(* Title: Pure/Syntax/parser.ML
Author: Carsten Clasohm, Sonia Mahjoub, and Markus Wenzel, TU Muenchen
General context-free parser for the inner syntax of terms, types, etc.
*)
signature PARSER =
sig
type gram
val empty_gram: gram
val extend_gram: Syntax_Ext.xprod list -> gram -> gram
val make_gram: Syntax_Ext.xprod list -> gram
val pretty_gram: gram -> Pretty.T list
datatype parsetree =
Node of string * parsetree list |
Tip of Lexicon.token
exception PARSETREE of parsetree
val pretty_parsetree: parsetree -> Pretty.T
val parse: gram -> string -> Lexicon.token list -> parsetree list
val guess_infix_lr: gram -> string -> (string * bool * bool * int) option
val branching_level: int Config.T
end;
structure Parser: PARSER =
struct
(** datatype gram **)
(*production for the NTs are stored in a vector
so we can identify NTs by their index*)
type nt_tag = int;
datatype symb =
Terminal of Lexicon.token
| Nonterminal of nt_tag * int; (*(tag, precedence)*)
type nt_gram =
((nt_tag list * Lexicon.token list) *
(Lexicon.token option * (symb list * string * int) list) list);
(*(([dependent_nts], [start_tokens]), [(start_token, [(rhs, name, prio)])])*)
(*depent_nts is a list of all NTs whose lookahead depends on this NT's lookahead*)
datatype gram =
Gram of
{nt_count: int,
prod_count: int,
tags: nt_tag Symtab.table,
chains: unit Int_Graph.T,
lambdas: nt_tag list,
prods: nt_gram Vector.vector};
(*"tags" is used to map NT names (i.e. strings) to tags;
chain productions are not stored as normal productions
but instead as an entry in "chains": from -> to;
lambda productions are stored as normal productions
and also as an entry in "lambdas"*)
val union_token = union Lexicon.matching_tokens;
val subtract_token = subtract Lexicon.matching_tokens;
(*productions for which no starting token is
known yet are associated with this token*)
val unknown_start = Lexicon.eof;
fun get_start (tok :: _) = tok
| get_start [] = unknown_start;
(*convert productions to grammar;
prod_count is of type "int option" and is only updated if it is <> NONE*)
fun add_prods _ chains lambdas prod_count [] = (chains, lambdas, prod_count)
| add_prods prods chains lambdas prod_count ((lhs, new_prod as (rhs, _, pri)) :: ps) =
let
(*store chain if it does not already exist*)
val (chain, new_chain, chains') =
(case (pri, rhs) of
(~1, [Nonterminal (from, ~1)]) =>
if Int_Graph.is_edge chains (from, lhs)
then (SOME from, false, chains)
else (SOME from, true,
chains
|> Int_Graph.default_node (from, ())
|> Int_Graph.default_node (lhs, ())
|> Int_Graph.add_edge (from, lhs))
| _ => (NONE, false, chains |> Int_Graph.default_node (lhs, ())));
(*propagate new chain in lookahead and lambda lists;
added_starts is used later to associate existing
productions with new starting tokens*)
val (added_starts, lambdas') =
if not new_chain then ([], lambdas)
else
let (*lookahead of chain's source*)
val ((_, from_tks), _) = Array.sub (prods, the chain);
(*copy from's lookahead to chain's destinations*)
fun copy_lookahead [] added = added
| copy_lookahead (to :: tos) added =
let
val ((to_nts, to_tks), ps) = Array.sub (prods, to);
val new_tks = subtract (op =) to_tks from_tks; (*added lookahead tokens*)
val _ = Array.update (prods, to, ((to_nts, to_tks @ new_tks), ps));
in
copy_lookahead tos (if null new_tks then added else (to, new_tks) :: added)
