(* Title: HOL/Binomial.thy Author: Jacques D. Fleuriot Author: Lawrence C Paulson Author: Jeremy Avigad Author: Chaitanya Mangla Author: Manuel Eberl*)section \<open>Binomial Coefficients, Binomial Theorem, Inclusion-exclusion Principle\<close>theory Binomial imports Presburger Factorialbeginsubsection \<open>Binomial coefficients\<close>text \<open>This development is based on the work of Andy Gordon and Florian Kammueller.\<close>text \<open>Combinatorial definition\<close>definition binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat" where "binomial n k = card {K\<in>Pow {0..<n}. card K = k}"open_bundle binomial_syntaxbeginnotation binomial (infix \<open>choose\<close> 64)endlemma binomial_right_mono: assumes "m \<le> n" shows "m choose k \<le> n choose k"proof - have "{K. K \<subseteq> {0..<m} \<and> card K = k} \<subseteq> {K. K \<subseteq> {0..<n} \<and> card K = k}" using assms by auto then show ?thesis by (simp add: binomial_def card_mono)qedtheorem n_subsets: assumes "finite A" shows "card {B. B \<subseteq> A \<and> card B = k} = card A choose k"proof - from assms obtain f where bij: "bij_betw f {0..<card A} A" by (blast dest: ex_bij_betw_nat_finite) then have [simp]: "card (f ` C) = card C" if "C \<subseteq> {0..<card A}" for C by (meson bij_betw_imp_inj_on bij_betw_subset card_image that) from bij have "bij_betw (image f) (Pow {0..<card A}) (Pow A)" by (rule bij_betw_Pow) then have "inj_on (image f) (Pow {0..<card A})" by (rule bij_betw_imp_inj_on) moreover have "{K. K \<subseteq> {0..<card A} \<and> card K = k} \<subseteq> Pow {0..<card A}" by auto ultimately have "inj_on (image f) {K. K \<subseteq> {0..<card A} \<and> card K = k}" by (rule inj_on_subset) then have "card {K. K \<subseteq> {0..<card A} \<and> card K = k} = card (image f ` {K. K \<subseteq> {0..<card A} \<and> card K = k})" (is "_ = card ?C") by (simp add: card_image) also have "?C = {K. K \<subseteq> f ` {0..<card A} \<and> card K = k}" by (auto elim!: subset_imageE) also have "f ` {0..<card A} = A" by (meson bij bij_betw_def) finally show ?thesis by (simp add: binomial_def)qedtext \<open>Recursive characterization\<close>lemma binomial_n_0 [simp]: "n choose 0 = 1"proof - have "{K \<in> Pow {0..<n}. card K = 0} = {{}}" by (auto dest: finite_subset) then show ?thesis by (simp add: binomial_def)qedlemma binomial_0_Suc [simp]: "0 choose Suc k = 0" by (simp add: binomial_def)lemma binomial_Suc_Suc [simp]: "Suc n choose Suc k = (n choose k) + (n choose Suc k)"proof - let ?P = "\<lambda>n k. {K. K \<subseteq> {0..<n} \<and> card K = k}" let ?Q = "?P (Suc n) (Suc k)" have inj: "inj_on (insert n) (?P n k)" by rule (auto; metis atLeastLessThan_iff insert_iff less_irrefl subsetCE) have disjoint: "insert n ` ?P n k \<inter> ?P n (Suc k) = {}" by auto have "?Q = {K\<in>?Q. n \<in> K} \<union> {K\<in>?Q. n \<notin> K}" by auto also have "{K\<in>?Q. n \<in> K} = insert n ` ?P n k" (is "?A = ?B") proof (rule set_eqI) fix K have K_finite: "finite K" if "K \<subseteq> insert n {0..<n}" using that by (rule finite_subset) simp_all have Suc_card_K: "Suc (card K - Suc 0) = card K" if "n \<in> K" and "finite K" proof - from \<open>n \<in> K\<close> obtain L where "K = insert n L" and "n \<notin> L" by (blast elim: Set.set_insert) with that show ?thesis by (simp add: card.insert_remove) qed show "K \<in> ?A \<longleftrightarrow> K \<in> ?B" by (subst in_image_insert_iff) (auto simp add: card.insert_remove subset_eq_atLeast0_lessThan_finite Diff_subset_conv K_finite Suc_card_K) qed also have "{K\<in>?Q. n \<notin> K} = ?P n (Suc k)" by (auto simp add: atLeast0_lessThan_Suc) finally show ?thesis using inj disjoint by (simp add: binomial_def card_Un_disjoint card_image)qedlemma binomial_eq_0: "n < k \<Longrightarrow> n choose k = 0" by (auto simp add: binomial_def dest: subset_eq_atLeast0_lessThan_card)lemma zero_less_binomial: "k \<le> n \<Longrightarrow> n choose k > 0" by (induct n k rule: diff_induct) simp_alllemma binomial_eq_0_iff [simp]: "n choose k = 0 \<longleftrightarrow> n < k" by (metis binomial_eq_0 less_numeral_extra(3) not_less zero_less_binomial)lemma zero_less_binomial_iff [simp]: "n choose k > 0 \<longleftrightarrow> k \<le> n" by (metis binomial_eq_0_iff not_less0 not_less zero_less_binomial)lemma binomial_n_n [simp]: "n choose n = 1" by (induct n) (simp_all add: binomial_eq_0)lemma binomial_Suc_n [simp]: "Suc n choose n = Suc n" by (induct n) simp_alllemma binomial_1 [simp]: "n choose Suc 0 = n" by (induct n) simp_alllemma choose_one: "n choose 1 = n" for n :: nat by simplemma choose_reduce_nat: "0 < n \<Longrightarrow> 0 < k \<Longrightarrow> n choose k = ((n - 1) choose (k - 1)) + ((n - 1) choose k)" using binomial_Suc_Suc [of "n - 1" "k - 1"] by simplemma Suc_times_binomial_eq: "Suc n * (n choose k) = (Suc n choose Suc k) * Suc k"proof (induction n arbitrary: k) case 0 then show ?case by autonext case (Suc n) show ?case proof (cases k) case (Suc k') then show ?thesis using Suc.IH by (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq binomial_eq_0) qed autoqedlemma binomial_le_pow2: "n choose k \<le> 2^n"proof (induction n arbitrary: k) case 0 then show ?case using le_less less_le_trans by fastforcenext case (Suc n) show ?case proof (cases k) case (Suc k') then show ?thesis using Suc.IH by (simp add: add_le_mono mult_2) qed autoqedtext \<open>The absorption property.\<close>lemma Suc_times_binomial: "Suc k * (Suc n choose Suc k) = Suc n * (n choose k)" using Suc_times_binomial_eq by autotext \<open>This is the well-known version of absorption, but it's harder to use because of the need to reason about division.\<close>lemma binomial_Suc_Suc_eq_times: "(Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k" by (simp add: Suc_times_binomial_eq del: mult_Suc mult_Suc_right)text \<open>Another version of absorption, with \<open>-1\<close> instead of \<open>Suc\<close>.\<close>lemma times_binomial_minus1_eq: "0 < k \<Longrightarrow> k * (n choose k) = n * ((n - 1) choose (k - 1))" using Suc_times_binomial_eq [where n = "n - 1" and k = "k - 1"] by (auto split: nat_diff_split)subsection \<open>The binomial theorem (courtesy of Tobias Nipkow):\<close>text \<open>Avigad's version, generalized to any commutative ring\<close>theorem (in comm_semiring_1) binomial_ring: "(a + b :: 'a)^n = (\<Sum>k\<le>n. (of_nat (n choose k)) * a^k * b^(n-k))"proof (induct n) case 0 then show ?case by simpnext case (Suc n) have decomp: "{0..n+1} = {0} \<union> {n + 1} \<union> {1..n}" and decomp2: "{0..n} = {0} \<union> {1..n}" by auto have "(a + b)^(n+1) = (a + b) * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n - k))" using Suc.hyps by simp also have "\<dots> = a * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n-k)) + b * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n-k))" by (rule distrib_right) also have "\<dots> = (\<Sum>k\<le>n. of_nat (n choose k) * a^(k+1) * b^(n-k)) + (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n - k + 1))" by (auto simp add: sum_distrib_left ac_simps) also have "\<dots> = (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n + 1 - k)) + (\<Sum>k=1..n+1. of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k))" by (simp add: atMost_atLeast0 sum.shift_bounds_cl_Suc_ivl Suc_diff_le field_simps del: sum.cl_ivl_Suc) also have "\<dots> = b^(n + 1) + (\<Sum>k=1..n. of_nat (n choose k) * a^k * b^(n + 1 - k)) + (a^(n + 1) + (\<Sum>k=1..n. of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k)))" using sum.nat_ivl_Suc' [of 1 n "\<lambda>k. of_nat (n choose (k-1)) * a ^ k * b ^ (n + 1 - k)"] by (simp add: sum.atLeast_Suc_atMost atMost_atLeast0) also have "\<dots> = a^(n + 1) + b^(n + 1) + (\<Sum>k=1..n. of_nat (n + 1 choose k) * a^k * b^(n + 1 - k))" by (auto simp add: field_simps sum.distrib [symmetric] choose_reduce_nat) also have "\<dots> = (\<Sum>k\<le>n+1. of_nat (n + 1 choose k) * a^k * b^(n + 1 - k))" using decomp by (simp add: atMost_atLeast0 field_simps) finally show ?case by simpqedtext \<open>Original version for the naturals.