src/Provers/trancl.ML
author smolkas
Wed, 02 Jan 2013 20:53:01 +0100
changeset 50680 adbbe04b7c75
parent 46695 b779c3f21f05
child 58839 ccda99401bc8
permissions -rw-r--r--
removed old, unused code

(*  Title:      Provers/trancl.ML
    Author:     Oliver Kutter, TU Muenchen

Transitivity reasoner for transitive closures of relations
*)

(*

The packages provides tactics trancl_tac and rtrancl_tac that prove
goals of the form

   (x,y) : r^+     and     (x,y) : r^* (rtrancl_tac only)

from premises of the form

   (x,y) : r,     (x,y) : r^+     and     (x,y) : r^* (rtrancl_tac only)

by reflexivity and transitivity.  The relation r is determined by inspecting
the conclusion.

The package is implemented as an ML functor and thus not limited to
particular constructs for transitive and reflexive-transitive
closures, neither need relations be represented as sets of pairs.  In
order to instantiate the package for transitive closure only, supply
dummy theorems to the additional rules for reflexive-transitive
closures, and don't use rtrancl_tac!

*)

signature TRANCL_ARITH =
sig

  (* theorems for transitive closure *)

  val r_into_trancl : thm
      (* (a,b) : r ==> (a,b) : r^+ *)
  val trancl_trans : thm
      (* [| (a,b) : r^+ ; (b,c) : r^+ |] ==> (a,c) : r^+ *)

  (* additional theorems for reflexive-transitive closure *)

  val rtrancl_refl : thm
      (* (a,a): r^* *)
  val r_into_rtrancl : thm
      (* (a,b) : r ==> (a,b) : r^* *)
  val trancl_into_rtrancl : thm
      (* (a,b) : r^+ ==> (a,b) : r^* *)
  val rtrancl_trancl_trancl : thm
      (* [| (a,b) : r^* ; (b,c) : r^+ |] ==> (a,c) : r^+ *)
  val trancl_rtrancl_trancl : thm
      (* [| (a,b) : r^+ ; (b,c) : r^* |] ==> (a,c) : r^+ *)
  val rtrancl_trans : thm
      (* [| (a,b) : r^* ; (b,c) : r^* |] ==> (a,c) : r^* *)

  (* decomp: decompose a premise or conclusion

     Returns one of the following:

     NONE if not an instance of a relation,
     SOME (x, y, r, s) if instance of a relation, where
       x: left hand side argument, y: right hand side argument,
       r: the relation,
       s: the kind of closure, one of
            "r":   the relation itself,
            "r^+": transitive closure of the relation,
            "r^*": reflexive-transitive closure of the relation
  *)

  val decomp: term ->  (term * term * term * string) option

end;

signature TRANCL_TAC =
sig
  val trancl_tac: Proof.context -> int -> tactic
  val rtrancl_tac: Proof.context -> int -> tactic
end;

functor Trancl_Tac(Cls: TRANCL_ARITH): TRANCL_TAC =
struct


datatype proof
  = Asm of int
  | Thm of proof list * thm;

exception Cannot; (* internal exception: raised if no proof can be found *)

fun decomp t = Option.map (fn (x, y, rel, r) =>
  (Envir.beta_eta_contract x, Envir.beta_eta_contract y,
   Envir.beta_eta_contract rel, r)) (Cls.decomp t);

fun prove thy r asms =
  let
    fun inst thm =
      let val SOME (_, _, r', _) = decomp (concl_of thm)
      in Drule.cterm_instantiate [(cterm_of thy r', cterm_of thy r)] thm end;
    fun pr (Asm i) = nth asms i
      | pr (Thm (prfs, thm)) = map pr prfs MRS inst thm;
  in pr end;


(* Internal datatype for inequalities *)
datatype rel
   = Trans  of term * term * proof  (* R^+ *)
   | RTrans of term * term * proof; (* R^* *)

 (* Misc functions for datatype rel *)
fun lower (Trans (x, _, _)) = x
  | lower (RTrans (x,_,_)) = x;

fun upper (Trans (_, y, _)) = y
  | upper (RTrans (_,y,_)) = y;

fun getprf   (Trans   (_, _, p)) = p
|   getprf   (RTrans (_,_, p)) = p;