end;
val tos = Int_Graph.all_succs chains' [lhs];
in
(copy_lookahead tos [],
union (op =) (if member (op =) lambdas lhs then tos else []) lambdas)
end;
(*test if new production can produce lambda
(rhs must either be empty or only consist of lambda NTs)*)
val (new_lambda, lambdas') =
if forall
(fn Nonterminal (id, _) => member (op =) lambdas' id
| Terminal _ => false) rhs
then (true, union (op =) (Int_Graph.all_succs chains' [lhs]) lambdas')
else (false, lambdas');
(*list optional terminal and all nonterminals on which the lookahead
of a production depends*)
fun lookahead_dependency _ [] nts = (NONE, nts)
| lookahead_dependency _ (Terminal tk :: _) nts = (SOME tk, nts)
| lookahead_dependency lambdas (Nonterminal (nt, _) :: symbs) nts =
if member (op =) lambdas nt then
lookahead_dependency lambdas symbs (nt :: nts)
else (NONE, nt :: nts);
(*get all known starting tokens for a nonterminal*)
fun starts_for_nt nt = snd (fst (Array.sub (prods, nt)));
(*update prods, lookaheads, and lambdas according to new lambda NTs*)
val (added_starts', lambdas') =
let
(*propagate added lambda NT*)
fun propagate_lambda [] added_starts lambdas = (added_starts, lambdas)
| propagate_lambda (l :: ls) added_starts lambdas =
let
(*get lookahead for lambda NT*)
val ((dependent, l_starts), _) = Array.sub (prods, l);
(*check productions whose lookahead may depend on lambda NT*)
fun examine_prods [] add_lambda nt_dependencies added_tks nt_prods =
(add_lambda, nt_dependencies, added_tks, nt_prods)
| examine_prods ((p as (rhs, _, _)) :: ps) add_lambda
nt_dependencies added_tks nt_prods =
let val (tk, nts) = lookahead_dependency lambdas rhs [] in
if member (op =) nts l then (*update production's lookahead*)
let
val new_lambda = is_none tk andalso subset (op =) (nts, lambdas);
val new_tks =
(if is_some tk then [the tk] else [])
|> fold (union_token o starts_for_nt) nts
|> subtract (op =) l_starts;
val added_tks' = union_token added_tks new_tks;
val nt_dependencies' = union (op =) nts nt_dependencies;
(*associate production with new starting tokens*)
fun copy ([]: Lexicon.token option list) nt_prods = nt_prods
| copy (tk :: tks) nt_prods =
let
val old_prods = these (AList.lookup (op =) nt_prods tk);
val prods' = p :: old_prods;
in
nt_prods
|> AList.update (op =) (tk, prods')
|> copy tks
end;
val nt_prods' =
let val new_opt_tks = map SOME new_tks in
copy
((if new_lambda then [NONE] else []) @ new_opt_tks) nt_prods
end;
in
examine_prods ps (add_lambda orelse new_lambda)
nt_dependencies' added_tks' nt_prods'
end
else (*skip production*)
examine_prods ps add_lambda nt_dependencies added_tks nt_prods
end;
(*check each NT whose lookahead depends on new lambda NT*)
fun process_nts [] added_lambdas added_starts =
(added_lambdas, added_starts)
| process_nts (nt :: nts) added_lambdas added_starts =
let
val ((old_nts, old_tks), nt_prods) = Array.sub (prods, nt);
(*existing productions whose lookahead may depend on l*)
val tk_prods =
these (AList.lookup (op =) nt_prods (SOME (get_start l_starts)));
(*add_lambda is true if an existing production of the nt
produces lambda due to the new lambda NT l*)
val (add_lambda, nt_dependencies, added_tks, nt_prods') =
examine_prods tk_prods false [] [] nt_prods;
val added_nts = subtract (op =) old_nts nt_dependencies;
val added_lambdas' =