\<close>corollary binomial: "(a + b :: nat)^n = (\<Sum>k\<le>n. (of_nat (n choose k)) * a^k * b^(n - k))" using binomial_ring [of "int a" "int b" n] by (simp only: of_nat_add [symmetric] of_nat_mult [symmetric] of_nat_power [symmetric] of_nat_sum [symmetric] of_nat_eq_iff of_nat_id)lemma binomial_fact_lemma: "k \<le> n \<Longrightarrow> fact k * fact (n - k) * (n choose k) = fact n"proof (induct n arbitrary: k rule: nat_less_induct) fix n k assume H: "\<forall>m<n. \<forall>x\<le>m. fact x * fact (m - x) * (m choose x) = fact m" assume kn: "k \<le> n" let ?ths = "fact k * fact (n - k) * (n choose k) = fact n" consider "n = 0 \<or> k = 0 \<or> n = k" | m h where "n = Suc m" "k = Suc h" "h < m" using kn by atomize_elim presburger then show "fact k * fact (n - k) * (n choose k) = fact n" proof cases case 1 with kn show ?thesis by auto next case 2 note n = \<open>n = Suc m\<close> note k = \<open>k = Suc h\<close> note hm = \<open>h < m\<close> have mn: "m < n" using n by arith have hm': "h \<le> m" using hm by arith have km: "k \<le> m" using hm k n kn by arith have "m - h = Suc (m - Suc h)" using k km hm by arith with km k have "fact (m - h) = (m - h) * fact (m - k)" by simp with n k have "fact k * fact (n - k) * (n choose k) = k * (fact h * fact (m - h) * (m choose h)) + (m - h) * (fact k * fact (m - k) * (m choose k))" by (simp add: field_simps) also have "\<dots> = (k + (m - h)) * fact m" using H[rule_format, OF mn hm'] H[rule_format, OF mn km] by (simp add: field_simps) finally show ?thesis using k n km by simp qedqedlemma binomial_fact': assumes "k \<le> n" shows "n choose k = fact n div (fact k * fact (n - k))" using binomial_fact_lemma [OF assms] by (metis fact_nonzero mult_eq_0_iff nonzero_mult_div_cancel_left)lemma binomial_fact: assumes kn: "k \<le> n" shows "(of_nat (n choose k) :: 'a::field_char_0) = fact n / (fact k * fact (n - k))" using binomial_fact_lemma[OF kn] by (metis (mono_tags, lifting) fact_nonzero mult_eq_0_iff nonzero_mult_div_cancel_left of_nat_fact of_nat_mult)lemma fact_binomial: assumes "k \<le> n" shows "fact k * of_nat (n choose k) = (fact n / fact (n - k) :: 'a::field_char_0)" unfolding binomial_fact [OF assms] by (simp add: field_simps)lemma binomial_fact_pow: "(n choose s) * fact s \<le> n^s"proof (cases "s \<le> n") case True then show ?thesis by (smt (verit) binomial_fact_lemma mult.assoc mult.commute fact_div_fact_le_pow fact_nonzero nonzero_mult_div_cancel_right) qed (simp add: binomial_eq_0)lemma choose_two: "n choose 2 = n * (n - 1) div 2"proof (cases "n \<ge> 2") case False then have "n = 0 \<or> n = 1" by auto then show ?thesis by autonext case True define m where "m = n - 2" with True have "n = m + 2" by simp then have "fact n = n * (n - 1) * fact (n - 2)" by (simp add: fact_prod_Suc atLeast0_lessThan_Suc algebra_simps) with True show ?thesis by (simp add: binomial_fact')qedlemma choose_row_sum: "(\<Sum>k\<le>n. n choose k) = 2^n" using binomial [of 1 "1" n] by (simp add: numeral_2_eq_2)lemma sum_choose_lower: "(\<Sum>k\<le>n. (r+k) choose k) = Suc (r+n) choose n" by (induct n) autolemma sum_choose_upper: "(\<Sum>k\<le>n. k choose m) = Suc n choose Suc m" by (induct n) autolemma choose_alternating_sum: "n > 0 \<Longrightarrow> (\<Sum>i\<le>n. (-1)^i * of_nat (n choose i)) = (0 :: 'a::comm_ring_1)" using binomial_ring[of "-1 :: 'a" 1 n] by (simp add: atLeast0AtMost mult_of_nat_commute zero_power)lemma choose_even_sum: assumes "n > 0" shows "2 * (\<Sum>i\<le>n. if even i then of_nat (n choose i) else 0) = (2 ^ n :: 'a::comm_ring_1)"proof - have "2 ^ n = (\<Sum>i\<le>n. of_nat (n choose i)) + (\<Sum>i\<le>n. (-1) ^ i * of_nat (n choose i) :: 'a)" using choose_row_sum[of n] by (simp add: choose_alternating_sum assms atLeast0AtMost of_nat_sum[symmetric]) also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) + (-1) ^ i * of_nat (n choose i))" by (simp add: sum.distrib) also have "\<dots> = 2 * (\<Sum>i\<le>n. if even i then of_nat (n choose i) else 0)" by (subst sum_distrib_left, intro sum.cong) simp_all finally show ?thesis ..qedlemma choose_odd_sum: assumes "n > 0" shows "2 * (\<Sum>i\<le>n. if odd i then of_nat (n choose i) else 0) = (2 ^ n :: 'a::comm_ring_1)"proof - have "2 ^ n = (\<Sum>i\<le>n. of_nat (n choose i)) - (\<Sum>i\<le>n. (-1) ^ i * of_nat (n choose i) :: 'a)" using choose_row_sum[of n] by (simp add: choose_alternating_sum assms atLeast0AtMost of_nat_sum[symmetric]) also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) - (-1) ^ i * of_nat (n choose i))" by (simp add: sum_subtractf) also have "\<dots> = 2 * (\<Sum>i\<le>n. if odd i then of_nat (n choose i) else 0)" by (subst sum_distrib_left, intro sum.cong) simp_all finally show ?thesis ..qedtext\<open>NW diagonal sum property\<close>lemma sum_choose_diagonal: assumes "m \<le> n" shows "(\<Sum>k\<le>m. (n - k) choose (m - k)) = Suc n choose m"proof - have "(\<Sum>k\<le>m. (n-k) choose (m - k)) = (\<Sum>k\<le>m. (n - m + k) choose k)" using sum.atLeastAtMost_rev [of "\<lambda>k. (n - k) choose (m - k)" 0 m] assms by (simp add: atMost_atLeast0) also have "\<dots> = Suc (n - m + m) choose m" by (rule sum_choose_lower) also have "\<dots> = Suc n choose m" using assms by simp finally show ?thesis .qedsubsection \<open>Generalized binomial coefficients\<close>definition gbinomial :: "'a::{semidom_divide,semiring_char_0} \<Rightarrow> nat \<Rightarrow> 'a" (infix \<open>gchoose\<close> 64) where gbinomial_prod_rev: "a gchoose k = prod (\<lambda>i. a - of_nat i) {0..<k} div fact k"lemma gbinomial_0 [simp]: "a gchoose 0 = 1" "0 gchoose (Suc k) = 0" by (simp_all add: gbinomial_prod_rev prod.atLeast0_lessThan_Suc_shift del: prod.op_ivl_Suc)lemma gbinomial_Suc: "a gchoose (Suc k) = prod (\<lambda>i. a - of_nat i) {0..k} div fact (Suc k)" by (simp add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)lemma gbinomial_1 [simp]: "a gchoose 1 = a" by (simp add: gbinomial_prod_rev lessThan_Suc)lemma gbinomial_Suc0 [simp]: "a gchoose Suc 0 = a" by (simp add: gbinomial_prod_rev lessThan_Suc)lemma gbinomial_0_left: "0 gchoose k = (if k = 0 then 1 else 0)" by (cases k) simp_alllemma gbinomial_mult_fact: "fact k * (a gchoose k) = (\<Prod>i = 0..<k. a - of_nat i)" for a :: "'a::field_char_0" by (simp_all add: gbinomial_prod_rev field_simps)lemma gbinomial_mult_fact': "(a gchoose k) * fact k = (\<Prod>i = 0..<k. a - of_nat i)" for a :: "'a::field_char_0" using gbinomial_mult_fact [of k a] by (simp add: ac_simps)lemma gbinomial_pochhammer: "a gchoose k = (- 1) ^ k * pochhammer (- a) k / fact k" for a :: "'a::field_char_0"proof (cases k) case (Suc k') then have "a gchoose k = pochhammer (a - of_nat k') (Suc k') / ((1 + of_nat k') * fact k')" by (simp add: gbinomial_prod_rev pochhammer_prod_rev atLeastLessThanSuc_atLeastAtMost prod.atLeast_Suc_atMost_Suc_shift of_nat_diff flip: power_mult_distrib prod.cl_ivl_Suc) then show ?thesis by (simp add: pochhammer_minus Suc)qed autolemma gbinomial_pochhammer': "a gchoose k = pochhammer (a - of_nat k + 1) k / fact k" for a :: "'a::field_char_0"proof - have "a gchoose k = ((-1)^k * (-1)^k) * pochhammer (a - of_nat k + 1) k / fact k" by (simp add: gbinomial_pochhammer pochhammer_minus mult_ac) also have "(-1 :: 'a)^k * (-1)^k = 1" by (subst power_add [symmetric]) simp finally show ?thesis by simpqedlemma gbinomial_binomial: "n gchoose k = n choose k"proof (cases "k \<le> n") case False then have "n < k" by (simp add: not_le) then have "0 \<in> ((-) n) ` {0..<k}" by auto then have "prod ((-) n) {0..<k} = 0" by (auto intro: prod_zero) with \<open>n < k\<close> show ?thesis by (simp add: binomial_eq_0 gbinomial_prod_rev prod_zero)next case True from True have *: "prod ((-) n) {0..<k} = \<Prod>{Suc (n - k)..n}" by (intro prod.reindex_bij_witness[of _ "\<lambda>i. n - i" "\<lambda>i. n - i"]) auto from True have "n choose k = fact n div (fact k * fact (n - k))" by (rule binomial_fact') with * show ?thesis by (simp add: gbinomial_prod_rev mult.commute [of "fact k"] div_mult2_eq fact_div_fact)qedlemma of_nat_gbinomial: "of_nat (n gchoose k) = (of_nat n gchoose k :: 'a::field_char_0)"proof (cases "k \<le> n") case False then show ?thesis by (simp add: not_le gbinomial_binomial binomial_eq_0 gbinomial_prod_rev)next case True define m where "m = n - k" with True have n: "n = m + k" by arith from n have "fact n = ((\<Prod>i = 0..<m + k. of_nat (m + k - i) ):: 'a)" by (simp add: fact_prod_rev) also have "\<dots> = ((\<Prod>i\<in>{0..