(* ************************************************************************ *)
(*                                                                          *)
(*  mkasm_trancl Rel (t,n): term -> (term , int) -> rel list                *)
(*                                                                          *)
(*  Analyse assumption t with index n with respect to relation Rel:         *)
(*  If t is of the form "(x, y) : Rel" (or Rel^+), translate to             *)
(*  an object (singleton list) of internal datatype rel.                    *)
(*  Otherwise return empty list.                                            *)
(*                                                                          *)
(* ************************************************************************ *)

fun mkasm_trancl  Rel  (t, n) =
  case decomp t of
    SOME (x, y, rel,r) => if rel aconv Rel then

    (case r of
      "r"   => [Trans (x,y, Thm([Asm n], Cls.r_into_trancl))]
    | "r+"  => [Trans (x,y, Asm n)]
    | "r*"  => []
    | _     => error ("trancl_tac: unknown relation symbol"))
    else []
  | NONE => [];

(* ************************************************************************ *)
(*                                                                          *)
(*  mkasm_rtrancl Rel (t,n): term -> (term , int) -> rel list               *)
(*                                                                          *)
(*  Analyse assumption t with index n with respect to relation Rel:         *)
(*  If t is of the form "(x, y) : Rel" (or Rel^+ or Rel^* ), translate to   *)
(*  an object (singleton list) of internal datatype rel.                    *)
(*  Otherwise return empty list.                                            *)
(*                                                                          *)
(* ************************************************************************ *)

fun mkasm_rtrancl Rel (t, n) =
  case decomp t of
   SOME (x, y, rel, r) => if rel aconv Rel then
    (case r of
      "r"   => [ Trans (x,y, Thm([Asm n], Cls.r_into_trancl))]
    | "r+"  => [ Trans (x,y, Asm n)]
    | "r*"  => [ RTrans(x,y, Asm n)]
    | _     => error ("rtrancl_tac: unknown relation symbol" ))
   else []
  | NONE => [];

(* ************************************************************************ *)
(*                                                                          *)
(*  mkconcl_trancl t: term -> (term, rel, proof)                            *)
(*  mkconcl_rtrancl t: term -> (term, rel, proof)                           *)
(*                                                                          *)
(*  Analyse conclusion t:                                                   *)
(*    - must be of form "(x, y) : r^+ (or r^* for rtrancl)                  *)
(*    - returns r                                                           *)
(*    - conclusion in internal form                                         *)
(*    - proof object                                                        *)
(*                                                                          *)
(* ************************************************************************ *)

fun mkconcl_trancl  t =
  case decomp t of
    SOME (x, y, rel, r) => (case r of
      "r+"  => (rel, Trans (x,y, Asm ~1), Asm 0)
    | _     => raise Cannot)
  | NONE => raise Cannot;

fun mkconcl_rtrancl  t =
  case decomp t of
    SOME (x,  y, rel,r ) => (case r of
      "r+"  => (rel, Trans (x,y, Asm ~1),  Asm 0)
    | "r*"  => (rel, RTrans (x,y, Asm ~1), Asm 0)
    | _     => raise Cannot)
  | NONE => raise Cannot;

(* ************************************************************************ *)
(*                                                                          *)
(*  makeStep (r1, r2): rel * rel -> rel                                     *)
(*                                                                          *)
(*  Apply transitivity to r1 and r2, obtaining a new element of r^+ or r^*, *)
(*  according the following rules:                                          *)
(*                                                                          *)
(* ( (a, b) : r^+ , (b,c) : r^+ ) --> (a,c) : r^+                           *)
(* ( (a, b) : r^* , (b,c) : r^+ ) --> (a,c) : r^+                           *)
(* ( (a, b) : r^+ , (b,c) : r^* ) --> (a,c) : r^+                           *)
(* ( (a, b) : r^* , (b,c) : r^* ) --> (a,c) : r^*                           *)
(*                                                                          *)
(* ************************************************************************ *)

fun makeStep (Trans (a,_,p), Trans(_,c,q))  = Trans (a,c, Thm ([p,q], Cls.trancl_trans))
(* refl. + trans. cls. rules *)
|   makeStep (RTrans (a,_,p), Trans(_,c,q))  = Trans (a,c, Thm ([p,q], Cls.rtrancl_trancl_trancl))
|   makeStep (Trans (a,_,p), RTrans(_,c,q))  = Trans (a,c, Thm ([p,q], Cls.trancl_rtrancl_trancl))
|   makeStep (RTrans (a,_,p), RTrans(_,c,q))  = RTrans (a,c, Thm ([p,q], Cls.rtrancl_trans));