if add_lambda then nt :: added_lambdas
else added_lambdas;
val _ =
Array.update
(prods, nt, ((added_nts @ old_nts, old_tks @ added_tks), nt_prods'));
(*N.B. that because the tks component
is used to access existing
productions we have to add new
tokens at the _end_ of the list*)
in
if null added_tks then
process_nts nts added_lambdas' added_starts
else
process_nts nts added_lambdas' ((nt, added_tks) :: added_starts)
end;
val (added_lambdas, added_starts') = process_nts dependent [] added_starts;
val added_lambdas' = subtract (op =) lambdas added_lambdas;
in
propagate_lambda (ls @ added_lambdas') added_starts' (added_lambdas' @ lambdas)
end;
in propagate_lambda (subtract (op =) lambdas lambdas') added_starts lambdas' end;
(*insert production into grammar*)
val (added_starts', _) =
if is_some chain
then (added_starts', prod_count) (*don't store chain production*)
else
let
(*lookahead tokens of new production and on which
NTs lookahead depends*)
val (start_tk, start_nts) = lookahead_dependency lambdas' rhs [];
val start_tks =
(if is_some start_tk then [the start_tk] else [])
|> fold (union_token o starts_for_nt) start_nts;
val opt_starts =
(if new_lambda then [NONE]
else if null start_tks then [SOME unknown_start]
else []) @ map SOME start_tks;
(*add lhs NT to list of dependent NTs in lookahead*)
fun add_nts [] = ()
| add_nts (nt :: _) =
let val ((old_nts, old_tks), ps) = Array.sub (prods, nt) in
if member (op =) old_nts lhs then ()
else Array.update (prods, nt, ((lhs :: old_nts, old_tks), ps))
end;
(*add new start tokens to chained NTs' lookahead list;
also store new production for lhs NT*)
fun add_tks [] added prod_count = (added, prod_count)
| add_tks (nt :: nts) added prod_count =
let
val ((old_nts, old_tks), nt_prods) = Array.sub (prods, nt);
val new_tks = subtract_token old_tks start_tks;
(*store new production*)
fun store [] prods is_new =
(prods,
if is_some prod_count andalso is_new then
Option.map (fn x => x + 1) prod_count
else prod_count, is_new)
| store (tk :: tks) prods is_new =
let
val tk_prods = these (AList.lookup (op =) prods tk);
(*if prod_count = NONE then we can assume that
grammar does not contain new production already*)
val (tk_prods', is_new') =
if is_some prod_count then
if member (op =) tk_prods new_prod then (tk_prods, false)
else (new_prod :: tk_prods, true)
else (new_prod :: tk_prods, true);
val prods' =
if is_new' then
AList.update (op =) (tk: Lexicon.token option, tk_prods') prods
else prods;
in store tks prods' (is_new orelse is_new') end;
val (nt_prods', prod_count', changed) =
if nt = lhs
then store opt_starts nt_prods false
else (nt_prods, prod_count, false);
val _ =
if not changed andalso null new_tks then ()
else Array.update (prods, nt, ((old_nts, old_tks @ new_tks), nt_prods'));
in
add_tks nts
(if null new_tks then added else (nt, new_tks) :: added) prod_count'
end;
val _ = add_nts start_nts;
in
add_tks (Int_Graph.all_succs chains' [lhs]) [] prod_count
end;
(*associate productions with new lookaheads*)
val _ =
let
(*propagate added start tokens*)
fun add_starts [] = ()
| add_starts ((changed_nt, new_tks) :: starts) =
let
(*token under which old productions which
depend on changed_nt could be stored*)
val key =
(case find_first (not o member (op =) new_tks) (starts_for_nt changed_nt) of
NONE => SOME unknown_start