<k} \<union> {k..<m + k}. of_nat (m + k - i)) :: 'a)" by (simp add: ivl_disj_un) finally have "fact n = (fact m * (\<Prod>i = 0..<k. of_nat m + of_nat k - of_nat i) :: 'a)" using prod.shift_bounds_nat_ivl [of "\<lambda>i. of_nat (m + k - i) :: 'a" 0 k m] by (simp add: fact_prod_rev [of m] prod.union_disjoint of_nat_diff) then have "fact n / fact (n - k) = ((\<Prod>i = 0..<k. of_nat n - of_nat i) :: 'a)" by (simp add: n) with True have "fact k * of_nat (n gchoose k) = (fact k * (of_nat n gchoose k) :: 'a)" by (simp only: gbinomial_mult_fact [of k "of_nat n"] gbinomial_binomial [of n k] fact_binomial) then show ?thesis by simpqedlemma binomial_gbinomial: "of_nat (n choose k) = (of_nat n gchoose k :: 'a::field_char_0)" by (simp add: gbinomial_binomial [symmetric] of_nat_gbinomial)setup \<open>Sign.add_const_constraint (\<^const_name>\<open>gbinomial\<close>, SOME \<^typ>\<open>'a::field_char_0 \<Rightarrow> nat \<Rightarrow> 'a\<close>)\<close>lemma gbinomial_mult_1: fixes a :: "'a::field_char_0" shows "a * (a gchoose k) = of_nat k * (a gchoose k) + of_nat (Suc k) * (a gchoose (Suc k))" (is "?l = ?r")proof - have "?r = ((- 1) ^k * pochhammer (- a) k / fact k) * (of_nat k - (- a + of_nat k))" unfolding gbinomial_pochhammer pochhammer_Suc right_diff_distrib power_Suc by (auto simp add: field_simps simp del: of_nat_Suc) also have "\<dots> = ?l" by (simp add: field_simps gbinomial_pochhammer) finally show ?thesis ..qedlemma gbinomial_mult_1': "(a gchoose k) * a = of_nat k * (a gchoose k) + of_nat (Suc k) * (a gchoose (Suc k))" for a :: "'a::field_char_0" by (simp add: mult.commute gbinomial_mult_1)lemma gbinomial_Suc_Suc: "(a + 1) gchoose (Suc k) = (a gchoose k) + (a gchoose (Suc k))" for a :: "'a::field_char_0"proof (cases k) case 0 then show ?thesis by simpnext case (Suc h) have eq0: "(\<Prod>i\<in>{1..k}. (a + 1) - of_nat i) = (\<Prod>i\<in>{0..h}. a - of_nat i)" proof (rule prod.reindex_cong) show "{1..k} = Suc ` {0..h}" using Suc by (auto simp add: image_Suc_atMost) qed auto have "fact (Suc k) * ((a gchoose k) + (a gchoose (Suc k))) = (a gchoose Suc h) * (fact (Suc (Suc h))) + (a gchoose Suc (Suc h)) * (fact (Suc (Suc h)))" by (simp add: Suc field_simps del: fact_Suc) also have "\<dots> = (a gchoose Suc h) * of_nat (Suc (Suc h) * fact (Suc h)) + (\<Prod>i=0..Suc h. a - of_nat i)" by (metis atLeastLessThanSuc_atLeastAtMost fact_Suc gbinomial_mult_fact mult.commute of_nat_fact of_nat_mult) also have "\<dots> = (fact (Suc h) * (a gchoose Suc h)) * of_nat (Suc (Suc h)) + (\<Prod>i=0..Suc h. a - of_nat i)" by (simp only: fact_Suc mult.commute mult.left_commute of_nat_fact of_nat_id of_nat_mult) also have "\<dots> = of_nat (Suc (Suc h)) * (\<Prod>i=0..h. a - of_nat i) + (\<Prod>i=0..Suc h. a - of_nat i)" unfolding gbinomial_mult_fact atLeastLessThanSuc_atLeastAtMost by auto also have "\<dots> = (\<Prod>i=0..Suc h. a - of_nat i) + (of_nat h * (\<Prod>i=0..h. a - of_nat i) + 2 * (\<Prod>i=0..h. a - of_nat i))" by (simp add: field_simps) also have "\<dots> = ((a gchoose Suc h) * (fact (Suc h)) * of_nat (Suc k)) + (\<Prod>i\<in>{0..Suc h}. a - of_nat i)" unfolding gbinomial_mult_fact' by (simp add: comm_semiring_class.distrib field_simps Suc atLeastLessThanSuc_atLeastAtMost) also have "\<dots> = (\<Prod>i\<in>{0..h}. a - of_nat i) * (a + 1)" unfolding gbinomial_mult_fact' atLeast0_atMost_Suc by (simp add: field_simps Suc atLeastLessThanSuc_atLeastAtMost) also have "\<dots> = (\<Prod>i\<in>{0..k}. (a + 1) - of_nat i)" using eq0 by (simp add: Suc prod.atLeast0_atMost_Suc_shift del: prod.cl_ivl_Suc) also have "\<dots> = (fact (Suc k)) * ((a + 1) gchoose (Suc k))" by (simp only: gbinomial_mult_fact atLeastLessThanSuc_atLeastAtMost) finally show ?thesis using fact_nonzero [of "Suc k"] by autoqedlemma gbinomial_reduce_nat: "0 < k \<Longrightarrow> a gchoose k = (a-1 gchoose k-1) + (a-1 gchoose k)" for a :: "'a::field_char_0" by (metis Suc_pred' diff_add_cancel gbinomial_Suc_Suc)lemma gchoose_row_sum_weighted: "(\<Sum>k = 0..m. (r gchoose k) * (r/2 - of_nat k)) = of_nat(Suc m) / 2 * (r gchoose (Suc m))" for r :: "'a::field_char_0" by (induct m) (simp_all add: field_simps distrib gbinomial_mult_1)lemma binomial_symmetric: assumes kn: "k \<le> n" shows "n choose k = n choose (n - k)"proof - have kn': "n - k \<le> n" using kn by arith from binomial_fact_lemma[OF kn] binomial_fact_lemma[OF kn'] have "fact k * fact (n - k) * (n choose k) = fact (n - k) * fact (n - (n - k)) * (n choose (n - k))" by simp then show ?thesis using kn by simpqedlemma choose_rising_sum: "(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose (n + 1))" "(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose m)"proof - show "(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose (n + 1))" by (induct m) simp_all also have "\<dots> = (n + m + 1) choose m" by (subst binomial_symmetric) simp_all finally show "(\<Sum>j\<le>m. ((n + j) choose n)) = (n + m + 1) choose m" .qedlemma choose_linear_sum: "(\<Sum>i\<le>n. i * (n choose i)) = n * 2 ^ (n - 1)"proof (cases n) case 0 then show ?thesis by simpnext case (Suc m) have "(\<Sum>i\<le>n. i * (n choose i)) = (\<Sum>i\<le>Suc m. i * (Suc m choose i))" by (simp add: Suc) also have "\<dots> = Suc m * 2 ^ m" unfolding sum.atMost_Suc_shift Suc_times_binomial sum_distrib_left[symmetric] by (simp add: choose_row_sum) finally show ?thesis using Suc by simpqedlemma choose_alternating_linear_sum: assumes "n \<noteq> 1" shows "(\<Sum>i\<le>n. (-1)^i * of_nat i * of_nat (n choose i) :: 'a::comm_ring_1) = 0"proof (cases n) case 0 then show ?thesis by simpnext case (Suc m) with assms have "m > 0" by simp have "(\<Sum>i\<le>n. (-1) ^ i * of_nat i * of_nat (n choose i) :: 'a) = (\<Sum>i\<le>Suc m. (-1) ^ i * of_nat i * of_nat (Suc m choose i))" by (simp add: Suc) also have "\<dots> = (\<Sum>i\<le>m. (-1) ^ (Suc i) * of_nat (Suc i * (Suc m choose Suc i)))" by (simp only: sum.atMost_Suc_shift sum_distrib_left[symmetric] mult_ac of_nat_mult) simp also have "\<dots> = - of_nat (Suc m) * (\<Sum>i\<le>m. (-1) ^ i * of_nat (m choose i))" by (subst sum_distrib_left, rule sum.cong[OF refl], subst Suc_times_binomial) (simp add: algebra_simps) also have "(\<Sum>i\<le>m. (-1 :: 'a) ^ i * of_nat ((m choose i))) = 0" using choose_alternating_sum[OF \<open>m > 0\<close>] by simp finally show ?thesis by simpqedlemma vandermonde: "(\<Sum>k\<le>r. (m choose k) * (n choose (r - k))) = (m + n) choose r"proof (induct n arbitrary: r) case 0 have "(\<Sum>k\<le>r. (m choose k) * (0 choose (r - k))) = (\<Sum>k\<le>r. if k = r then (m choose k) else 0)" by (intro sum.cong) simp_all also have "\<dots> = m choose r" by simp finally show ?case by simpnext case (Suc n r) show ?case by (cases r) (simp_all add: Suc [symmetric] algebra_simps sum.distrib Suc_diff_le)qedlemma choose_square_sum: "(\<Sum>k\<le>n. (n choose k)^2) = ((2*n) choose n)" using vandermonde[of n n n] by (simp add: power2_eq_square mult_2 binomial_symmetric [symmetric])lemma pochhammer_binomial_sum: fixes a b :: "'a::comm_ring_1" shows "pochhammer (a + b) n = (\<Sum>k\<le>n. of_nat (n choose k) * pochhammer a k * pochhammer b (n - k))"proof (induction n arbitrary: a b) case 0 then show ?case by simpnext case (Suc n a b) have "(\<Sum>k\<le>Suc n. of_nat (Suc n choose k) * pochhammer a k * pochhammer b (Suc n - k)) = (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a (Suc i) * pochhammer b (n - i)) + ((\<Sum>i\<le>n. of_nat (n choose Suc i) * pochhammer a (Suc i) * pochhammer b (n - i)) + pochhammer b (Suc n))" by (subst sum.atMost_Suc_shift) (simp add: ring_distribs sum.distrib) also have "(\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a (Suc i) * pochhammer b (n - i)) = a * pochhammer ((a + 1) + b) n" by (subst Suc) (simp add: sum_distrib_left pochhammer_rec mult_ac) also have "(\<Sum>i\<le>n. of_nat (n choose Suc i) * pochhammer a (Suc i) * pochhammer b (n - i)) + pochhammer b (Suc n) = (\<Sum>i=0..Suc n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc n - i))" apply (subst sum.atLeast_Suc_atMost, simp) apply (simp add: sum.shift_bounds_cl_Suc_ivl atLeast0AtMost del: sum.cl_ivl_Suc) done also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc n - i))" using Suc by (intro sum.mono_neutral_right) (auto simp: not_le binomial_eq_0) also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc (n - i)))" by (intro sum.cong) (simp_all add: Suc_diff_le) also have "\<dots> = b * pochhammer (a + (b + 1)) n" by (subst Suc) (simp add: sum_distrib_left mult_ac pochhammer_rec) also have "a * pochhammer ((a + 1) + b) n + b * pochhammer (a + (b + 1)) n = pochhammer (a + b) (Suc n)" by (simp add: pochhammer_rec algebra_simps) finally show ?case ..qedtext \<open>Contributed by Manuel Eberl, generalised by LCP. Alternative definition of the binomial coefficient as \<^term>\<open>\<Prod>i<k. (n - i) / (k - i)\<close>.