(* ******************************************************************* *)
(*                                                                     *)
(* transPath (Clslist, Cls): (rel  list * rel) -> rel                  *)
(*                                                                     *)
(* If a path represented by a list of elements of type rel is found,   *)
(* this needs to be contracted to a single element of type rel.        *)
(* Prior to each transitivity step it is checked whether the step is   *)
(* valid.                                                              *)
(*                                                                     *)
(* ******************************************************************* *)

fun transPath ([],acc) = acc
|   transPath (x::xs,acc) = transPath (xs, makeStep(acc,x))

(* ********************************************************************* *)
(* Graph functions                                                       *)
(* ********************************************************************* *)

(* *********************************************************** *)
(* Functions for constructing graphs                           *)
(* *********************************************************** *)

fun addEdge (v,d,[]) = [(v,d)]
|   addEdge (v,d,((u,dl)::el)) = if v aconv u then ((v,d@dl)::el)
    else (u,dl):: (addEdge(v,d,el));

(* ********************************************************************** *)
(*                                                                        *)
(* mkGraph constructs from a list of objects of type rel  a graph g       *)
(* and a list of all edges with label r+.                                 *)
(*                                                                        *)
(* ********************************************************************** *)

fun mkGraph [] = ([],[])
|   mkGraph ys =
 let
  fun buildGraph ([],g,zs) = (g,zs)
  |   buildGraph (x::xs, g, zs) =
        case x of (Trans (_,_,_)) =>
               buildGraph (xs, addEdge((upper x), [],(addEdge ((lower x),[((upper x),x)],g))), x::zs)
        | _ => buildGraph (xs, addEdge((upper x), [],(addEdge ((lower x),[((upper x),x)],g))), zs)
in buildGraph (ys, [], []) end;

(* *********************************************************************** *)
(*                                                                         *)
(* adjacent g u : (''a * 'b list ) list -> ''a -> 'b list                  *)
(*                                                                         *)
(* List of successors of u in graph g                                      *)
(*                                                                         *)
(* *********************************************************************** *)

fun adjacent eq_comp ((v,adj)::el) u =
    if eq_comp (u, v) then adj else adjacent eq_comp el u
|   adjacent _  []  _ = []

(* *********************************************************************** *)
(*                                                                         *)
(* dfs eq_comp g u v:                                                      *)
(* ('a * 'a -> bool) -> ('a  *( 'a * rel) list) list ->                    *)
(* 'a -> 'a -> (bool * ('a * rel) list)                                    *)
(*                                                                         *)
(* Depth first search of v from u.                                         *)
(* Returns (true, path(u, v)) if successful, otherwise (false, []).        *)
(*                                                                         *)
(* *********************************************************************** *)

fun dfs eq_comp g u v =
 let
    val pred = Unsynchronized.ref [];
    val visited = Unsynchronized.ref [];

    fun been_visited v = exists (fn w => eq_comp (w, v)) (!visited)

    fun dfs_visit u' =
    let val _ = visited := u' :: (!visited)

    fun update (x,l) = let val _ = pred := (x,l) ::(!pred) in () end;

    in if been_visited v then ()
    else (app (fn (v',l) => if been_visited v' then () else (
       update (v',l);
       dfs_visit v'; ()) )) (adjacent eq_comp g u')
     end
  in
    dfs_visit u;
    if (been_visited v) then (true, (!pred)) else (false , [])
  end;

(* *********************************************************************** *)
(*                                                                         *)
(* transpose g:                                                            *)
(* (''a * ''a list) list -> (''a * ''a list) list                          *)
(*                                                                         *)
(* Computes transposed graph g' from g                                     *)
(* by reversing all edges u -> v to v -> u                                 *)
(*                                                                         *)
(* *********************************************************************** *)

fun transpose eq_comp g =
  let
   (* Compute list of reversed edges for each adjacency list *)
   fun flip (u,(v,l)::el) = (v,(u,l)) :: flip (u,el)
     | flip (_,[]) = []

