added Philipp Meyer's implementation of AtpMinimal
together with related changes in the sledgehammer-interface:
adapted type of prover, optional relevance filtering,
public get_prover for registered atps in AtpManager,
included atp_minimize in s/h response;
(* Title: HOL/Tools/numeral_syntax.ML
Authors: Markus Wenzel, TU Muenchen
Concrete syntax for generic numerals -- preserves leading zeros/ones.
*)
signature NUMERAL_SYNTAX =
sig
val setup: theory -> theory
end;
structure NumeralSyntax: NUMERAL_SYNTAX =
struct
(* parse translation *)
local
fun mk_bin num =
let
fun bit b bs = HOLogic.mk_bit b $ bs;
fun mk 0 = Syntax.const @{const_name Int.Pls}
| mk ~1 = Syntax.const @{const_name Int.Min}
| mk i = let val (q, r) = Integer.div_mod i 2 in bit r (mk q) end;
in mk (#value (Syntax.read_xnum num)) end;
in
fun numeral_tr (*"_Numeral"*) [t as Const (num, _)] =
Syntax.const @{const_name Int.number_of} $ mk_bin num
| numeral_tr (*"_Numeral"*) ts = raise TERM ("numeral_tr", ts);
end;
(* print translation *)
local
fun dest_bin (Const (@{const_syntax "Int.Pls"}, _)) = []
| dest_bin (Const (@{const_syntax "Int.Min"}, _)) = [~1]
| dest_bin (Const (@{const_syntax "Int.Bit0"}, _) $ bs) = 0 :: dest_bin bs
| dest_bin (Const (@{const_syntax "Int.Bit1"}, _) $ bs) = 1 :: dest_bin bs
| dest_bin _ = raise Match;
fun leading _ [] = 0
| leading (i: int) (j :: js) = if i = j then 1 + leading i js else 0;
fun int_of [] = 0
| int_of (b :: bs) = b + 2 * int_of bs;
fun dest_bin_str tm =
let
val rev_digs = dest_bin tm;
val (sign, z) =
(case rev rev_digs of
~1 :: bs => ("-", leading 1 bs)
| bs => ("", leading 0 bs));
val i = int_of rev_digs;
val num = string_of_int (abs i);
in
if (i = 0 orelse i = 1) andalso z = 0 then raise Match
else sign ^ implode (replicate z "0") ^ num
end;
fun syntax_numeral t =
Syntax.const "_Numeral" $ (Syntax.const "_numeral" $ Syntax.free (dest_bin_str t));
in
fun numeral_tr' show_sorts (*"number_of"*) (Type ("fun", [_, T])) (t :: ts) =
let val t' =
if not (! show_types) andalso can Term.dest_Type T then syntax_numeral t
else Syntax.const Syntax.constrainC $ syntax_numeral t $ Syntax.term_of_typ show_sorts T
in list_comb (t', ts) end
| numeral_tr' _ (*"number_of"*) T (t :: ts) =
if T = dummyT then list_comb (syntax_numeral t, ts)
else raise Match
| numeral_tr' _ (*"number_of"*) _ _ = raise Match;
end;
(* theory setup *)
val setup =
Sign.add_trfuns ([], [("_Numeral", numeral_tr)], [], []) #>
Sign.add_trfunsT [(@{const_syntax Int.number_of}, numeral_tr')];
end;