| t => t);
(*copy productions whose lookahead depends on changed_nt;
if key = SOME unknown_start then tk_prods is used to hold
the productions not copied*)
fun update_prods [] result = result
| update_prods ((p as (rhs, _: string, _: nt_tag)) :: ps)
(tk_prods, nt_prods) =
let
(*lookahead dependency for production*)
val (tk, depends) = lookahead_dependency lambdas' rhs [];
(*test if this production has to be copied*)
val update = member (op =) depends changed_nt;
(*test if production could already be associated with
a member of new_tks*)
val lambda =
length depends > 1 orelse
not (null depends) andalso is_some tk
andalso member (op =) new_tks (the tk);
(*associate production with new starting tokens*)
fun copy ([]: Lexicon.token list) nt_prods = nt_prods
| copy (tk :: tks) nt_prods =
let
val tk_prods = these (AList.lookup (op =) nt_prods (SOME tk));
val tk_prods' =
if not lambda then p :: tk_prods
else insert (op =) p tk_prods;
(*if production depends on lambda NT we
have to look for duplicates*)
in
nt_prods
|> AList.update (op =) (SOME tk, tk_prods')
|> copy tks
end;
val result =
if update then (tk_prods, copy new_tks nt_prods)
else if key = SOME unknown_start then (p :: tk_prods, nt_prods)
else (tk_prods, nt_prods);
in update_prods ps result end;
(*copy existing productions for new starting tokens*)
fun process_nts [] added = added
| process_nts (nt :: nts) added =
let
val (lookahead as (old_nts, old_tks), nt_prods) = Array.sub (prods, nt);
val tk_prods = these (AList.lookup (op =) nt_prods key);
(*associate productions with new lookahead tokens*)
val (tk_prods', nt_prods') = update_prods tk_prods ([], nt_prods);
val nt_prods'' =
if key = SOME unknown_start then
AList.update (op =) (key, tk_prods') nt_prods'
else nt_prods';
val added_tks = subtract_token old_tks new_tks;
in
if null added_tks then
(Array.update (prods, nt, (lookahead, nt_prods''));
process_nts nts added)
else
(Array.update (prods, nt, ((old_nts, added_tks @ old_tks), nt_prods''));
process_nts nts ((nt, added_tks) :: added))
end;
val ((dependent, _), _) = Array.sub (prods, changed_nt);
in add_starts (starts @ process_nts dependent []) end;
in add_starts added_starts' end;
in add_prods prods chains' lambdas' prod_count ps end;
(* pretty_gram *)
fun pretty_gram (Gram {tags, prods, chains, ...}) =
let
val print_nt = the o Inttab.lookup (Inttab.make (map swap (Symtab.dest tags)));
fun print_pri p = if p < 0 then "" else Symbol.make_sup ("(" ^ signed_string_of_int p ^ ")");
fun pretty_symb (Terminal (Lexicon.Token (kind, s, _))) =
if kind = Lexicon.Literal then Pretty.quote (Pretty.keyword1 s) else Pretty.str s
| pretty_symb (Nonterminal (tag, p)) = Pretty.str (print_nt tag ^ print_pri p);
fun pretty_const "" = []
| pretty_const c = [Pretty.str ("\<^bold>\<Rightarrow> " ^ quote c)];
fun prod_of_chain from = ([Nonterminal (from, ~1)], "", ~1);
fun pretty_prod (name, tag) =
(fold (union (op =) o #2) (#2 (Vector.sub (prods, tag))) [] @
map prod_of_chain (Int_Graph.immediate_preds chains tag))
|> map (fn (symbs, const, p) =>
Pretty.block (Pretty.breaks
(Pretty.str (name ^ print_pri p ^ " =") :: map pretty_symb symbs @ pretty_const const)));
in maps pretty_prod (sort_by #1 (Symtab.dest tags)) end;
(** Operations on gramars **)
val empty_gram =
Gram
{nt_count = 0,
prod_count = 0,
tags = Symtab.empty,