   (* Compute adjacency list for node u from the list of edges
      and return a likewise reduced list of edges.  The list of edges
      is searches for edges starting from u, and these edges are removed. *)
   fun gather (u,(v,w)::el) =
    let
     val (adj,edges) = gather (u,el)
    in
     if eq_comp (u, v) then (w::adj,edges)
     else (adj,(v,w)::edges)
    end
   | gather (_,[]) = ([],[])

   (* For every node in the input graph, call gather to find all reachable
      nodes in the list of edges *)
   fun assemble ((u,_)::el) edges =
       let val (adj,edges) = gather (u,edges)
       in (u,adj) :: assemble el edges
       end
     | assemble [] _ = []

   (* Compute, for each adjacency list, the list with reversed edges,
      and concatenate these lists. *)
   val flipped = maps flip g

 in assemble g flipped end

(* *********************************************************************** *)
(*                                                                         *)
(* dfs_reachable eq_comp g u:                                              *)
(* (int * int list) list -> int -> int list                                *)
(*                                                                         *)
(* Computes list of all nodes reachable from u in g.                       *)
(*                                                                         *)
(* *********************************************************************** *)

fun dfs_reachable eq_comp g u =
 let
  (* List of vertices which have been visited. *)
  val visited  = Unsynchronized.ref [];

  fun been_visited v = exists (fn w => eq_comp (w, v)) (!visited)

  fun dfs_visit g u  =
      let
   val _ = visited := u :: !visited
   val descendents =
       List.foldr (fn ((v,_),ds) => if been_visited v then ds
            else v :: dfs_visit g v @ ds)
        [] (adjacent eq_comp g u)
   in  descendents end

 in u :: dfs_visit g u end;

(* *********************************************************************** *)
(*                                                                         *)
(* dfs_term_reachable g u:                                                  *)
(* (term * term list) list -> term -> term list                            *)
(*                                                                         *)
(* Computes list of all nodes reachable from u in g.                       *)
(*                                                                         *)
(* *********************************************************************** *)

fun dfs_term_reachable g u = dfs_reachable (op aconv) g u;

(* ************************************************************************ *)
(*                                                                          *)
(* findPath x y g: Term.term -> Term.term ->                                *)
(*                  (Term.term * (Term.term * rel list) list) ->            *)
(*                  (bool, rel list)                                        *)
(*                                                                          *)
(*  Searches a path from vertex x to vertex y in Graph g, returns true and  *)
(*  the list of edges if path is found, otherwise false and nil.            *)
(*                                                                          *)
(* ************************************************************************ *)

fun findPath x y g =
  let
   val (found, tmp) =  dfs (op aconv) g x y ;
   val pred = map snd tmp;

   fun path x y  =
    let
         (* find predecessor u of node v and the edge u -> v *)

      fun lookup v [] = raise Cannot
      |   lookup v (e::es) = if (upper e) aconv v then e else lookup v es;

      (* traverse path backwards and return list of visited edges *)
      fun rev_path v =
        let val l = lookup v pred
            val u = lower l;
        in
          if u aconv x then [l] else (rev_path u) @ [l]
        end

    in rev_path y end;

   in


      if found then ( (found, (path x y) )) else (found,[])



   end;

(* ************************************************************************ *)
(*                                                                          *)
(* findRtranclProof g tranclEdges subgoal:                                  *)
(* (Term.term * (Term.term * rel list) list) -> rel -> proof list           *)
(*                                                                          *)
(* Searches in graph g a proof for subgoal.                                 *)
(*                                                                          *)
(* ************************************************************************ *)

fun findRtranclProof g tranclEdges subgoal =
   case subgoal of (RTrans (x,y,_)) => if x aconv y then [Thm ([], Cls.rtrancl_refl)] else (
     let val (found, path) = findPath (lower subgoal) (upper subgoal) g
     in
       if found then (
          let val path' = (transPath (tl path, hd path))
          in

