf_fun_eq inf_bool_eq)
lemma inf2_iff [simp]: "inf A B x y \<longleftrightarrow> A x y \<and> B x y"
by (simp add: inf_fun_eq inf_bool_eq)
lemma inf1I [intro!]: "A x ==> B x ==> inf A B x"
by simp
lemma inf2I [intro!]: "A x y ==> B x y ==> inf A B x y"
by simp
lemma inf1D1: "inf A B x ==> A x"
by simp
lemma inf2D1: "inf A B x y ==> A x y"
by simp
lemma inf1D2: "inf A B x ==> B x"
by simp
lemma inf2D2: "inf A B x y ==> B x y"
by simp
lemma inf1E [elim!]: "inf A B x ==> (A x ==> B x ==> P) ==> P"
by simp
lemma inf2E [elim!]: "inf A B x y ==> (A x y ==> B x y ==> P) ==> P"
by simp
subsubsection {* Unions of families *}
lemma member_SUP: "(SUP i. member (r i)) = member (UN i. r i)"
by (simp add: SUPR_def Sup_fun_eq Sup_bool_eq expand_fun_eq) blast
lemma member2_SUP: "(SUP i. member2 (r i)) = member2 (UN i. r i)"
by (simp add: SUPR_def Sup_fun_eq Sup_bool_eq expand_fun_eq) blast
lemma SUP1_iff [simp]: "(SUP x:A. B x) b = (EX x:A. B x b)"
by (simp add: SUPR_def Sup_fun_eq Sup_bool_eq) blast
lemma SUP2_iff [simp]: "(SUP x:A. B x) b c = (EX x:A. B x b c)"
by (simp add: SUPR_def Sup_fun_eq Sup_bool_eq) blast
lemma SUP1_I [intro]: "a : A ==> B a b ==> (SUP x:A. B x) b"
by auto
lemma SUP2_I [intro]: "a : A ==> B a b c ==> (SUP x:A. B x) b c"
by auto
lemma SUP1_E [elim!]: "(SUP x:A. B x) b ==> (!!x. x : A ==> B x b ==> R) ==> R"
by auto
lemma SUP2_E [elim!]: "(SUP x:A. B x) b c ==> (!!x. x : A ==> B x b c ==> R) ==> R"
by auto
subsubsection {* Intersections of families *}
lemma member_INF: "(INF i. member (r i)) = member (INT i. r i)"
by (simp add: INFI_def Inf_fun_def Inf_bool_def expand_fun_eq) blast
lemma member2_INF: "(INF i. member2 (r i)) = member2 (INT i. r i)"
by (simp add: INFI_def Inf_fun_def Inf_bool_def expand_fun_eq) blast
lemma INF1_iff [simp]: "(INF x:A. B x) b = (ALL x:A. B x b)"
by (simp add: INFI_def Inf_fun_def Inf_bool_def) blast
lemma INF2_iff [simp]: "(INF x:A. B x) b c = (ALL x:A. B x b c)"
by (simp add: INFI_def Inf_fun_def Inf_bool_def) blast
lemma INF1_I [intro!]: "(!!x. x : A ==> B x b) ==> (INF x:A. B x) b"
by auto
lemma INF2_I [intro!]: "(!!x. x : A ==> B x b c) ==> (INF x:A. B x) b c"
by auto
lemma INF1_D [elim]: "(INF x:A. B x) b ==> a : A ==> B a b"
by auto
lemma INF2_D [elim]: "(INF x:A. B x) b c ==> a : A ==> B a b c"
by auto
lemma INF1_E [elim]: "(INF x:A. B x) b ==> (B a b ==> R) ==> (a ~: A ==> R) ==> R"
by auto
lemma INF2_E [elim]: "(INF x:A. B x) b c ==> (B a b c ==> R) ==> (a ~: A ==> R) ==> R"
by auto
subsection {* Composition of two relations *}
inductive2
pred_comp :: "['b => 'c => bool, 'a => 'b => bool] => 'a => 'c => bool"
(infixr "OO" 75)
for r :: "'b => 'c => bool" and s :: "'a => 'b => bool"
where
pred_compI [intro]: "s a b ==> r b c ==> (r OO s) a c"
inductive_cases2 pred_compE [elim!]: "(r OO s) a c"
lemma pred_comp_rel_comp_eq [pred_set_conv]:
"(member2 r OO member2 s) = member2 (r O s)"
by (auto simp add: expand_fun_eq elim: pred_compE)
subsection {* Converse *}
inductive2
conversep :: "('a => 'b => bool) => 'b => 'a => bool"
("(_^--1)" [1000] 1000)
for r :: "'a => 'b => bool"
where
conversepI: "r a b ==> r^--1 b a"
notation (xsymbols)
conversep ("(_\<inverse>\<inverse>)" [1000] 1000)
lemma conversepD:
assumes ab: "r^--1 a b"
shows "r b a" using ab
by cases simp
lemma conversep_iff [iff]: "r^--1 a b = r b a"
by (iprover intro: conversepI dest: conversepD)
lemma conversep_converse_eq [pred_set_conv]:
"(member2 r)^--1 = member2 (r^-1)"
by (auto simp add: expand_fun_eq)
lemma conversep_conversep [simp]: "(r^--1)^--1 = r"
by (iprover intro: order_antisym conversepI dest: conversepD)
lemma converse_pred_comp: "(r OO s)^--1 = s^--1 OO r^--1"
by (iprover intro: order_antisym conversepI pred_compI
elim: pred_compE dest: conversepD)
