(* Title: Pure/context.ML
Author: Markus Wenzel, TU Muenchen
Generic theory contexts with unique identity, arbitrarily typed data,
monotonic development graph and history support. Generic proof
contexts with arbitrarily typed data.
Firm naming conventions:
thy, thy', thy1, thy2: theory
ctxt, ctxt', ctxt1, ctxt2: Proof.context
context: Context.generic
*)
signature BASIC_CONTEXT =
sig
type theory
exception THEORY of string * theory list
structure Proof: sig type context end
structure Proof_Context:
sig
val theory_of: Proof.context -> theory
val init_global: theory -> Proof.context
val get_global: theory -> string -> Proof.context
end
end;
signature CONTEXT =
sig
include BASIC_CONTEXT
(*theory context*)
type theory_id
val theory_id: theory -> theory_id
val timing: bool Unsynchronized.ref
val parents_of: theory -> theory list
val ancestors_of: theory -> theory list
val theory_id_ord: theory_id ord
val theory_id_long_name: theory_id -> string
val theory_id_name: theory_id -> string
val theory_long_name: theory -> string
val theory_name: theory -> string
val theory_name': {long: bool} -> theory -> string
val PureN: string
val pretty_thy: theory -> Pretty.T
val pretty_abbrev_thy: theory -> Pretty.T
val get_theory: {long: bool} -> theory -> string -> theory
val eq_thy_id: theory_id * theory_id -> bool
val eq_thy: theory * theory -> bool
val proper_subthy_id: theory_id * theory_id -> bool
val proper_subthy: theory * theory -> bool
val subthy_id: theory_id * theory_id -> bool
val subthy: theory * theory -> bool
val trace_theories: bool Unsynchronized.ref
val theories_trace: unit -> {active_positions: Position.T list, active: int, total: int}
val join_thys: theory * theory -> theory
val begin_thy: string -> theory list -> theory
val finish_thy: theory -> theory
val theory_data_size: theory -> (Position.T * int) list
(*proof context*)
val raw_transfer: theory -> Proof.context -> Proof.context
(*certificate*)
datatype certificate = Certificate of theory | Certificate_Id of theory_id
val certificate_theory: certificate -> theory
val certificate_theory_id: certificate -> theory_id
val eq_certificate: certificate * certificate -> bool
val join_certificate: certificate * certificate -> certificate
(*generic context*)
datatype generic = Theory of theory | Proof of Proof.context
val cases: (theory -> 'a) -> (Proof.context -> 'a) -> generic -> 'a
val mapping: (theory -> theory) -> (Proof.context -> Proof.context) -> generic -> generic
val mapping_result: (theory -> 'a * theory) -> (Proof.context -> 'a * Proof.context) ->
generic -> 'a * generic
val the_theory: generic -> theory
val the_proof: generic -> Proof.context
val map_theory: (theory -> theory) -> generic -> generic
val map_proof: (Proof.context -> Proof.context) -> generic -> generic
val map_theory_result: (theory -> 'a * theory) -> generic -> 'a * generic
val map_proof_result: (Proof.context -> 'a * Proof.context) -> generic -> 'a * generic
val theory_map: (generic -> generic) -> theory -> theory
val proof_map: (generic -> generic) -> Proof.context -> Proof.context
val theory_of: generic -> theory (*total*)
val proof_of: generic -> Proof.context (*total*)
(*thread data*)
val get_generic_context: unit -> generic option
val put_generic_context: generic option -> unit
val setmp_generic_context: generic option -> ('a -> 'b) -> 'a -> 'b
val the_generic_context: unit -> generic
val the_global_context: unit -> theory
val the_local_context: unit -> Proof.context
val >> : (generic -> generic) -> unit
val >>> : (generic -> 'a * generic) -> 'a
end;
signature PRIVATE_CONTEXT =
sig
include CONTEXT
structure Theory_Data:
sig
val declare: Position.T -> Any.T -> (Any.T -> Any.T) ->
(theory * theory -> Any.T * Any.T -> Any.T) -> serial
val get: serial -> (Any.T -> 'a) -> theory -> 'a
val put: serial -> ('a -> Any.T) -> 'a -> theory -> theory
end
structure Proof_Data:
sig
val declare: (theory -> Any.T) -> serial
val get: serial -> (Any.T -> 'a) -> Proof.context -> 'a
val put: serial -> ('a -> Any.T) -> 'a -> Proof.context -> Proof.context