chains = Int_Graph.empty,
lambdas = [],
prods = Vector.fromList [(([], []), [])]};
(*Add productions to a grammar*)
fun extend_gram [] gram = gram
| extend_gram xprods (Gram {nt_count, prod_count, tags, chains, lambdas, prods}) =
let
(*Get tag for existing nonterminal or create a new one*)
fun get_tag nt_count tags nt =
(case Symtab.lookup tags nt of
SOME tag => (nt_count, tags, tag)
| NONE => (nt_count + 1, Symtab.update_new (nt, nt_count) tags, nt_count));
(*Convert symbols to the form used by the parser;
delimiters and predefined terms are stored as terminals,
nonterminals are converted to integer tags*)
fun symb_of [] nt_count tags result = (nt_count, tags, rev result)
| symb_of (Syntax_Ext.Delim s :: ss) nt_count tags result =
symb_of ss nt_count tags
(Terminal (Lexicon.Token (Lexicon.Literal, s, Position.no_range)) :: result)
| symb_of (Syntax_Ext.Argument (s, p) :: ss) nt_count tags result =
let
val (nt_count', tags', new_symb) =
(case Lexicon.predef_term s of
NONE =>
let val (nt_count', tags', s_tag) = get_tag nt_count tags s;
in (nt_count', tags', Nonterminal (s_tag, p)) end
| SOME tk => (nt_count, tags, Terminal tk));
in symb_of ss nt_count' tags' (new_symb :: result) end
| symb_of (_ :: ss) nt_count tags result = symb_of ss nt_count tags result;
(*Convert list of productions by invoking symb_of for each of them*)
fun prod_of [] nt_count prod_count tags result =
(nt_count, prod_count, tags, result)
| prod_of (Syntax_Ext.XProd (lhs, xsymbs, const, pri) :: ps)
nt_count prod_count tags result =
let
val (nt_count', tags', lhs_tag) = get_tag nt_count tags lhs;
val (nt_count'', tags'', prods) = symb_of xsymbs nt_count' tags' [];
in
prod_of ps nt_count'' (prod_count + 1) tags''
((lhs_tag, (prods, const, pri)) :: result)
end;
val (nt_count', prod_count', tags', xprods') =
prod_of xprods nt_count prod_count tags [];
(*Copy array containing productions of old grammar;
this has to be done to preserve the old grammar while being able
to change the array's content*)
val prods' =
let
fun get_prod i =
if i < nt_count then Vector.sub (prods, i)
else (([], []), []);
in Array.tabulate (nt_count', get_prod) end;
(*Add new productions to old ones*)
val (chains', lambdas', _) = add_prods prods' chains lambdas NONE xprods';
in
Gram
{nt_count = nt_count',
prod_count = prod_count',
tags = tags',
chains = chains',
lambdas = lambdas',
prods = Array.vector prods'}
end;
fun make_gram xprods = extend_gram xprods empty_gram;
(** parser **)
(* parsetree *)
datatype parsetree =
Node of string * parsetree list |
Tip of Lexicon.token;
exception PARSETREE of parsetree;
fun pretty_parsetree parsetree =
let
fun pretty (Node (c, pts)) =
[Pretty.enclose "(" ")" (Pretty.breaks (Pretty.quote (Pretty.str c) :: maps pretty pts))]
| pretty (Tip tok) =
if Lexicon.valued_token tok then [Pretty.str (Lexicon.str_of_token tok)] else [];
in (case pretty parsetree of [prt] => prt | _ => raise PARSETREE parsetree) end;
(* parser state *)
type state =
nt_tag * int * (*identification and production precedence*)
parsetree list * (*already parsed nonterminals on rhs*)
symb list * (*rest of rhs*)
string * (*name of production*)
int; (*index for previous state list*)
(*Get all rhss with precedence >= min_prec*)
fun get_RHS min_prec = filter (fn (_, _, prec: int) => prec >= min_prec);