\<close>lemma gbinomial_altdef_of_nat: "a gchoose k = (\<Prod>i = 0..<k. (a - of_nat i) / of_nat (k - i) :: 'a)" for k :: nat and a :: "'a::field_char_0" by (simp add: prod_dividef gbinomial_prod_rev fact_prod_rev)lemma gbinomial_ge_n_over_k_pow_k: fixes k :: nat and a :: "'a::linordered_field" assumes "of_nat k \<le> a" shows "(a / of_nat k :: 'a) ^ k \<le> a gchoose k"proof - have x: "0 \<le> a" using assms of_nat_0_le_iff order_trans by blast have "(a / of_nat k :: 'a) ^ k = (\<Prod>i = 0..<k. a / of_nat k :: 'a)" by simp also have "\<dots> \<le> a gchoose k" proof - have "\<And>i. i < k \<Longrightarrow> 0 \<le> a / of_nat k" by (simp add: x zero_le_divide_iff) moreover have "a / of_nat k \<le> (a - of_nat i) / of_nat (k - i)" if "i < k" for i proof - from assms have "a * of_nat i \<ge> of_nat (i * k)" by (metis mult.commute mult_le_cancel_right of_nat_less_0_iff of_nat_mult) then have "a * of_nat k - a * of_nat i \<le> a * of_nat k - of_nat (i * k)" by arith then have "a * of_nat (k - i) \<le> (a - of_nat i) * of_nat k" using \<open>i < k\<close> by (simp add: algebra_simps zero_less_mult_iff of_nat_diff) then have "a * of_nat (k - i) \<le> (a - of_nat i) * (of_nat k :: 'a)" by blast with assms show ?thesis using \<open>i < k\<close> by (simp add: field_simps) qed ultimately show ?thesis unfolding gbinomial_altdef_of_nat by (intro prod_mono) auto qed finally show ?thesis .qedlemma gbinomial_negated_upper: "(a gchoose k) = (-1) ^ k * ((of_nat k - a - 1) gchoose k)" by (simp add: gbinomial_pochhammer pochhammer_minus algebra_simps)lemma gbinomial_minus: "((-a) gchoose k) = (-1) ^ k * ((a + of_nat k - 1) gchoose k)" by (subst gbinomial_negated_upper) (simp add: add_ac)lemma Suc_times_gbinomial: "of_nat (Suc k) * ((a + 1) gchoose (Suc k)) = (a + 1) * (a gchoose k)"proof (cases k) case 0 then show ?thesis by simpnext case (Suc b) then have "((a + 1) gchoose (Suc (Suc b))) = (\<Prod>i = 0..Suc b. a + (1 - of_nat i)) / fact (b + 2)" by (simp add: field_simps gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost) also have "(\<Prod>i = 0..Suc b. a + (1 - of_nat i)) = (a + 1) * (\<Prod>i = 0..b. a - of_nat i)" by (simp add: prod.atLeast0_atMost_Suc_shift del: prod.cl_ivl_Suc) also have "\<dots> / fact (b + 2) = (a + 1) / of_nat (Suc (Suc b)) * (a gchoose Suc b)" by (simp_all add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost) finally show ?thesis by (simp add: Suc field_simps del: of_nat_Suc)qedlemma gbinomial_factors: "((a + 1) gchoose (Suc k)) = (a + 1) / of_nat (Suc k) * (a gchoose k)"proof (cases k) case 0 then show ?thesis by simpnext case (Suc b) then have "((a + 1) gchoose (Suc (Suc b))) = (\<Prod>i = 0 .. Suc b. a + (1 - of_nat i)) / fact (b + 2)" by (simp add: field_simps gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost) also have "(\<Prod>i = 0 .. Suc b. a + (1 - of_nat i)) = (a + 1) * (\<Prod>i = 0..b. a - of_nat i)" by (simp add: prod.atLeast0_atMost_Suc_shift del: prod.cl_ivl_Suc) also have "\<dots> / fact (b + 2) = (a + 1) / of_nat (Suc (Suc b)) * (a gchoose Suc b)" by (simp_all add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost atLeast0AtMost) finally show ?thesis by (simp add: Suc)qedlemma gbinomial_rec: "((a + 1) gchoose (Suc k)) = (a gchoose k) * ((a + 1) / of_nat (Suc k))" using gbinomial_mult_1[of a k] by (subst gbinomial_Suc_Suc) (simp add: field_simps del: of_nat_Suc, simp add: algebra_simps)lemma gbinomial_of_nat_symmetric: "k \<le> n \<Longrightarrow> (of_nat n) gchoose k = (of_nat n) gchoose (n - k)" using binomial_symmetric[of k n] by (simp add: binomial_gbinomial [symmetric])text \<open>The absorption identity (equation 5.5 \<^cite>\<open>\<open>p.~157\<close> in GKP_CM\<close>):\[{r \choose k} = \frac{r}{k}{r - 1 \choose k - 1},\quad \textnormal{integer } k \neq 0.\]\<close>lemma gbinomial_absorption': "k > 0 \<Longrightarrow> a gchoose k = (a / of_nat k) * (a - 1 gchoose (k - 1))" using gbinomial_rec[of "a - 1" "k - 1"] by (simp_all add: gbinomial_rec field_simps del: of_nat_Suc)text \<open>The absorption identity is written in the following form to avoiddivision by $k$ (the lower index) and therefore remove the $k \neq 0$restriction \<^cite>\<open>\<open>p.~157\<close> in GKP_CM\<close>:\[k{r \choose k} = r{r - 1 \choose k - 1}, \quad \textnormal{integer } k.\]\<close>lemma gbinomial_absorption: "of_nat (Suc k) * (a gchoose Suc k) = a * ((a - 1) gchoose k)" using gbinomial_absorption'[of "Suc k" a] by (simp add: field_simps del: of_nat_Suc)text \<open>The absorption identity for natural number binomial coefficients:\<close>lemma binomial_absorption: "Suc k * (n choose Suc k) = n * ((n - 1) choose k)" by (cases n) (simp_all add: binomial_eq_0 Suc_times_binomial del: binomial_Suc_Suc mult_Suc)text \<open>The absorption companion identity for natural number coefficients, following the proof by GKP \<^cite>\<open>\<open>p.~157\<close> in GKP_CM\<close>:\<close>lemma binomial_absorb_comp: "(n - k) * (n choose k) = n * ((n - 1) choose k)" (is "?lhs = ?rhs")proof (cases "n \<le> k") case True then show ?thesis by autonext case False then have "?rhs = Suc ((n - 1) - k) * (n choose Suc ((n - 1) - k))" using binomial_symmetric[of k "n - 1"] binomial_absorption[of "(n - 1) - k" n] by simp also have "Suc ((n - 1) - k) = n - k" using False by simp also have "n choose \<dots> = n choose k" using False by (intro binomial_symmetric [symmetric]) simp_all finally show ?thesis ..qedtext \<open>The generalised absorption companion identity:\<close>lemma gbinomial_absorb_comp: "(a - of_nat k) * (a gchoose k) = a * ((a - 1) gchoose k)" using pochhammer_absorb_comp[of a k] by (simp add: gbinomial_pochhammer)lemma gbinomial_addition_formula: "a gchoose (Suc k) = ((a - 1) gchoose (Suc k)) + ((a - 1) gchoose k)" using gbinomial_Suc_Suc[of "a - 1" k] by (simp add: algebra_simps)lemma binomial_addition_formula: "0 < n \<Longrightarrow> n choose (Suc k) = ((n - 1) choose (Suc k)) + ((n - 1) choose k)" by (subst choose_reduce_nat) simp_alltext \<open> Equation 5.9 of the reference material \<^cite>\<open>\<open>p.~159\<close> in GKP_CM\<close> is a useful summation formula, operating on both indices: \[ \sum\limits_{k \leq n}{r + k \choose k} = {r + n + 1 \choose n}, \quad \textnormal{integer } n. \]\<close>lemma gbinomial_parallel_sum: "(\<Sum>k\<le>n. (a + of_nat k) gchoose k) = (a + of_nat n + 1) gchoose n"proof (induct n) case 0 then show ?case by simpnext case (Suc m) then show ?case using gbinomial_Suc_Suc[of "(a + of_nat m + 1)" m] by (simp add: add_ac)qedsubsection \<open>Summation on the upper index\<close>text \<open> Another summation formula is equation 5.10 of the reference material \<^cite>\<open>\<open>p.~160\<close> in GKP_CM\<close>, aptly named \emph{summation on the upper index}:\[\sum_{0 \leq k \leq n} {k \choose m} = {n + 1 \choose m + 1}, \quad \textnormal{integers } m, n \geq 0.