end
end;
structure Context: PRIVATE_CONTEXT =
struct
(*** theory context ***)
(*private copy avoids potential conflict of table exceptions*)
structure Datatab = Table(type key = int val ord = int_ord);
(** datatype theory **)
type stage = int * int Synchronized.var;
fun init_stage () : stage = (0, Synchronized.var "Context.stage" 1);
fun next_stage ((_, state): stage) = (Synchronized.change_result state (fn n => (n, n + 1)), state);
abstype theory_id =
Theory_Id of
(*identity*)
{id: serial, (*identifier*)
ids: Inttab.set} * (*cumulative identifiers -- symbolic body content*)
(*history*)
{name: string, (*official theory name*)
stage: stage option} (*index and counter for anonymous updates*)
with
fun rep_theory_id (Theory_Id args) = args;
val make_theory_id = Theory_Id;
end;
datatype theory =
Theory of
(*identity*)
{theory_id: theory_id,
token: Position.T Unsynchronized.ref} *
(*ancestry*)
{parents: theory list, (*immediate predecessors*)
ancestors: theory list} * (*all predecessors -- canonical reverse order*)
(*data*)
Any.T Datatab.table; (*body content*)
exception THEORY of string * theory list;
fun rep_theory (Theory args) = args;
val theory_identity = #1 o rep_theory;
val theory_id = #theory_id o theory_identity;
val identity_of_id = #1 o rep_theory_id;
val identity_of = identity_of_id o theory_id;
val history_of_id = #2 o rep_theory_id;
val history_of = history_of_id o theory_id;
val ancestry_of = #2 o rep_theory;
val data_of = #3 o rep_theory;
fun make_identity id ids = {id = id, ids = ids};
fun make_history name = {name = name, stage = SOME (init_stage ())};
fun make_ancestry parents ancestors = {parents = parents, ancestors = ancestors};
val theory_id_ord = int_ord o apply2 (#id o identity_of_id);
val theory_id_long_name = #name o history_of_id;
val theory_id_name = Long_Name.base_name o theory_id_long_name;
val theory_long_name = #name o history_of;
val theory_name = Long_Name.base_name o theory_long_name;
fun theory_name' {long} = if long then theory_long_name else theory_name;
val parents_of = #parents o ancestry_of;
val ancestors_of = #ancestors o ancestry_of;
(* names *)
val PureN = "Pure";
fun display_name thy_id =
(case history_of_id thy_id of
{name, stage = NONE} => name
| {name, stage = SOME (i, _)} => name ^ ":" ^ string_of_int i);
fun display_names thy =
let
val name = display_name (theory_id thy);
val ancestor_names = map theory_long_name (ancestors_of thy);
in rev (name :: ancestor_names) end;
val pretty_thy = Pretty.str_list "{" "}" o display_names;
val _ = ML_system_pp (fn _ => fn _ => Pretty.to_polyml o pretty_thy);
fun pretty_abbrev_thy thy =
let
val names = display_names thy;
val n = length names;
val abbrev = if n > 5 then "..." :: List.drop (names, n - 5) else names;
in Pretty.str_list "{" "}" abbrev end;
fun get_theory long thy name =
if theory_name' long thy <> name then
(case find_first (fn thy' => theory_name' long thy' = name) (ancestors_of thy) of
SOME thy' => thy'
| NONE => error ("Unknown ancestor theory " ^ quote name))
else if is_none (#stage (history_of thy)) then thy
else error ("Unfinished theory " ^ quote name);
(* build ids *)
fun insert_id id ids = Inttab.update (id, ()) ids;
val merge_ids =
apply2 (theory_id #> rep_theory_id #> #1) #>
(fn ({id = id1, ids = ids1, ...}, {id = id2, ids = ids2, ...}) =>
Inttab.merge (K true) (ids1, ids2)
|> insert_id id1
|> insert_id id2);
(* equality and inclusion *)
val eq_thy_id = op = o apply2 (#id o identity_of_id);
val eq_thy = op = o apply2 (#id o identity_of);
val proper_subthy_id =
apply2 (rep_theory_id #> #1) #> (fn ({id, ...}, {ids, ...}) => Inttab.defined ids id);
val proper_subthy = proper_subthy_id o apply2 theory_id;
fun subthy_id p = eq_thy_id p orelse proper_subthy_id p;
val subthy = subthy_id o apply2 theory_id;
(* consistent ancestors *)
fun eq_thy_consistent (thy1, thy2) =
eq_thy (thy1, thy2) orelse
(theory_name thy1 = theory_name thy2 andalso
raise THEORY ("Duplicate theory name", [thy1, thy2]));