(*Get all rhss with precedence >= min_prec and < max_prec*)
fun get_RHS' min_prec max_prec =
filter (fn (_, _, prec: int) => prec >= min_prec andalso prec < max_prec);
(*Make states using a list of rhss*)
fun mk_states i lhs_ID rhss =
let fun mk_state (rhs, id, prod_prec) = (lhs_ID, prod_prec, [], rhs, id, i);
in map mk_state rhss end;
(*Add parse tree to list and eliminate duplicates
saving the maximum precedence*)
fun conc (t: parsetree list, prec: int) [] = (NONE, [(t, prec)])
| conc (t, prec) ((t', prec') :: ts) =
if t = t' then
(SOME prec',
if prec' >= prec then (t', prec') :: ts
else (t, prec) :: ts)
else
let val (n, ts') = conc (t, prec) ts
in (n, (t', prec') :: ts') end;
(*Update entry in used*)
fun update_trees (A, t) used =
let
val (i, ts) = the (Inttab.lookup used A);
val (n, ts') = conc t ts;
in (n, Inttab.update (A, (i, ts')) used) end;
(*Replace entry in used*)
fun update_prec (A, prec) =
Inttab.map_entry A (fn (_, ts) => (prec, ts));
fun getS A max_prec NONE Si =
filter
(fn (_, _, _, Nonterminal (B, prec) :: _, _, _) => A = B andalso prec <= max_prec
| _ => false) Si
| getS A max_prec (SOME min_prec) Si =
filter
(fn (_, _, _, Nonterminal (B, prec) :: _, _, _) =>
A = B andalso prec > min_prec andalso prec <= max_prec
| _ => false) Si;
fun get_states Estate j A max_prec =
filter
(fn (_, _, _, Nonterminal (B, prec) :: _, _, _) => A = B andalso prec <= max_prec
| _ => false)
(Array.sub (Estate, j));
fun movedot_term c (A, j, ts, Terminal a :: sa, id, i) =
if Lexicon.valued_token c orelse id <> ""
then (A, j, Tip c :: ts, sa, id, i)
else (A, j, ts, sa, id, i);
fun movedot_nonterm tt (A, j, ts, Nonterminal _ :: sa, id, i) =
(A, j, tt @ ts, sa, id, i);
fun movedot_lambda [] _ = []
| movedot_lambda ((t, ki) :: ts) (state as (B, j, tss, Nonterminal (A, k) :: sa, id, i)) =
if k <= ki then (B, j, t @ tss, sa, id, i) :: movedot_lambda ts state
else movedot_lambda ts state;
(*trigger value for warnings*)
val branching_level =
Config.int (Config.declare ("syntax_branching_level", \<^here>) (fn _ => Config.Int 600));
(*get all productions of a NT and NTs chained to it which can
be started by specified token*)
fun prods_for (Gram {prods, chains, ...}) include_none tk nts =
let
fun token_assoc (list, key) =
let
fun assoc [] result = result
| assoc ((keyi, pi) :: pairs) result =
if is_some keyi andalso Lexicon.matching_tokens (the keyi, key)
orelse include_none andalso is_none keyi then
assoc pairs (pi @ result)
else assoc pairs result;
in assoc list [] end;
fun get_prods [] result = result
| get_prods (nt :: nts) result =
let val nt_prods = snd (Vector.sub (prods, nt));
in get_prods nts (token_assoc (nt_prods, tk) @ result) end;
in get_prods (Int_Graph.all_preds chains nts) [] end;
fun PROCESSS gram Estate i c states =
let
fun all_prods_for nt = prods_for gram true c [nt];
fun processS _ [] (Si, Sii) = (Si, Sii)
| processS used (S :: States) (Si, Sii) =
(case S of
(_, _, _, Nonterminal (nt, min_prec) :: _, _, _) =>
let (*predictor operation*)
val (used', new_states) =
(case Inttab.lookup used nt of
SOME (used_prec, l) => (*nonterminal has been processed*)
if used_prec <= min_prec then
(*wanted precedence has been processed*)
(used, movedot_lambda l S)
else (*wanted precedence hasn't been parsed yet*)
let
val tk_prods = all_prods_for nt;
val States' =