lemma converse_meet: "(inf r s)^--1 = inf r^--1 s^--1"
by (simp add: inf_fun_eq inf_bool_eq)
(iprover intro: conversepI ext dest: conversepD)
lemma converse_join: "(sup r s)^--1 = sup r^--1 s^--1"
by (simp add: sup_fun_eq sup_bool_eq)
(iprover intro: conversepI ext dest: conversepD)
lemma conversep_noteq [simp]: "(op ~=)^--1 = op ~="
by (auto simp add: expand_fun_eq)
lemma conversep_eq [simp]: "(op =)^--1 = op ="
by (auto simp add: expand_fun_eq)
subsection {* Domain *}
inductive2
DomainP :: "('a => 'b => bool) => 'a => bool"
for r :: "'a => 'b => bool"
where
DomainPI [intro]: "r a b ==> DomainP r a"
inductive_cases2 DomainPE [elim!]: "DomainP r a"
lemma member2_DomainP [pred_set_conv]: "DomainP (member2 r) = member (Domain r)"
by (blast intro!: Orderings.order_antisym)
subsection {* Range *}
inductive2
RangeP :: "('a => 'b => bool) => 'b => bool"
for r :: "'a => 'b => bool"
where
RangePI [intro]: "r a b ==> RangeP r b"
inductive_cases2 RangePE [elim!]: "RangeP r b"
lemma member2_RangeP [pred_set_conv]: "RangeP (member2 r) = member (Range r)"
by (blast intro!: Orderings.order_antisym)
subsection {* Inverse image *}
definition
inv_imagep :: "('b => 'b => bool) => ('a => 'b) => 'a => 'a => bool" where
"inv_imagep r f == %x y. r (f x) (f y)"
lemma [pred_set_conv]: "inv_imagep (member2 r) f = member2 (inv_image r f)"
by (simp add: inv_image_def inv_imagep_def)
lemma in_inv_imagep [simp]: "inv_imagep r f x y = r (f x) (f y)"
by (simp add: inv_imagep_def)
subsection {* Properties of relations - predicate versions *}
abbreviation antisymP :: "('a => 'a => bool) => bool" where
"antisymP r == antisym (Collect2 r)"
abbreviation transP :: "('a => 'a => bool) => bool" where
"transP r == trans (Collect2 r)"
abbreviation single_valuedP :: "('a => 'b => bool) => bool" where
"single_valuedP r == single_valued (Collect2 r)"
subsection {* Bounded quantifiers for predicates *}
text {*
Bounded existential quantifier for predicates (executable).
*}
inductive2 bexp :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
for P :: "'a \<Rightarrow> bool" and Q :: "'a \<Rightarrow> bool"
where
bexpI [intro]: "P x \<Longrightarrow> Q x \<Longrightarrow> bexp P Q"
lemmas bexpE [elim!] = bexp.cases
syntax
Bexp :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool \<Rightarrow> bool" ("(3\<exists>_\<triangleright>_./ _)" [0, 0, 10] 10)
translations
"\<exists>x\<triangleright>P. Q" \<rightleftharpoons> "CONST bexp P (\<lambda>x. Q)"
constdefs
ballp :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
"ballp P Q \<equiv> \<forall>x. P x \<longrightarrow> Q x"
syntax
Ballp :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool \<Rightarrow> bool" ("(3\<forall>_\<triangleright>_./ _)" [0, 0, 10] 10)
translations
"\<forall>x\<triangleright>P. Q" \<rightleftharpoons> "CONST ballp P (\<lambda>x. Q)"
(* To avoid eta-contraction of body: *)
print_translation {*
let
fun btr' syn [A,Abs abs] =
let val (x,t) = atomic_abs_tr' abs
in Syntax.const syn $ x $ A $ t end
in
[("ballp", btr' "Ballp"),("bexp", btr' "Bexp")]
end
*}
lemma ballpI [intro!]: "(\<And>x. A x \<Longrightarrow> P x) \<Longrightarrow> \<forall>x\<triangleright>A. P x"
by (simp add: ballp_def)
lemma bspecp [dest?]: "\<forall>x\<triangleright>A. P x \<Longrightarrow> A x \<Longrightarrow> P x"
by (simp add: ballp_def)
lemma ballpE [elim]: "\<forall>x\<triangleright>A. P x \<Longrightarrow> (P x \<Longrightarrow> Q) \<Longrightarrow> (\<not> A x \<Longrightarrow> Q) \<Longrightarrow> Q"
by (unfold ballp_def) blast
lemma ballp_not_bexp_eq: "(\<forall>x\<triangleright>P. Q x) = (\<not> (\<exists>x\<triangleright>P. \<not> Q x))"
by (blast dest: bspecp)
declare ballp_not_bexp_eq [THEN eq_reflection, code unfold]
end