src/FOL/ex/Quantifiers_Int.thy
author bulwahn
Fri, 01 Sep 2017 09:45:56 +0200
changeset 66584 acb02fa48ef3
parent 62020 5d208fd2507d
child 69590 e65314985426
permissions -rw-r--r--
more facts on Map.map_of and List.zip

(*  Title:      FOL/ex/Quantifiers_Int.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1991  University of Cambridge
*)

section \<open>First-Order Logic: quantifier examples (intuitionistic version)\<close>

theory Quantifiers_Int
imports IFOL
begin

lemma "(\<forall>x y. P(x,y)) \<longrightarrow> (\<forall>y x. P(x,y))"
  by (tactic "IntPr.fast_tac @{context} 1")

lemma "(\<exists>x y. P(x,y)) \<longrightarrow> (\<exists>y x. P(x,y))"
  by (tactic "IntPr.fast_tac @{context} 1")


\<comment> \<open>Converse is false\<close>
lemma "(\<forall>x. P(x)) \<or> (\<forall>x. Q(x)) \<longrightarrow> (\<forall>x. P(x) \<or> Q(x))"
  by (tactic "IntPr.fast_tac @{context} 1")

lemma "(\<forall>x. P \<longrightarrow> Q(x)) \<longleftrightarrow> (P \<longrightarrow> (\<forall>x. Q(x)))"
  by (tactic "IntPr.fast_tac @{context} 1")


lemma "(\<forall>x. P(x) \<longrightarrow> Q) \<longleftrightarrow> ((\<exists>x. P(x)) \<longrightarrow> Q)"
  by (tactic "IntPr.fast_tac @{context} 1")


text \<open>Some harder ones\<close>

lemma "(\<exists>x. P(x) \<or> Q(x)) \<longleftrightarrow> (\<exists>x. P(x)) \<or> (\<exists>x. Q(x))"
  by (tactic "IntPr.fast_tac @{context} 1")

\<comment> \<open>Converse is false\<close>
lemma "(\<exists>x. P(x) \<and> Q(x)) \<longrightarrow> (\<exists>x. P(x)) \<and> (\<exists>x. Q(x))"
  by (tactic "IntPr.fast_tac @{context} 1")


text \<open>Basic test of quantifier reasoning\<close>

\<comment> \<open>TRUE\<close>
lemma "(\<exists>y. \<forall>x. Q(x,y)) \<longrightarrow> (\<forall>x. \<exists>y. Q(x,y))"
  by (tactic "IntPr.fast_tac @{context} 1")

lemma "(\<forall>x. Q(x)) \<longrightarrow> (\<exists>x. Q(x))"
  by (tactic "IntPr.fast_tac @{context} 1")


text \<open>The following should fail, as they are false!\<close>

lemma "(\<forall>x. \<exists>y. Q(x,y)) \<longrightarrow> (\<exists>y. \<forall>x. Q(x,y))"
  apply (tactic "IntPr.fast_tac @{context} 1")?
  oops

lemma "(\<exists>x. Q(x)) \<longrightarrow> (\<forall>x. Q(x))"
  apply (tactic "IntPr.fast_tac @{context} 1")?
  oops

schematic_goal "P(?a) \<longrightarrow> (\<forall>x. P(x))"
  apply (tactic "IntPr.fast_tac @{context} 1")?
  oops

schematic_goal "(P(?a) \<longrightarrow> (\<forall>x. Q(x))) \<longrightarrow> (\<forall>x. P(x) \<longrightarrow> Q(x))"
  apply (tactic "IntPr.fast_tac @{context} 1")?
  oops


text \<open>Back to things that are provable \dots\<close>

lemma "(\<forall>x. P(x) \<longrightarrow> Q(x)) \<and> (\<exists>x. P(x)) \<longrightarrow> (\<exists>x. Q(x))"
  by (tactic "IntPr.fast_tac @{context} 1")

\<comment> \<open>An example of why exI should be delayed as long as possible\<close>
lemma "(P \<longrightarrow> (\<exists>x. Q(x))) \<and> P \<longrightarrow> (\<exists>x. Q(x))"
  by (tactic "IntPr.fast_tac @{context} 1")

schematic_goal "(\<forall>x. P(x) \<longrightarrow> Q(f(x))) \<and> (\<forall>x. Q(x) \<longrightarrow> R(g(x))) \<and> P(d) \<longrightarrow> R(?a)"
  by (tactic "IntPr.fast_tac @{context} 1")

lemma "(\<forall>x. Q(x)) \<longrightarrow> (\<exists>x. Q(x))"
  by (tactic "IntPr.fast_tac @{context} 1")


text \<open>Some slow ones\<close>

\<comment> \<open>Principia Mathematica *11.53\<close>
lemma "(\<forall>x y. P(x) \<longrightarrow> Q(y)) \<longleftrightarrow> ((\<exists>x. P(x)) \<longrightarrow> (\<forall>y. Q(y)))"
  by (tactic "IntPr.fast_tac @{context} 1")

(*Principia Mathematica *11.55  *)
lemma "(\<exists>x y. P(x) \<and> Q(x,y)) \<longleftrightarrow> (\<exists>x. P(x) \<and> (\<exists>y. Q(x,y)))"
  by (tactic "IntPr.fast_tac @{context} 1")

(*Principia Mathematica *11.61  *)
lemma "(\<exists>y. \<forall>x. P(x) \<longrightarrow> Q(x,y)) \<longrightarrow> (\<forall>x. P(x) \<longrightarrow> (\<exists>y. Q(x,y)))"
  by (tactic "IntPr.fast_tac @{context} 1")

end