fun extend_ancestors thy thys =
if member eq_thy_consistent thys thy then
raise THEORY ("Duplicate theory node", thy :: thys)
else thy :: thys;
val merge_ancestors = merge eq_thy_consistent;
(** theory data **)
(* data kinds and access methods *)
val timing = Unsynchronized.ref false;
local
type kind =
{pos: Position.T,
empty: Any.T,
extend: Any.T -> Any.T,
merge: theory * theory -> Any.T * Any.T -> Any.T};
val kinds = Synchronized.var "Theory_Data" (Datatab.empty: kind Datatab.table);
fun invoke name f k x =
(case Datatab.lookup (Synchronized.value kinds) k of
SOME kind =>
if ! timing andalso name <> "" then
Timing.cond_timeit true ("Theory_Data." ^ name ^ Position.here (#pos kind))
(fn () => f kind x)
else f kind x
| NONE => raise Fail "Invalid theory data identifier");
in
fun invoke_pos k = invoke "" (K o #pos) k ();
fun invoke_empty k = invoke "" (K o #empty) k ();
val invoke_extend = invoke "extend" #extend;
fun invoke_merge thys = invoke "merge" (fn kind => #merge kind thys);
fun declare_theory_data pos empty extend merge =
let
val k = serial ();
val kind = {pos = pos, empty = empty, extend = extend, merge = merge};
val _ = Synchronized.change kinds (Datatab.update (k, kind));
in k end;
val extend_data = Datatab.map invoke_extend;
fun merge_data thys = Datatab.join (invoke_merge thys) o apply2 extend_data;
end;
(** build theories **)
(* create theory *)
val trace_theories = Unsynchronized.ref false;
local
val theories =
Synchronized.var "theory_tokens"
([]: Position.T Unsynchronized.ref option Unsynchronized.ref list);
val dummy_token = Unsynchronized.ref Position.none;
fun make_token () =
if ! trace_theories then
let
val token = Unsynchronized.ref (Position.thread_data ());
val _ = Synchronized.change theories (cons (Weak.weak (SOME token)));
in token end
else dummy_token;
in
fun theories_trace () =
let
val trace = Synchronized.value theories;
val _ = ML_Heap.full_gc ();
val active_positions =
fold (fn Unsynchronized.ref (SOME pos) => cons (! pos) | _ => I) trace [];
in
{active_positions = active_positions,
active = length active_positions,
total = length trace}
end;
fun create_thy ids history ancestry data =
let
val theory_id = make_theory_id (make_identity (serial ()) ids, history);
val token = make_token ();
in Theory ({theory_id = theory_id, token = token}, ancestry, data) end;
end;
(* primitives *)
val pre_pure_thy =
create_thy Inttab.empty (make_history PureN) (make_ancestry [] []) Datatab.empty;
local
fun change_thy finish f thy =
let
val ({id, ids}, {name, stage}) = rep_theory_id (theory_id thy);
val Theory (_, ancestry, data) = thy;
val (ancestry', data') =
if is_none stage then
(make_ancestry [thy] (extend_ancestors thy (ancestors_of thy)), extend_data data)
else (ancestry, data);
val history' = {name = name, stage = if finish then NONE else Option.map next_stage stage};
val ids' = insert_id id ids;
val data'' = f data';
in create_thy ids' history' ancestry' data'' end;
in
val update_thy = change_thy false;
val extend_thy = update_thy I;
val finish_thy = change_thy true I #> tap extend_thy;
end;
(* join: anonymous theory nodes *)
local
fun bad_join (thy1, thy2) = raise THEORY ("Cannot join theories", [thy1, thy2]);
fun join_history thys =
apply2 history_of thys |>
(fn ({name, stage}, {name = name', stage = stage'}) =>
if name = name' andalso is_some stage andalso is_some stage' then
{name = name, stage = Option.map next_stage stage}
else bad_join thys);
fun join_ancestry thys =
apply2 ancestry_of thys |>
(fn (ancestry as {parents, ancestors}, {parents = parents', ancestors = ancestors'}) =>
if eq_list eq_thy (parents, parents') andalso eq_list eq_thy (ancestors, ancestors')
then ancestry else bad_join thys);
in
fun join_thys thys =
let
val ids = merge_ids thys;
val history = join_history thys;
val ancestry = join_ancestry thys;
val data = merge_data thys (apply2 data_of thys);
in create_thy ids history ancestry data end;
end;
(* merge: named theory nodes *)
local
fun merge_thys thys =
let
val ids = merge_ids thys;
