Added lazy sequences and parser combinators for same.
(* Title: HOL/Lfp.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
The Knaster-Tarski Theorem.
*)
(*** Proof of Knaster-Tarski Theorem ***)
val lfp_def = thm "lfp_def";
(* lfp(f) is the greatest lower bound of {u. f(u) <= u} *)
Goalw [lfp_def] "f(A) <= A ==> lfp(f) <= A";
by (rtac (CollectI RS Inter_lower) 1);
by (assume_tac 1);
qed "lfp_lowerbound";
val prems = Goalw [lfp_def]
"[| !!u. f(u) <= u ==> A<=u |] ==> A <= lfp(f)";
by (REPEAT (ares_tac ([Inter_greatest]@prems) 1));
by (etac CollectD 1);
qed "lfp_greatest";
Goal "mono(f) ==> f(lfp(f)) <= lfp(f)";
by (EVERY1 [rtac lfp_greatest, rtac subset_trans,
etac monoD, rtac lfp_lowerbound, atac, atac]);
qed "lfp_lemma2";
Goal "mono(f) ==> lfp(f) <= f(lfp(f))";
by (EVERY1 [rtac lfp_lowerbound, rtac monoD, assume_tac,
etac lfp_lemma2]);
qed "lfp_lemma3";
Goal "mono(f) ==> lfp(f) = f(lfp(f))";
by (REPEAT (ares_tac [equalityI,lfp_lemma2,lfp_lemma3] 1));
qed "lfp_unfold";
(*** General induction rule for least fixed points ***)
val [lfp,mono,indhyp] = Goal
"[| a: lfp(f); mono(f); \
\ !!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x) \
\ |] ==> P(a)";
by (res_inst_tac [("a","a")] (Int_lower2 RS subsetD RS CollectD) 1);
by (rtac (lfp RSN (2, lfp_lowerbound RS subsetD)) 1);
by (EVERY1 [rtac Int_greatest, rtac subset_trans,
rtac (Int_lower1 RS (mono RS monoD)),
rtac (mono RS lfp_lemma2),
rtac (CollectI RS subsetI), rtac indhyp, atac]);
qed "lfp_induct";
bind_thm ("lfp_induct2",
split_rule (read_instantiate [("a","(a,b)")] lfp_induct));
(** Definition forms of lfp_unfold and lfp_induct, to control unfolding **)
Goal "[| h==lfp(f); mono(f) |] ==> h = f(h)";
by (auto_tac (claset() addSIs [lfp_unfold], simpset()));
qed "def_lfp_unfold";
val rew::prems = Goal
"[| A == lfp(f); mono(f); a:A; \
\ !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x) \
\ |] ==> P(a)";
by (EVERY1 [rtac lfp_induct, (*backtracking to force correct induction*)
REPEAT1 o (ares_tac (map (rewrite_rule [rew]) prems))]);
qed "def_lfp_induct";
(*Monotonicity of lfp!*)
val [prem] = Goal "[| !!Z. f(Z)<=g(Z) |] ==> lfp(f) <= lfp(g)";
by (rtac (lfp_lowerbound RS lfp_greatest) 1);
by (etac (prem RS subset_trans) 1);
qed "lfp_mono";