(* Title: ZF/Rel.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
For Rel.thy. Relations in Zermelo-Fraenkel Set Theory
*)
open Rel;
(*** Some properties of relations -- useful? ***)
(* irreflexivity *)
val prems = goalw Rel.thy [irrefl_def]
"[| !!x. x:A ==> <x,x> ~: r |] ==> irrefl(A,r)";
by (REPEAT (ares_tac (prems @ [ballI]) 1));
qed "irreflI";
val prems = goalw Rel.thy [irrefl_def]
"[| irrefl(A,r); x:A |] ==> <x,x> ~: r";
by (rtac (prems MRS bspec) 1);
qed "irreflE";
(* symmetry *)
val prems = goalw Rel.thy [sym_def]
"[| !!x y.<x,y>: r ==> <y,x>: r |] ==> sym(r)";
by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
qed "symI";
goalw Rel.thy [sym_def] "!!r. [| sym(r); <x,y>: r |] ==> <y,x>: r";
by (Blast_tac 1);
qed "symE";
(* antisymmetry *)
val prems = goalw Rel.thy [antisym_def]
"[| !!x y.[| <x,y>: r; <y,x>: r |] ==> x=y |] ==> \
\ antisym(r)";
by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
qed "antisymI";
val prems = goalw Rel.thy [antisym_def]
"!!r. [| antisym(r); <x,y>: r; <y,x>: r |] ==> x=y";
by (Blast_tac 1);
qed "antisymE";
(* transitivity *)
goalw Rel.thy [trans_def]
"!!r. [| trans(r); <a,b>:r; <b,c>:r |] ==> <a,c>:r";
by (Blast_tac 1);
qed "transD";
goalw Rel.thy [trans_on_def]
"!!r. [| trans[A](r); <a,b>:r; <b,c>:r; a:A; b:A; c:A |] ==> <a,c>:r";
by (Blast_tac 1);
qed "trans_onD";