val history = make_history "";
val ancestry = make_ancestry [] [];
val data = merge_data thys (apply2 data_of thys);
in create_thy ids history ancestry data end;
fun maximal_thys thys =
thys |> filter_out (fn thy => exists (fn thy' => proper_subthy (thy, thy')) thys);
in
fun begin_thy name imports =
if name = "" then error ("Bad theory name: " ^ quote name)
else
let
val parents = maximal_thys (distinct eq_thy imports);
val ancestors =
Library.foldl merge_ancestors ([], map ancestors_of parents)
|> fold extend_ancestors parents;
val thy0 =
(case parents of
[] => error "Missing theory imports"
| [thy] => extend_thy thy
| thy :: thys => Library.foldl merge_thys (thy, thys));
val ({ids, ...}, _) = rep_theory_id (theory_id thy0);
val history = make_history name;
val ancestry = make_ancestry parents ancestors;
in create_thy ids history ancestry (data_of thy0) |> tap finish_thy end;
end;
(* theory data *)
structure Theory_Data =
struct
val declare = declare_theory_data;
fun get k dest thy =
(case Datatab.lookup (data_of thy) k of
SOME x => x
| NONE => invoke_empty k) |> dest;
fun put k mk x = update_thy (Datatab.update (k, mk x));
fun obj_size k thy =
Datatab.lookup (data_of thy) k |> Option.map ML_Heap.obj_size;
end;
fun theory_data_size thy =
(data_of thy, []) |-> Datatab.fold_rev (fn (k, _) =>
(case Theory_Data.obj_size k thy of
NONE => I
| SOME n => (cons (invoke_pos k, n))));
(*** proof context ***)
(* datatype Proof.context *)
structure Proof =
struct
datatype context = Context of Any.T Datatab.table * theory;
end;
(* proof data kinds *)
local
val kinds = Synchronized.var "Proof_Data" (Datatab.empty: (theory -> Any.T) Datatab.table);
fun init_data thy =
Synchronized.value kinds |> Datatab.map (fn _ => fn init => init thy);
fun init_new_data thy =
Synchronized.value kinds |> Datatab.fold (fn (k, init) => fn data =>
if Datatab.defined data k then data
else Datatab.update (k, init thy) data);
fun init_fallback k thy =
(case Datatab.lookup (Synchronized.value kinds) k of
SOME init => init thy
| NONE => raise Fail "Invalid proof data identifier");
in
fun raw_transfer thy' (Proof.Context (data, thy)) =
let
val _ = subthy (thy, thy') orelse error "Cannot transfer proof context: not a super theory";
val data' = init_new_data thy' data;
in Proof.Context (data', thy') end;
structure Proof_Context =
struct
fun theory_of (Proof.Context (_, thy)) = thy;
fun init_global thy = Proof.Context (init_data thy, thy);
fun get_global thy name = init_global (get_theory {long = false} thy name);
end;
structure Proof_Data =
struct
fun declare init =
let
val k = serial ();
val _ = Synchronized.change kinds (Datatab.update (k, init));
in k end;
fun get k dest (Proof.Context (data, thy)) =
(case Datatab.lookup data k of
SOME x => x
| NONE => init_fallback k thy) |> dest;
fun put k mk x (Proof.Context (data, thy)) =
Proof.Context (Datatab.update (k, mk x) data, thy);
end;
end;
(*** theory certificate ***)
datatype certificate = Certificate of theory | Certificate_Id of theory_id;
fun certificate_theory (Certificate thy) = thy
| certificate_theory (Certificate_Id thy_id) =
error ("No content for theory certificate " ^ display_name thy_id);
fun certificate_theory_id (Certificate thy) = theory_id thy
| certificate_theory_id (Certificate_Id thy_id) = thy_id;
fun eq_certificate (Certificate thy1, Certificate thy2) = eq_thy (thy1, thy2)
| eq_certificate (Certificate_Id thy_id1, Certificate_Id thy_id2) = eq_thy_id (thy_id1, thy_id2)
| eq_certificate _ = false;
fun join_certificate (cert1, cert2) =
let val (thy_id1, thy_id2) = apply2 certificate_theory_id (cert1, cert2) in
if eq_thy_id (thy_id1, thy_id2) then (case cert1 of Certificate _ => cert1 | _ => cert2)
else if proper_subthy_id (thy_id2, thy_id1) then cert1
else if proper_subthy_id (thy_id1, thy_id2) then cert2
else
error ("Cannot join unrelated theory certificates " ^
display_name thy_id1 ^ " and " ^ display_name thy_id2)
end;
(*** generic context ***)
datatype generic = Theory of theory | Proof of Proof.context;