\]\<close>lemma gbinomial_sum_up_index: "(\<Sum>j = 0..n. (of_nat j gchoose k) :: 'a::field_char_0) = (of_nat n + 1) gchoose (k + 1)"proof (induct n) case 0 show ?case using gbinomial_Suc_Suc[of 0 k] by (cases k) autonext case (Suc n) then show ?case using gbinomial_Suc_Suc[of "of_nat (Suc n) :: 'a" k] by (simp add: add_ac)qedlemma gbinomial_index_swap: "((-1) ^ k) * ((- (of_nat n) - 1) gchoose k) = ((-1) ^ n) * ((- (of_nat k) - 1) gchoose n)" (is "?lhs = ?rhs")proof - have "?lhs = (of_nat (k + n) gchoose k)" by (subst gbinomial_negated_upper) (simp add: power_mult_distrib [symmetric]) also have "\<dots> = (of_nat (k + n) gchoose n)" by (subst gbinomial_of_nat_symmetric) simp_all also have "\<dots> = ?rhs" by (subst gbinomial_negated_upper) simp finally show ?thesis .qedlemma gbinomial_sum_lower_neg: "(\<Sum>k\<le>m. (a gchoose k) * (- 1) ^ k) = (- 1) ^ m * (a - 1 gchoose m)" (is "?lhs = ?rhs")proof - have "?lhs = (\<Sum>k\<le>m. -(a + 1) + of_nat k gchoose k)" by (intro sum.cong[OF refl]) (subst gbinomial_negated_upper, simp add: power_mult_distrib) also have "\<dots> = - a + of_nat m gchoose m" by (subst gbinomial_parallel_sum) simp also have "\<dots> = ?rhs" by (subst gbinomial_negated_upper) (simp add: power_mult_distrib) finally show ?thesis .qedlemma gbinomial_partial_row_sum: "(\<Sum>k\<le>m. (a gchoose k) * ((a / 2) - of_nat k)) = ((of_nat m + 1)/2) * (a gchoose (m + 1))"proof (induct m) case 0 then show ?case by simpnext case (Suc mm) then have "(\<Sum>k\<le>Suc mm. (a gchoose k) * (a / 2 - of_nat k)) = (a - of_nat (Suc mm)) * (a gchoose Suc mm) / 2" by (simp add: field_simps) also have "\<dots> = a * (a - 1 gchoose Suc mm) / 2" by (subst gbinomial_absorb_comp) (rule refl) also have "\<dots> = (of_nat (Suc mm) + 1) / 2 * (a gchoose (Suc mm + 1))" by (subst gbinomial_absorption [symmetric]) simp finally show ?case .qedlemma sum_bounds_lt_plus1: "(\<Sum>k<mm. f (Suc k)) = (\<Sum>k=1..mm. f k)" by (induct mm) simp_alllemma gbinomial_partial_sum_poly: "(\<Sum>k\<le>m. (of_nat m + a gchoose k) * x^k * y^(m-k)) = (\<Sum>k\<le>m. (-a gchoose k) * (-x)^k * (x + y)^(m-k))" (is "?lhs m = ?rhs m")proof (induction m) case 0 then show ?case by simpnext case (Suc mm) define G where "G i k = (of_nat i + a gchoose k) * x^k * y^(i - k)" for i k define S where "S = ?lhs" have SG_def: "S = (\<lambda>i. (\<Sum>k\<le>i. (G i k)))" unfolding S_def G_def .. have "S (Suc mm) = G (Suc mm) 0 + (\<Sum>k=Suc 0..Suc mm. G (Suc mm) k)" using SG_def by (simp add: sum.atLeast_Suc_atMost atLeast0AtMost [symmetric]) also have "(\<Sum>k=Suc 0..Suc mm. G (Suc mm) k) = (\<Sum>k=0..mm. G (Suc mm) (Suc k))" by (subst sum.shift_bounds_cl_Suc_ivl) simp also have "\<dots> = (\<Sum>k=0..mm. ((of_nat mm + a gchoose (Suc k)) + (of_nat mm + a gchoose k)) * x^(Suc k) * y^(mm - k))" unfolding G_def by (subst gbinomial_addition_formula) simp also have "\<dots> = (\<Sum>k=0..mm. (of_nat mm + a gchoose (Suc k)) * x^(Suc k) * y^(mm - k)) + (\<Sum>k=0..mm. (of_nat mm + a gchoose k) * x^(Suc k) * y^(mm - k))" by (subst sum.distrib [symmetric]) (simp add: algebra_simps) also have "(\<Sum>k=0..mm. (of_nat mm + a gchoose (Suc k)) * x^(Suc k) * y^(mm - k)) = (\<Sum>k<Suc mm. (of_nat mm + a gchoose (Suc k)) * x^(Suc k) * y^(mm - k))" by (simp only: atLeast0AtMost lessThan_Suc_atMost) also have "\<dots> = (\<Sum>k<mm. (of_nat mm + a gchoose Suc k) * x^(Suc k) * y^(mm-k)) + (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm)" (is "_ = ?A + ?B") by (subst sum.lessThan_Suc) simp also have "?A = (\<Sum>k=1..mm. (of_nat mm + a gchoose k) * x^k * y^(mm - k + 1))" proof (subst sum_bounds_lt_plus1 [symmetric], intro sum.cong[OF refl], clarify) fix k assume "k < mm" then have "mm - k = mm - Suc k + 1" by linarith then show "(of_nat mm + a gchoose Suc k) * x ^ Suc k * y ^ (mm - k) = (of_nat mm + a gchoose Suc k) * x ^ Suc k * y ^ (mm - Suc k + 1)" by (simp only:) qed also have "\<dots> + ?B = y * (\<Sum>k=1..mm. (G mm k)) + (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm)" unfolding G_def by (subst sum_distrib_left) (simp add: algebra_simps) also have "(\<Sum>k=0..mm. (of_nat mm + a gchoose k) * x^(Suc k) * y^(mm - k)) = x * (S mm)" unfolding S_def by (subst sum_distrib_left) (simp add: atLeast0AtMost algebra_simps) also have "(G (Suc mm) 0) = y * (G mm 0)" by (simp add: G_def) finally have "S (Suc mm) = y * (G mm 0 + (\<Sum>k=1..mm. (G mm k))) + (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm) + x * (S mm)" by (simp add: ring_distribs) also have "G mm 0 + (\<Sum>k=1..mm. (G mm k)) = S mm" by (simp add: sum.atLeast_Suc_atMost[symmetric] SG_def atLeast0AtMost) finally have "S (Suc mm) = (x + y) * (S mm) + (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm)" by (simp add: algebra_simps) also have "(of_nat mm + a gchoose (Suc mm)) = (-1) ^ (Suc mm) * (- a gchoose (Suc mm))" by (subst gbinomial_negated_upper) simp also have "(-1) ^ Suc mm * (- a gchoose Suc mm) * x ^ Suc mm = (- a gchoose (Suc mm)) * (-x) ^ Suc mm" by (simp add: power_minus[of x]) also have "(x + y) * S mm + \<dots> = (x + y) * ?rhs mm + (- a gchoose (Suc mm)) * (- x)^Suc mm" unfolding S_def by (subst Suc.IH) simp also have "(x + y) * ?rhs mm = (\<Sum>n\<le>mm. ((- a gchoose n) * (- x) ^ n * (x + y) ^ (Suc mm - n)))" by (subst sum_distrib_left, rule sum.cong) (simp_all add: Suc_diff_le) also have "\<dots> + (-a gchoose (Suc mm)) * (-x)^Suc mm = (\<Sum>n\<le>Suc mm. (- a gchoose n) * (- x) ^ n * (x + y) ^ (Suc mm - n))" by simp finally show ?case by (simp only: S_def)qedlemma gbinomial_partial_sum_poly_xpos: "(\<Sum>k\<le>m. (of_nat m + a gchoose k) * x^k * y^(m-k)) = (\<Sum>k\<le>m. (of_nat k + a - 1 gchoose k) * x^k * (x + y)^(m-k))" (is "?lhs = ?rhs")proof - have "?lhs = (\<Sum>k\<le>m. (- a gchoose k) * (- x) ^ k * (x + y) ^ (m - k))" by (simp add: gbinomial_partial_sum_poly) also have "... = (\<Sum>k\<le>m. (-1) ^ k * (of_nat k - - a - 1 gchoose k) * (- x) ^ k * (x + y) ^ (m - k))" by (metis (no_types, opaque_lifting) gbinomial_negated_upper) also have "... = ?rhs" by (intro sum.cong) (auto simp flip: power_mult_distrib) finally show ?thesis .qedlemma binomial_r_part_sum: "(\<Sum>k\<le>m. (2 * m + 1 choose k)) = 2 ^ (2 * m)"proof - have "2 * 2^(2*m) = (\<Sum>k = 0..(2 * m + 1). (2 * m + 1 choose k))" using choose_row_sum[where n="2 * m + 1"] by (simp add: atMost_atLeast0) also have "(\<Sum>k = 0..(2 * m + 1). (2 * m + 1 choose k)) = (\<Sum>k = 0..m. (2 * m + 1 choose k)) + (\<Sum>k = m+1..2*m+1. (2 * m + 1 choose k))" using sum.ub_add_nat[of 0 m "\<lambda>k. 2 * m + 1 choose k" "m+1"] by (simp add: mult_2) also have "(\<Sum>k = m+1..2*m+1. (2 * m + 1 choose k)) = (\<Sum>k = 0..m. (2 * m + 1 choose (k + (m + 1))))" by (subst sum.shift_bounds_cl_nat_ivl [symmetric]) (simp add: mult_2) also have "\<dots> = (\<Sum>k = 0..m. (2 * m + 1 choose (m - k)))" by (intro sum.cong[OF refl], subst binomial_symmetric) simp_all also have "\<dots> = (\<Sum>k = 0..m. (2 * m + 1 choose k))" using sum.atLeastAtMost_rev [of "\<lambda>k. 2 * m + 1 choose (m - k)" 0 m] by simp also have "\<dots> + \<dots> = 2 * \<dots>" by simp finally show ?thesis by (subst (asm) mult_cancel1) (simp add: atLeast0AtMost)qedlemma gbinomial_r_part_sum: "(\<Sum>k\<le>m. (2 * (of_nat m) + 1 gchoose k)) = 2 ^ (2 * m)" (is "?lhs = ?rhs")proof - have "?lhs = of_nat (\<Sum>k\<le>m. (2 * m + 1) choose k)" by (simp add: binomial_gbinomial add_ac) also have "\<dots> = of_nat (2 ^ (2 * m))" by (subst binomial_r_part_sum) (rule refl) finally show ?thesis by simpqedlemma gbinomial_sum_nat_pow2: "(\<Sum>k\<le>m. (of_nat (m + k) gchoose k :: 'a::field_char_0) / 2 ^ k) = 2 ^ m" (is "?lhs = ?rhs")proof - have "2 ^ m * 2 ^ m = (2 ^ (2*m) :: 'a)" by (induct m) simp_all also have "\<dots> = (\<Sum>k\<le>m. (2 * (of_nat m) + 1 gchoose k))" using gbinomial_r_part_sum .. also have "\<dots> = (\<Sum>k\<le>m. (of_nat (m + k) gchoose k) * 2 ^ (m - k))" using gbinomial_partial_sum_poly_xpos[where x="1" and y="1" and a="of_nat m + 1" and m="m"] by (simp add: add_ac) also have "\<dots> = 2 ^ m * (\<Sum>k\<le>m. (of_nat (m + k) gchoose k) / 2 ^ k)" by (subst sum_distrib_left) (simp add: algebra_simps power_diff) finally show ?thesis by (subst (asm) mult_left_cancel) simp_allqedlemma gbinomial_trinomial_revision: assumes "k \<le> m" shows "(a gchoose m) * (of_nat m gchoose k) = (a gchoose k) * (a - of_nat k gchoose (m - k))"proof - have "(a gchoose m) * (of_nat m gchoose k) = (a gchoose m) * fact m / (fact k * fact (m - k))" using assms by (simp add: binomial_gbinomial [symmetric] binomial_fact) also have "\<dots> = (a gchoose k) * (a - of_nat k gchoose (m - k))" using assms by (simp add: gbinomial_pochhammer power_diff pochhammer_product) finally show ?thesis .qedtext \<open>Versions of the theorems above for the natural-number version of "choose"\<close>lemma binomial_altdef_of_nat: "k \<le> n \<Longrightarrow> of_nat (n choose k) = (\<Prod>i = 0..