mk_states i nt (get_RHS' min_prec used_prec tk_prods);
in (update_prec (nt, min_prec) used, movedot_lambda l S @ States') end
| NONE => (*nonterminal is parsed for the first time*)
let
val tk_prods = all_prods_for nt;
val States' = mk_states i nt (get_RHS min_prec tk_prods);
in (Inttab.update (nt, (min_prec, [])) used, States') end);
in
processS used' (new_states @ States) (S :: Si, Sii)
end
| (_, _, _, Terminal a :: _, _, _) => (*scanner operation*)
processS used States
(S :: Si,
if Lexicon.matching_tokens (a, c) then movedot_term c S :: Sii else Sii)
| (A, prec, ts, [], id, j) => (*completer operation*)
let val tt = if id = "" then ts else [Node (id, rev ts)] in
if j = i then (*lambda production?*)
let
val (prec', used') = update_trees (A, (tt, prec)) used;
val Slist = getS A prec prec' Si;
val States' = map (movedot_nonterm tt) Slist;
in processS used' (States' @ States) (S :: Si, Sii) end
else
let val Slist = get_states Estate j A prec
in processS used (map (movedot_nonterm tt) Slist @ States) (S :: Si, Sii) end
end)
in processS Inttab.empty states ([], []) end;
fun produce gram stateset i indata prev_token =
(case Array.sub (stateset, i) of
[] =>
let
val toks = if Lexicon.is_eof prev_token then indata else prev_token :: indata;
val pos = Position.here (Lexicon.pos_of_token prev_token);
in
if null toks then
error ("Inner syntax error: unexpected end of input" ^ pos)
else
error ("Inner syntax error" ^ pos ^
Markup.markup Markup.no_report
("\n" ^ Pretty.string_of
(Pretty.block [
Pretty.str "at", Pretty.brk 1,
Pretty.block
(Pretty.str "\"" ::
Pretty.breaks (map (Pretty.str o Lexicon.str_of_token) (#1 (split_last toks))) @
[Pretty.str "\""])])))
end
| s =>
(case indata of
[] => s
| c :: cs =>
let
val (si, sii) = PROCESSS gram stateset i c s;
val _ = Array.update (stateset, i, si);
val _ = Array.update (stateset, i + 1, sii);
in produce gram stateset (i + 1) cs c end));
fun get_trees states = map_filter (fn (_, _, [pt], _, _, _) => SOME pt | _ => NONE) states;
fun earley (gram as Gram {tags, ...}) startsymbol indata =
let
val start_tag =
(case Symtab.lookup tags startsymbol of
SOME tag => tag
| NONE => error ("Inner syntax: bad grammar root symbol " ^ quote startsymbol));
val S0 = [(~1, 0, [], [Nonterminal (start_tag, 0), Terminal Lexicon.eof], "", 0)];
val s = length indata + 1;
val Estate = Array.array (s, []);
val _ = Array.update (Estate, 0, S0);
in
get_trees (produce gram Estate 0 indata Lexicon.eof)
end;
fun parse gram start toks =
let
val end_pos =
(case try List.last toks of
NONE => Position.none
| SOME (Lexicon.Token (_, _, (_, end_pos))) => end_pos);
val r =
(case earley gram start (toks @ [Lexicon.mk_eof end_pos]) of
[] => raise Fail "Inner syntax: no parse trees"
| pts => pts);
in r end;
fun guess_infix_lr (Gram gram) c = (*based on educated guess*)
let
fun freeze a = map_range (curry Vector.sub a) (Vector.length a);
val prods = maps snd (maps snd (freeze (#prods gram)));
fun guess (SOME ([Nonterminal (_, k),
Terminal (Lexicon.Token (Lexicon.Literal, s, _)), Nonterminal (_, l)], _, j)) =
if k = j andalso l = j + 1 then SOME (s, true, false, j)
else if k = j + 1 then if l = j then SOME (s, false, true, j)
else if l = j + 1 then SOME (s, false, false, j)
else NONE
else NONE
| guess _ = NONE;
in guess (find_first (fn (_, s, _) => s = c) prods) end;
end;