fun cases f _ (Theory thy) = f thy
| cases _ g (Proof prf) = g prf;
fun mapping f g = cases (Theory o f) (Proof o g);
fun mapping_result f g = cases (apsnd Theory o f) (apsnd Proof o g);
val the_theory = cases I (fn _ => error "Ill-typed context: theory expected");
val the_proof = cases (fn _ => error "Ill-typed context: proof expected") I;
fun map_theory f = Theory o f o the_theory;
fun map_proof f = Proof o f o the_proof;
fun map_theory_result f = apsnd Theory o f o the_theory;
fun map_proof_result f = apsnd Proof o f o the_proof;
fun theory_map f = the_theory o f o Theory;
fun proof_map f = the_proof o f o Proof;
val theory_of = cases I Proof_Context.theory_of;
val proof_of = cases Proof_Context.init_global I;
(** thread data **)
local val generic_context_var = Thread_Data.var () : generic Thread_Data.var in
fun get_generic_context () = Thread_Data.get generic_context_var;
val put_generic_context = Thread_Data.put generic_context_var;
fun setmp_generic_context opt_context = Thread_Data.setmp generic_context_var opt_context;
fun the_generic_context () =
(case get_generic_context () of
SOME context => context
| _ => error "Unknown context");
val the_global_context = theory_of o the_generic_context;
val the_local_context = proof_of o the_generic_context;
end;
fun >>> f =
let
val (res, context') = f (the_generic_context ());
val _ = put_generic_context (SOME context');
in res end;
nonfix >>;
fun >> f = >>> (fn context => ((), f context));
val _ = put_generic_context (SOME (Theory pre_pure_thy));
end;
structure Basic_Context: BASIC_CONTEXT = Context;
open Basic_Context;
(*** type-safe interfaces for data declarations ***)
(** theory data **)
signature THEORY_DATA'_ARGS =
sig
type T
val empty: T
val extend: T -> T
val merge: theory * theory -> T * T -> T
end;
signature THEORY_DATA_ARGS =
sig
type T
val empty: T
val extend: T -> T
val merge: T * T -> T
end;
signature THEORY_DATA =
sig
type T
val get: theory -> T
val put: T -> theory -> theory
val map: (T -> T) -> theory -> theory
end;
functor Theory_Data'(Data: THEORY_DATA'_ARGS): THEORY_DATA =
struct
type T = Data.T;
exception Data of T;
val kind =
Context.Theory_Data.declare
(Position.thread_data ())
(Data Data.empty)
(fn Data x => Data (Data.extend x))
(fn thys => fn (Data x1, Data x2) => Data (Data.merge thys (x1, x2)));
val get = Context.Theory_Data.get kind (fn Data x => x);
val put = Context.Theory_Data.put kind Data;
fun map f thy = put (f (get thy)) thy;
end;
functor Theory_Data(Data: THEORY_DATA_ARGS): THEORY_DATA =
Theory_Data'
(
type T = Data.T;
val empty = Data.empty;
val extend = Data.extend;
fun merge _ = Data.merge;
);
(** proof data **)
signature PROOF_DATA_ARGS =
sig
type T
val init: theory -> T
end;
signature PROOF_DATA =
sig
type T
val get: Proof.context -> T
val put: T -> Proof.context -> Proof.context
val map: (T -> T) -> Proof.context -> Proof.context
end;
functor Proof_Data(Data: PROOF_DATA_ARGS): PROOF_DATA =
struct
type T = Data.T;
exception Data of T;
val kind = Context.Proof_Data.declare (Data o Data.init);
val get = Context.Proof_Data.get kind (fn Data x => x);
val put = Context.Proof_Data.put kind Data;
fun map f prf = put (f (get prf)) prf;
end;
(** generic data **)
signature GENERIC_DATA_ARGS =
sig
type T
val empty: T
val extend: T -> T
val merge: T * T -> T
end;
signature GENERIC_DATA =
sig
type T
val get: Context.generic -> T
val put: T -> Context.generic -> Context.generic
val map: (T -> T) -> Context.generic -> Context.generic
end;
functor Generic_Data(Data: GENERIC_DATA_ARGS): GENERIC_DATA =
struct
structure Thy_Data = Theory_Data(Data);
structure Prf_Data = Proof_Data(type T = Data.T val init = Thy_Data.get);
type T = Data.T;
fun get (Context.Theory thy) = Thy_Data.get thy
| get (Context.Proof prf) = Prf_Data.get prf;
fun put x (Context.Theory thy) = Context.Theory (Thy_Data.put x thy)
| put x (Context.Proof prf) = Context.Proof (Prf_Data.put x prf);
fun map f ctxt = put (f (get ctxt)) ctxt;
end;
(*hide private interface*)
structure Context: CONTEXT = Context;