<k. of_nat (n - i) / of_nat (k - i) :: 'a)" for n k :: nat and x :: "'a::field_char_0" by (simp add: gbinomial_altdef_of_nat binomial_gbinomial of_nat_diff)lemma binomial_ge_n_over_k_pow_k: "k \<le> n \<Longrightarrow> (of_nat n / of_nat k :: 'a) ^ k \<le> of_nat (n choose k)" for k n :: nat and x :: "'a::linordered_field" by (simp add: gbinomial_ge_n_over_k_pow_k binomial_gbinomial of_nat_diff)lemma binomial_le_pow: assumes "r \<le> n" shows "n choose r \<le> n ^ r"proof - have "n choose r \<le> fact n div fact (n - r)" using assms by (subst binomial_fact_lemma[symmetric]) auto with fact_div_fact_le_pow [OF assms] show ?thesis by autoqedlemma binomial_altdef_nat: "k \<le> n \<Longrightarrow> n choose k = fact n div (fact k * fact (n - k))" for k n :: nat by (subst binomial_fact_lemma [symmetric]) autolemma choose_dvd: assumes "k \<le> n" shows "fact k * fact (n - k) dvd (fact n :: 'a::linordered_semidom)" unfolding dvd_defproof show "fact n = fact k * fact (n - k) * of_nat (n choose k)" by (metis assms binomial_fact_lemma of_nat_fact of_nat_mult) qedlemma fact_fact_dvd_fact: "fact k * fact n dvd (fact (k + n) :: 'a::linordered_semidom)" by (metis add.commute add_diff_cancel_left' choose_dvd le_add2)lemma choose_mult_lemma: "((m + r + k) choose (m + k)) * ((m + k) choose k) = ((m + r + k) choose k) * ((m + r) choose m)" (is "?lhs = _")proof - have "?lhs = fact (m + r + k) div (fact (m + k) * fact (m + r - m)) * (fact (m + k) div (fact k * fact m))" by (simp add: binomial_altdef_nat) also have "... = fact (m + r + k) * fact (m + k) div (fact (m + k) * fact (m + r - m) * (fact k * fact m))" by (metis add_implies_diff add_le_mono1 choose_dvd diff_cancel2 div_mult_div_if_dvd le_add1 le_add2) also have "\<dots> = fact (m + r + k) div (fact r * (fact k * fact m))" by (auto simp: algebra_simps fact_fact_dvd_fact) also have "\<dots> = (fact (m + r + k) * fact (m + r)) div (fact r * (fact k * fact m) * fact (m + r))" by simp also have "\<dots> = (fact (m + r + k) div (fact k * fact (m + r)) * (fact (m + r) div (fact r * fact m)))" by (auto simp: div_mult_div_if_dvd fact_fact_dvd_fact algebra_simps) finally show ?thesis by (simp add: binomial_altdef_nat mult.commute)qedtext \<open>The "Subset of a Subset" identity.\<close>lemma choose_mult: "k \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> (n choose m) * (m choose k) = (n choose k) * ((n - k) choose (m - k))" using choose_mult_lemma [of "m-k" "n-m" k] by simplemma of_nat_binomial_eq_mult_binomial_Suc: assumes "k \<le> n" shows "(of_nat :: (nat \<Rightarrow> ('a :: field_char_0))) (n choose k) = of_nat (n + 1 - k) / of_nat (n + 1) * of_nat (Suc n choose k)"proof (cases k) case 0 then show ?thesis using of_nat_neq_0 by autonext case (Suc l) have "of_nat (n + 1) * (\<Prod>i=0..<k. of_nat (n - i)) = (of_nat :: (nat \<Rightarrow> 'a)) (n + 1 - k) * (\<Prod>i=0..<k. of_nat (Suc n - i))" using prod.atLeast0_lessThan_Suc [where ?'a = 'a, symmetric, of "\<lambda>i. of_nat (Suc n - i)" k] by (simp add: ac_simps prod.atLeast0_lessThan_Suc_shift del: prod.op_ivl_Suc) also have "... = (of_nat :: (nat \<Rightarrow> 'a)) (Suc n - k) * (\<Prod>i=0..<k. of_nat (Suc n - i))" by (simp add: Suc atLeast0_atMost_Suc atLeastLessThanSuc_atLeastAtMost) also have "... = (of_nat :: (nat \<Rightarrow> 'a)) (n + 1 - k) * (\<Prod>i=0..<k. of_nat (Suc n - i))" by (simp only: Suc_eq_plus1) finally have "(\<Prod>i=0..<k. of_nat (n - i)) = (of_nat :: (nat \<Rightarrow> 'a)) (n + 1 - k) / of_nat (n + 1) * (\<Prod>i=0..<k. of_nat (Suc n - i))" using of_nat_neq_0 by (auto simp: mult.commute divide_simps) with assms show ?thesis by (simp add: binomial_altdef_of_nat prod_dividef)qedsubsection \<open>More on Binomial Coefficients\<close>text \<open>The number of nat lists of length \<open>m\<close> summing to \<open>N\<close> is \<^term>\<open>(N + m - 1) choose N\<close>:\<close>lemma card_length_sum_list_rec: assumes "m \<ge> 1" shows "card {l::nat list. length l = m \<and> sum_list l = N} = card {l. length l = (m - 1) \<and> sum_list l = N} + card {l. length l = m \<and> sum_list l + 1 = N}" (is "card ?C = card ?A + card ?B")proof - let ?A' = "{l. length l = m \<and> sum_list l = N \<and> hd l = 0}" let ?B' = "{l. length l = m \<and> sum_list l = N \<and> hd l \<noteq> 0}" let ?f = "\<lambda>l. 0 # l" let ?g = "\<lambda>l. (hd l + 1) # tl l" have 1: "xs \<noteq> [] \<Longrightarrow> x = hd xs \<Longrightarrow> x # tl xs = xs" for x :: nat and xs by simp have 2: "xs \<noteq> [] \<Longrightarrow> sum_list(tl xs) = sum_list xs - hd xs" for xs :: "nat list" by (auto simp add: neq_Nil_conv) have f: "bij_betw ?f ?A ?A'" by (rule bij_betw_byWitness[where f' = tl]) (use assms in \<open>auto simp: 2 1 simp flip: length_0_conv\<close>) have 3: "xs \<noteq> [] \<Longrightarrow> hd xs + (sum_list xs - hd xs) = sum_list xs" for xs :: "nat list" by (metis 1 sum_list_simps(2) 2) have g: "bij_betw ?g ?B ?B'" apply (rule bij_betw_byWitness[where f' = "\<lambda>l. (hd l - 1) # tl l"]) using assms by (auto simp: 2 simp flip: length_0_conv intro!: 3) have fin: "finite {xs. size xs = M \<and> set xs \<subseteq> {0..<N}}" for M N :: nat using finite_lists_length_eq[OF finite_atLeastLessThan] conj_commute by auto have fin_A: "finite ?A" using fin[of _ "N+1"] by (intro finite_subset[where ?A = "?A" and ?B = "{xs. size xs = m - 1 \<and> set xs \<subseteq> {0..<N+1}}"]) (auto simp: member_le_sum_list less_Suc_eq_le) have fin_B: "finite ?B" by (intro finite_subset[where ?A = "?B" and ?B = "{xs. size xs = m \<and> set xs \<subseteq> {0..<N}}"]) (auto simp: member_le_sum_list less_Suc_eq_le fin) have uni: "?C = ?A' \<union> ?B'" by auto have disj: "?A' \<inter> ?B' = {}" by blast have "card ?C = card(?A' \<union> ?B')" using uni by simp also have "\<dots> = card ?A + card ?B" using card_Un_disjoint[OF _ _ disj] bij_betw_finite[OF f] bij_betw_finite[OF g] bij_betw_same_card[OF f] bij_betw_same_card[OF g] fin_A fin_B by presburger finally show ?thesis .qedlemma card_length_sum_list: "card {l::nat list. size l = m \<and> sum_list l = N} = (N + m - 1) choose N" \<comment> \<open>by Holden Lee, tidied by Tobias Nipkow\<close>proof (cases m) case 0 then show ?thesis by (cases N) (auto cong: conj_cong)next case (Suc m') have m: "m \<ge> 1" by (simp add: Suc) then show ?thesis proof (induct "N + m - 1" arbitrary: N m) case 0 \<comment> \<open>In the base case, the only solution is [0].\<close> have [simp]: "{l::nat list. length l = Suc 0 \<and> (\<forall>n\<in>set l. n = 0)} = {[0]}" by (auto simp: length_Suc_conv) have "m = 1 \<and> N = 0" using 0 by linarith then show ?case by simp next case (Suc k) have c1: "card {l::nat list. size l = (m - 1) \<and> sum_list l = N} = (N + (m - 1) - 1) choose N" proof (cases "m = 1") case True with Suc.hyps have "N \<ge> 1" by auto with True show ?thesis by (simp add: binomial_eq_0) next case False then show ?thesis using Suc by fastforce qed from Suc have c2: "card {l::nat list. size l = m \<and> sum_list l + 1 = N} = (if N > 0 then ((N - 1) + m - 1) choose (N - 1) else 0)" proof - have *: "n > 0 \<Longrightarrow> Suc m = n \<longleftrightarrow> m = n - 1" for m n by arith from Suc have "N > 0 \<Longrightarrow> card {l::nat list. size l = m \<and> sum_list l + 1 = N} = ((N - 1) + m - 1) choose (N - 1)" by (simp add: *) then show ?thesis by auto qed from Suc.prems have "(card {l::nat list. size l = (m - 1) \<and> sum_list l = N} + card {l::nat list. size l = m \<and> sum_list l + 1 = N}) = (N + m - 1) choose N" by (auto simp: c1 c2 choose_reduce_nat[of "N + m - 1" N] simp del: One_nat_def) then show ?case using card_length_sum_list_rec[OF Suc.prems] by auto qedqedlemma card_disjoint_shuffles: assumes "set xs \<inter> set ys = {}" shows "card (shuffles xs ys) = (length xs + length ys) choose length xs"using assmsproof (induction xs ys rule: shuffles.induct) case (3 x xs y ys) have "shuffles (x # xs) (y # ys) = (#) x ` shuffles xs (y # ys) \<union> (#) y ` shuffles (x # xs) ys" by (rule shuffles.simps) also have "card \<dots> = card ((#) x ` shuffles xs (y # ys)) + card ((#) y ` shuffles (x # xs) ys)" by (rule card_Un_disjoint) (insert "3.prems", auto) also have "card ((#) x ` shuffles xs (y # ys)) = card (shuffles xs (y # ys))" by (rule card_image) auto also have "\<dots> = (length xs + length (y # ys)) choose length xs" using "3.prems" by (intro "3.IH") auto also have "card ((#) y ` shuffles (x # xs) ys) = card (shuffles (x # xs) ys)" by (rule card_image) auto also have "\<dots> = (length (x # xs) + length ys) choose length (x # xs)" using "3.prems" by (intro "3.IH") auto also have "(length xs + length (y # ys) choose length xs) + \<dots> = (length (x # xs) + length (y # ys)) choose length (x # xs)" by simp finally show ?case .qed autolemma Suc_times_binomial_add: "Suc a * (Suc (a + b) choose Suc a) = Suc b * (Suc (a + b) choose a)" \<comment> \<open>by Lukas Bulwahn\<close>proof - have dvd: "Suc a * (fact a * fact b) dvd fact (Suc (a + b))" for a b using fact_fact_dvd_fact[of "Suc a" "b", where 'a=nat] by (simp only: fact_Suc add_Suc[symmetric] of_nat_id mult.assoc) have "Suc a * (fact (Suc (a + b)) div (Suc a * fact a * fact b)) = Suc a * fact (Suc (a + b)) div (Suc a * (fact a * fact b))" by (subst div_mult_swap[symmetric]; simp only: mult.assoc dvd) also have "\<dots> = Suc b * fact (Suc (a + b)) div (Suc b * (fact a * fact b))" by (simp only: div_mult_mult1) also have "\<dots> = Suc b * (fact (Suc (a + b)) div (Suc b * (fact a * fact b)))" using dvd[of b a] by (subst div_mult_swap[symmetric]; simp only: ac_simps dvd) finally show ?thesis by (subst (1 2) binomial_altdef_nat) (simp_all only: ac_simps diff_Suc_Suc Suc_diff_le diff_add_inverse fact_Suc of_nat_id)qedsubsection \<open>Inclusion-exclusion principle\<close>text \<open>Ported from HOL Light by lcp\<close>lemma Inter_over_Union: "\<Inter> {\<Union> (\<F> x) |x. x \<in> S} = \<Union> {\<Inter> (G ` S) |G. \<forall>x\<in>S. G x \<in> \<F> x}" proof - have "\<And>x. \<forall>s\<in>S. \<exists>X \<in> \<F> s. x \<in> X \<Longrightarrow> \<exists>G. (\<forall>x\<in>S. G x \<in> \<F> x) \<and> (\<forall>s\<in>S. x \<in> G s)" by metis then show ?thesis by (auto simp flip: all_simps ex_simps)qedlemma subset_insert_lemma: "{T. T \<subseteq> (insert a S) \<and> P T} = {T. T \<subseteq> S \<and> P T} \<union> {insert a T |T. T \<subseteq> S \<and> P(insert a T)}" (is "?L=?R")proof show "?L \<subseteq> ?R" by (smt (verit) UnI1 UnI2 insert_Diff mem_Collect_eq subsetI subset_insert_iff)qed blasttext\<open>Versions for additive real functions, where the additivity applies only to some specific subsets (e.g. cardinality of finite sets, measurable sets with bounded measure. (From HOL Light)\<close>locale Incl_Excl = fixes P :: "'a set \<Rightarrow> bool" and f :: "'a set \<Rightarrow> 'b::ring_1" assumes disj_add: "\<lbrakk>P S; P T; disjnt S T\<rbrakk> \<Longrightarrow> f(S \<union> T) = f S + f T" and empty: "P{}" and Int: "\<lbrakk>P S; P T\<rbrakk> \<Longrightarrow> P(S \<inter> T)" and Un: "\<lbrakk>P S; P T\<rbrakk> \<Longrightarrow> P(S \<union> T)" and Diff: "\<lbrakk>P S; P T\<rbrakk> \<Longrightarrow> P(S - T)"beginlemma f_empty [simp]: "f{} = 0" using disj_add empty by fastforcelemma f_Un_Int: "\<lbrakk>P S; P T\<rbrakk> \<Longrightarrow> f(S \<union> T) + f(S \<inter> T) = f S + f T" by (smt (verit, ccfv_threshold) Groups.add_ac(2) Incl_Excl.Diff Incl_Excl.Int Incl_Excl_axioms Int_Diff_Un Int_Diff_disjoint Int_absorb Un_Diff Un_Int_eq(2) disj_add disjnt_def group_cancel.add2 sup_bot.right_neutral)lemma restricted_indexed: assumes "finite A" and X: "\<And>a. a \<in> A \<Longrightarrow> P(X a)" shows "f(\<Union>(X ` A)) = (\<Sum>B | B \<subseteq> A \<and> B \<noteq> {}. (- 1) ^ (card B + 1) * f (\<Inter> (X ` B)))"proof - have "\<lbrakk>finite A; card A = n; \<forall>a \<in> A. P (X a)\<rbrakk> \<Longrightarrow> f(\<Union>(X ` A)) = (\<Sum>B | B \<subseteq> A \<and> B \<noteq> {}. (- 1) ^ (card B + 1) * f (\<Inter> (X ` B)))" for n X and A :: "'c set" proof (induction n arbitrary: A X rule: less_induct) case (less n0 A0 X) show ?case proof (cases "n0=0") case True with less show ?thesis by fastforce next case False with less.prems obtain A n a where *: "n0 = Suc n" "A0 = insert a A" "a \<notin> A" "card A = n" "finite A" by (metis card_Suc_eq_finite not0_implies_Suc) with less have "P (X a)" by blast have APX: "\<forall>a \<in> A. P (X a)" by (simp add: "*" less.prems) have PUXA: "P (\<Union> (X ` A))" using \<open>finite A\<close> APX by (induction) (auto simp: empty Un) have "f (\<Union> (X ` A0)) = f (X a \<union> \<Union> (X ` A))" by (simp add: *) also have "... = f (X a) + f (\<Union> (X ` A)) - f (X a \<inter> \<Union> (X ` A))" using f_Un_Int add_diff_cancel PUXA \<open>P (X a)\<close> by metis also have "... = f (X a) - (\<Sum>B | B \<subseteq> A \<and> B \<noteq> {}. (- 1) ^ card B * f (\<Inter> (X ` B))) + (\<Sum>B | B \<subseteq> A \<and> B \<noteq> {}. (- 1) ^ card B * f (X a \<inter> \<Inter> (X ` B)))" proof - have 1: "f (\<Union>i\<in>A. X a \<inter> X i) = (\<Sum>B | B \<subseteq> A \<and> B \<noteq> {}. (- 1) ^ (card B + 1) * f (\<Inter>b\<in>B. X a \<inter> X b))" using less.IH [of n A "\<lambda>i. X a \<inter> X i"] APX Int \<open>P (X a)\<close> by (simp add: *) have 2: "X a \<inter> \<Union> (X ` A) = (\<Union>i\<in>A. X a \<inter> X i)" by auto have 3: "f (\<Union> (X ` A)) = (\<Sum>B | B \<subseteq> A \<and> B \<noteq> {}. (- 1) ^ (card B + 1) * f (\<Inter> (X ` B)))" using less.IH [of n A X] APX Int \<open>P (X a)\<close> by (simp add: *) show ?thesis unfolding 3 2 1 by (simp add: sum_negf) qed also have "... = (\<Sum>B | B \<subseteq> A0 \<and> B \<noteq> {}. (- 1) ^ (card B + 1) * f (\<Inter> (X ` B)))" proof - have F: "{insert a B |B. B \<subseteq> A} = insert a ` Pow A \<and> {B. B \<subseteq> A \<and> B \<noteq> {}} = Pow A - {{}}" by auto have G: "(\<Sum>B\<in>Pow A. (- 1) ^ card (insert a B) * f (X a \<inter> \<Inter> (X ` B))) = (\<Sum>B\<in>Pow A. - ((- 1) ^ card B * f (X a \<inter> \<Inter> (X ` B))))" proof (rule sum.cong [OF refl]) fix B assume B: "B \<in> Pow A" then have "finite B" using \<open>finite A\<close> finite_subset by auto show "(- 1) ^ card (insert a B) * f (X a \<inter> \<Inter> (X ` B)) = - ((- 1) ^ card B * f (X a \<inter> \<Inter> (X ` B)))" using B * by (auto simp add: card_insert_if \<open>finite B\<close>) qed have disj: "{B. B \<subseteq> A \<and> B \<noteq> {}} \<inter> {insert a B |B. B \<subseteq> A} = {}" using * by blast have inj: "inj_on (insert a) (Pow A)" using "*" inj_on_def by fastforce show ?thesis apply (simp add: * subset_insert_lemma sum.union_disjoint disj sum_negf) apply (simp add: F G sum_negf sum.reindex [OF inj] o_def sum_diff *) done qed finally show ?thesis . qed qed then show ?thesis by (meson assms)qedlemma restricted: assumes "finite A" "\<And>a. a \<in> A \<Longrightarrow> P a" shows "f(\<Union> A) = (\<Sum>B | B \<subseteq> A \<and> B \<noteq> {}. (- 1) ^ (card B + 1) * f (\<Inter> B))" using restricted_indexed [of A "\<lambda>x. x"] assms by autoendsubsection\<open>Versions for unrestrictedly additive functions\<close>lemma Incl_Excl_UN: fixes f :: "'a set \<Rightarrow> 'b::ring_1" assumes "\<And>S T. disjnt S T \<Longrightarrow> f(S \<union> T) = f S + f T" "finite A" shows "f(\<Union>(G ` A)) = (\<Sum>B | B \<subseteq> A \<and> B \<noteq> {}. (-1) ^ (card B + 1) * f (\<Inter> (G ` B)))"proof - interpret Incl_Excl "\<lambda>x. True" f by (simp add: Incl_Excl.intro assms(1)) show ?thesis using restricted_indexed assms by blastqedlemma Incl_Excl_Union: fixes f :: "'a set \<Rightarrow> 'b::ring_1" assumes "\<And>S T. disjnt S T \<Longrightarrow> f(S \<union> T) = f S + f T" "finite A" shows "f(\<Union> A) = (\<Sum>B | B \<subseteq> A \<and> B \<noteq> {}. (- 1) ^ (card B + 1) * f (\<Inter> B))" using Incl_Excl_UN[of f A "\<lambda>X. X"] assms by simptext \<open>The famous inclusion-exclusion formula for the cardinality of a union\<close>lemma int_card_UNION: assumes "finite A" "\<And>K. K \<in> A \<Longrightarrow> finite K" shows "int (card (\<Union>A)) = (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * int (card (\<Inter>I)))"proof - interpret Incl_Excl finite "int o card" proof qed (auto simp add: card_Un_disjnt) show ?thesis using restricted assms by autoqedtext\<open>A more conventional form\<close>lemma inclusion_exclusion: assumes "finite A" "\<And>K. K \<in> A \<Longrightarrow> finite K" shows "int(card(\<Union> A)) = (\<Sum>n=1..card A. (-1) ^ (Suc n) * (\<Sum>B | B \<subseteq> A \<and> card B = n. int (card (\<Inter> B))))" (is "_=?R")proof - have fin: "finite {I. I \<subseteq> A \<and> I \<noteq> {}}" by (simp add: assms) have "\<And>k. \<lbrakk>Suc 0 \<le> k; k \<le> card A\<rbrakk> \<Longrightarrow> \<exists>B\<subseteq>A. B \<noteq> {} \<and> k = card B" by (metis (mono_tags, lifting) Suc_le_D Zero_neq_Suc card_eq_0_iff obtain_subset_with_card_n) with \<open>finite A\<close> finite_subset have card_eq: "card ` {I. I \<subseteq> A \<and> I \<noteq> {}} = {1..card A}" using not_less_eq_eq card_mono by (fastforce simp: image_iff) have "int(card(\<Union> A)) = (\<Sum>y = 1..card A. \<Sum>I\<in>{x. x \<subseteq> A \<and> x \<noteq> {} \<and> card x = y}. - ((- 1) ^ y * int (card (\<Inter> I))))" by (simp add: int_card_UNION assms sum.image_gen [OF fin, where g=card] card_eq) also have "... = ?R" proof - have "{B. B \<subseteq> A \<and> B \<noteq> {} \<and> card B = k} = {B. B \<subseteq> A \<and> card B = k}" if "Suc 0 \<le> k" and "k \<le> card A" for k using that by auto then show ?thesis by (clarsimp simp add: sum_negf simp flip: sum_distrib_left) qed finally show ?thesis .qedlemma card_UNION: assumes "finite A" and "\<And>K. K \<in> A \<Longrightarrow> finite K" shows "card (\<Union>A) = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * int (card (\<Inter>I)))" by (simp only: flip: int_card_UNION [OF assms])lemma card_UNION_nonneg: assumes "finite A" and "\<And>K. K \<in> A \<Longrightarrow> finite K" shows "(\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * int (card (\<Inter>I))) \<ge> 0" using int_card_UNION [OF assms] by presburgersubsection \<open>General "Moebius inversion" inclusion-exclusion principle\<close>text \<open>This "symmetric" form is from Ira Gessel: "Symmetric Inclusion-Exclusion" \<close>lemma sum_Un_eq: "\<lbrakk>S \<inter> T = {}; S \<union> T = U; finite U\<rbrakk> \<Longrightarrow> (sum f S + sum f T = sum f U)" by (metis finite_Un sum.union_disjoint)lemma card_adjust_lemma: "\<lbrakk>inj_on f S; x = y + card (f ` S)\<rbrakk> \<Longrightarrow> x = y + card S" by (simp add: card_image)lemma card_subsets_step: assumes "finite S" "x \<notin> S" "U \<subseteq> S" shows "card {T. T \<subseteq> (insert x S) \<and> U \<subseteq> T \<and> odd(card T)} = card {T. T \<subseteq> S \<and> U \<subseteq> T \<and> odd(card T)} + card {T. T \<subseteq> S \<and> U \<subseteq> T \<and> even(card T)} \<and> card {T. T \<subseteq> (insert x S) \<and> U \<subseteq> T \<and> even(card T)} = card {T. T \<subseteq> S \<and> U \<subseteq> T \<and> even(card T)} + card {T. T \<subseteq> S \<and> U \<subseteq> T \<and> odd(card T)}"proof - have inj: "inj_on (insert x) {T. T \<subseteq> S \<and> P T}" for P using assms by (auto simp: inj_on_def) have [simp]: "finite {T. T \<subseteq> S \<and> P T}" "finite (insert x ` {T. T \<subseteq> S \<and> P T})" for P using \<open>finite S\<close> by auto have [simp]: "disjnt {T. T \<subseteq> S \<and> P T} (insert x ` {T. T \<subseteq> S \<and> Q T})" for P Q using assms by (auto simp: disjnt_iff) have eq: "{T. T \<subseteq> S \<and> U \<subseteq> T \<and> P T} \<union> insert x ` {T. T \<subseteq> S \<and> U \<subseteq> T \<and> Q T} = {T. T \<subseteq> insert x S \<and> U \<subseteq> T \<and> P T}" (is "?L = ?R") if "\<And>A. A \<subseteq> S \<Longrightarrow> Q (insert x A) \<longleftrightarrow> P A" "\<And>A. \<not> Q A \<longleftrightarrow> P A" for P Q proof show "?L \<subseteq> ?R" by (clarsimp simp: image_iff subset_iff) (meson subsetI that) show "?R \<subseteq> ?L" using \<open>U \<subseteq> S\<close> by (clarsimp simp: image_iff) (smt (verit) insert_iff mk_disjoint_insert subset_iff that) qed have [simp]: "\<And>A. A \<subseteq> S \<Longrightarrow> even (card (insert x A)) \<longleftrightarrow> odd (card A)" by (metis \<open>finite S\<close> \<open>x \<notin> S\<close> card_insert_disjoint even_Suc finite_subset subsetD) show ?thesis by (intro conjI card_adjust_lemma [OF inj]; simp add: eq flip: card_Un_disjnt)qedlemma card_subsupersets_even_odd: assumes "finite S" "U \<subset> S" shows "card {T. T \<subseteq> S \<and> U \<subseteq> T \<and> even(card T)} = card {T. T \<subseteq> S \<and> U \<subseteq> T \<and> odd(card T)}" using assmsproof (induction "card S" arbitrary: S rule: less_induct) case (less S) then obtain x where "x \<notin> U" "x \<in> S" by blast then have U: "U \<subseteq> S - {x}" using less.prems(2) by blast let ?V = "S - {x}" show ?case using card_subsets_step [of ?V x U] less.prems U by (simp add: insert_absorb \<open>x \<in> S\<close>)qedlemma sum_alternating_cancels: assumes "finite S" "card {x. x \<in> S \<and> even(f x)} = card {x. x \<in> S \<and> odd(f x)}" shows "(\<Sum>x\<in>S. (-1) ^ f x) = (0::'b::ring_1)"proof - have "(\<Sum>x\<in>S. (-1) ^ f x) = (\<Sum>x | x \<in> S \<and> even (f x). (-1) ^ f x) + (\<Sum>x | x \<in> S \<and> odd (f x). (-1) ^ f x)" by (rule sum_Un_eq [symmetric]; force simp: \<open>finite S\<close>) also have "... = (0::'b::ring_1)" by (simp add: minus_one_power_iff assms cong: conj_cong) finally show ?thesis .qedlemma inclusion_exclusion_symmetric: fixes f :: "'a set \<Rightarrow> 'b::ring_1" assumes \<section>: "\<And>S. finite S \<Longrightarrow> g S = (\<Sum>T \<in> Pow S. (-1) ^ card T * f T)" and "finite S" shows "f S = (\<Sum>T \<in> Pow S. (-1) ^ card T * g T)"proof - have "(-1) ^ card T * g T = (-1) ^ card T * (\<Sum>U | U \<subseteq> S \<and> U \<subseteq> T. (-1) ^ card U * f U)" if "T \<subseteq> S" for T proof - have [simp]: "{U. U \<subseteq> S \<and> U \<subseteq> T} = Pow T" using that by auto show ?thesis using that by (simp add: \<open>finite S\<close> finite_subset \<section>) qed then have "(\<Sum>T \<in> Pow S. (-1) ^ card T * g T) = (\<Sum>T\<in>Pow S. (-1) ^ card T * (\<Sum>U | U \<in> {U. U \<subseteq> S} \<and> U \<subseteq> T. (-1) ^ card U * f U))" by simp also have "... = (\<Sum>U\<in>Pow S. (\<Sum>T | T \<subseteq> S \<and> U \<subseteq> T. (-1) ^ card T) * (-1) ^ card U * f U)" unfolding sum_distrib_left by (subst sum.swap_restrict; simp add: \<open>finite S\<close> algebra_simps sum_distrib_right Pow_def) also have "... = (\<Sum>U\<in>Pow S. if U=S then f S else 0)" proof - have [simp]: "{T. T \<subseteq> S \<and> S \<subseteq> T} = {S}" by auto show ?thesis apply (rule sum.cong [OF refl]) by (simp add: sum_alternating_cancels card_subsupersets_even_odd \<open>finite S\<close> flip: power_add) qed also have "... = f S" by (simp add: \<open>finite S\<close>) finally show ?thesis by presburgerqedtext\<open> The more typical non-symmetric version. \<close>lemma inclusion_exclusion_mobius: fixes f :: "'a set \<Rightarrow> 'b::ring_1" assumes \<section>: "\<And>S. finite S \<Longrightarrow> g S = sum f (Pow S)" and "finite S" shows "f S = (\<Sum>T \<in> Pow S. (-1) ^ (card S - card T) * g T)" (is "_ = ?rhs")proof - have "(- 1) ^ card S * f S = (\<Sum>T\<in>Pow S. (- 1) ^ card T * g T)" by (rule inclusion_exclusion_symmetric; simp add: assms flip: power_add mult.assoc) then have "((- 1) ^ card S * (- 1) ^ card S) * f S = ((- 1) ^ card S) * (\<Sum>T\<in>Pow S. (- 1) ^ card T * g T)" by (simp add: mult_ac) then have "f S = (\<Sum>T\<in>Pow S. (- 1) ^ (card S + card T) * g T)" by (simp add: sum_distrib_left flip: power_add mult.assoc) also have "... = ?rhs" by (simp add: \<open>finite S\<close> card_mono neg_one_power_add_eq_neg_one_power_diff) finally show ?thesis .qedsubsection \<open>Executable code\<close>lemma gbinomial_code [code]: "a gchoose k = (if k = 0 then 1 else fold_atLeastAtMost_nat (\<lambda>k acc. (a - of_nat k) * acc) 0 (k - 1) 1 / fact k)" by (cases k) (simp_all add: gbinomial_prod_rev prod_atLeastAtMost_code [symmetric] atLeastLessThanSuc_atLeastAtMost)lemma binomial_code [code]: "n choose k = (if k > n then 0 else if 2 * k > n then n choose (n - k) else (fold_atLeastAtMost_nat (*) (n - k + 1) n 1 div fact k))"proof - { assume "k \<le> n" then have "{1..n} = {1..n-k} \<union> {n-k+1..n}" by auto then have "(fact n :: nat) = fact (n-k) * \<Prod>{n-k+1..n}" by (simp add: prod.union_disjoint fact_prod) } then show ?thesis by (auto simp: binomial_altdef_nat mult_ac prod_atLeastAtMost_code)qedend