            case path' of (Trans (_,_,p)) => [Thm ([p], Cls.trancl_into_rtrancl )]
            | _ => [getprf path']

          end
       )
       else raise Cannot
     end
   )

| (Trans (x,y,_)) => (

  let
   val Vx = dfs_term_reachable g x;
   val g' = transpose (op aconv) g;
   val Vy = dfs_term_reachable g' y;

   fun processTranclEdges [] = raise Cannot
   |   processTranclEdges (e::es) =
          if member (op =) Vx (upper e) andalso member (op =) Vx (lower e)
          andalso member (op =) Vy (upper e) andalso member (op =) Vy (lower e)
          then (


            if (lower e) aconv x then (
              if (upper e) aconv y then (
                  [(getprf e)]
              )
              else (
                  let
                    val (found,path) = findPath (upper e) y g
                  in

                   if found then (
                       [getprf (transPath (path, e))]
                      ) else processTranclEdges es

                  end
              )
            )
            else if (upper e) aconv y then (
               let val (xufound,xupath) = findPath x (lower e) g
               in

                  if xufound then (

                    let val xuRTranclEdge = transPath (tl xupath, hd xupath)
                            val xyTranclEdge = makeStep(xuRTranclEdge,e)

                                in [getprf xyTranclEdge] end

                 ) else processTranclEdges es

               end
            )
            else (

                let val (xufound,xupath) = findPath x (lower e) g
                    val (vyfound,vypath) = findPath (upper e) y g
                 in
                    if xufound then (
                         if vyfound then (
                            let val xuRTranclEdge = transPath (tl xupath, hd xupath)
                                val vyRTranclEdge = transPath (tl vypath, hd vypath)
                                val xyTranclEdge = makeStep (makeStep(xuRTranclEdge,e),vyRTranclEdge)

                                in [getprf xyTranclEdge] end

                         ) else processTranclEdges es
                    )
                    else processTranclEdges es
                 end
            )
          )
          else processTranclEdges es;
   in processTranclEdges tranclEdges end )


fun solveTrancl (asms, concl) =
 let val (g,_) = mkGraph asms
 in
  let val (_, subgoal, _) = mkconcl_trancl concl
      val (found, path) = findPath (lower subgoal) (upper subgoal) g
  in
    if found then  [getprf (transPath (tl path, hd path))]
    else raise Cannot
  end
 end;

fun solveRtrancl (asms, concl) =
 let val (g,tranclEdges) = mkGraph asms
     val (_, subgoal, _) = mkconcl_rtrancl concl
in
  findRtranclProof g tranclEdges subgoal
end;


fun trancl_tac ctxt = SUBGOAL (fn (A, n) => fn st =>
 let
  val thy = Proof_Context.theory_of ctxt;
  val Hs = Logic.strip_assums_hyp A;
  val C = Logic.strip_assums_concl A;
  val (rel, _, prf) = mkconcl_trancl C;

  val prems = flat (map_index (mkasm_trancl rel o swap) Hs);
  val prfs = solveTrancl (prems, C);
 in
  Subgoal.FOCUS (fn {prems, concl, ...} =>
    let
      val SOME (_, _, rel', _) = decomp (term_of concl);
      val thms = map (prove thy rel' prems) prfs
    in rtac (prove thy rel' thms prf) 1 end) ctxt n st
 end
 handle Cannot => Seq.empty);


fun rtrancl_tac ctxt = SUBGOAL (fn (A, n) => fn st =>
 let
  val thy = Proof_Context.theory_of ctxt;
  val Hs = Logic.strip_assums_hyp A;
  val C = Logic.strip_assums_concl A;
  val (rel, _, prf) = mkconcl_rtrancl C;

  val prems = flat (map_index (mkasm_rtrancl rel o swap) Hs);
  val prfs = solveRtrancl (prems, C);
 in
  Subgoal.FOCUS (fn {prems, concl, ...} =>
    let
      val SOME (_, _, rel', _) = decomp (term_of concl);
      val thms = map (prove thy rel' prems) prfs
    in rtac (prove thy rel' thms prf) 1 end) ctxt n st
 end
 handle Cannot => Seq.empty | General.Subscript => Seq.empty);

end;