(* Title: HOL/Lattice/Lattice.thy
Author: Markus Wenzel, TU Muenchen
*)
section {* Lattices *}
theory Lattice imports Bounds begin
subsection {* Lattice operations *}
text {*
A \emph{lattice} is a partial order with infimum and supremum of any
two elements (thus any \emph{finite} number of elements have bounds
as well).
*}
class lattice =
assumes ex_inf: "\<exists>inf. is_inf x y inf"
assumes ex_sup: "\<exists>sup. is_sup x y sup"
text {*
The @{text \<sqinter>} (meet) and @{text \<squnion>} (join) operations select such
infimum and supremum elements.
*}
definition
meet :: "'a::lattice \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "&&" 70) where
"x && y = (THE inf. is_inf x y inf)"
definition
join :: "'a::lattice \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "||" 65) where
"x || y = (THE sup. is_sup x y sup)"
notation (xsymbols)
meet (infixl "\<sqinter>" 70) and
join (infixl "\<squnion>" 65)
text {*
Due to unique existence of bounds, the lattice operations may be
exhibited as follows.
*}
lemma meet_equality [elim?]: "is_inf x y inf \<Longrightarrow> x \<sqinter> y = inf"
proof (unfold meet_def)
assume "is_inf x y inf"
then show "(THE inf. is_inf x y inf) = inf"
by (rule the_equality) (rule is_inf_uniq [OF _ `is_inf x y inf`])
qed
lemma meetI [intro?]:
"inf \<sqsubseteq> x \<Longrightarrow> inf \<sqsubseteq> y \<Longrightarrow> (\<And>z. z \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> y \<Longrightarrow> z \<sqsubseteq> inf) \<Longrightarrow> x \<sqinter> y = inf"
by (rule meet_equality, rule is_infI) blast+
lemma join_equality [elim?]: "is_sup x y sup \<Longrightarrow> x \<squnion> y = sup"
proof (unfold join_def)
assume "is_sup x y sup"
then show "(THE sup. is_sup x y sup) = sup"
by (rule the_equality) (rule is_sup_uniq [OF _ `is_sup x y sup`])
qed
lemma joinI [intro?]: "x \<sqsubseteq> sup \<Longrightarrow> y \<sqsubseteq> sup \<Longrightarrow>
(\<And>z. x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> sup \<sqsubseteq> z) \<Longrightarrow> x \<squnion> y = sup"
by (rule join_equality, rule is_supI) blast+
text {*
\medskip The @{text \<sqinter>} and @{text \<squnion>} operations indeed determine
bounds on a lattice structure.
*}
lemma is_inf_meet [intro?]: "is_inf x y (x \<sqinter> y)"
proof (unfold meet_def)
from ex_inf obtain inf where "is_inf x y inf" ..
then show "is_inf x y (THE inf. is_inf x y inf)"
by (rule theI) (rule is_inf_uniq [OF _ `is_inf x y inf`])
qed
lemma meet_greatest [intro?]: "z \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> y \<Longrightarrow> z \<sqsubseteq> x \<sqinter> y"
by (rule is_inf_greatest) (rule is_inf_meet)
lemma meet_lower1 [intro?]: "x \<sqinter> y \<sqsubseteq> x"
by (rule is_inf_lower) (rule is_inf_meet)
lemma meet_lower2 [intro?]: "x \<sqinter> y \<sqsubseteq> y"
by (rule is_inf_lower) (rule is_inf_meet)
lemma is_sup_join [intro?]: "is_sup x y (x \<squnion> y)"
proof (unfold join_def)
from ex_sup obtain sup where "is_sup x y sup" ..
then show "is_sup x y (THE sup. is_sup x y sup)"
by (rule theI) (rule is_sup_uniq [OF _ `is_sup x y sup`])
qed
lemma join_least [intro?]: "x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<squnion> y \<sqsubseteq> z"
by (rule is_sup_least) (rule is_sup_join)
lemma join_upper1 [intro?]: "x \<sqsubseteq> x \<squnion> y"
by (rule is_sup_upper) (rule is_sup_join)
lemma join_upper2 [intro?]: "y \<sqsubseteq> x \<squnion> y"
by (rule is_sup_upper) (rule is_sup_join)
subsection {* Duality *}
text {*
The class of lattices is closed under formation of dual structures.
This means that for any theorem of lattice theory, the dualized
statement holds as well; this important fact simplifies many proofs
of lattice theory.
*}
instance dual :: (lattice) lattice
proof
fix x' y' :: "'a::lattice dual"
show "\<exists>inf'. is_inf x' y' inf'"
proof -
have "\<exists>sup. is_sup (undual x') (undual y') sup" by (rule ex_sup)
then have "\<exists>sup. is_inf (dual (undual x')) (dual (undual y')) (dual sup)"
by (simp only: dual_inf)
then show ?thesis by (simp add: dual_ex [symmetric])
qed
show "\<exists>sup'. is_sup x' y' sup'"
proof -
have "\<exists>inf. is_inf (undual x') (undual y') inf" by (rule ex_inf)
then have "\<exists>inf. is_sup (dual (undual x')) (dual (undual y')) (dual inf)"
by (simp only: dual_sup)
then show ?thesis by (simp add: dual_ex [symmetric])
qed
qed
text {*
Apparently, the @{text \<sqinter>} and @{text \<squnion>} operations are dual to each
other.
*}
theorem dual_meet [intro?]: "dual (x \<sqinter> y) = dual x \<squnion> dual y"
proof -
from is_inf_meet have "is_sup (dual x) (dual y) (dual (x \<sqinter> y))" ..
then have "dual x \<squnion> dual y = dual (x \<sqinter> y)" ..
then show ?thesis ..
qed
theorem dual_join [intro?]: "dual (x \<squnion> y) = dual x \<sqinter> dual y"
proof -
from is_sup_join have "is_inf (dual x) (dual y) (dual (x \<squnion> y))" ..
then have "dual x \<sqinter> dual y = dual (x \<squnion> y)" ..
then show ?thesis ..
qed
subsection {* Algebraic properties \label{sec:lattice-algebra} *}
text {*
The @{text \<sqinter>} and @{text \<squnion>} operations have the following
characteristic algebraic properties: associative (A), commutative
(C), and absorptive (AB).
*}
theorem meet_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
proof
show "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> x \<sqinter> y"
proof
show "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> x" ..
show "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> y"
proof -
have "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> y \<sqinter> z" ..
also have "\<dots> \<sqsubseteq> y" ..
finally show ?thesis .
qed
qed
show "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> z"
proof -
have "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> y \<sqinter> z" ..
also have "\<dots> \<sqsubseteq> z" ..
finally show ?thesis .
qed
fix w assume "w \<sqsubseteq> x \<sqinter> y" and "w \<sqsubseteq> z"
show "w \<sqsubseteq> x \<sqinter> (y \<sqinter> z)"
proof
show "w \<sqsubseteq> x"
proof -
have "w \<sqsubseteq> x \<sqinter> y" by fact
also have "\<dots> \<sqsubseteq> x" ..
finally show ?thesis .
qed
show "w \<sqsubseteq> y \<sqinter> z"
proof
show "w \<sqsubseteq> y"
proof -
have "w \<sqsubseteq> x \<sqinter> y" by fact
also have "\<dots> \<sqsubseteq> y" ..
finally show ?thesis .
qed
show "w \<sqsubseteq> z" by fact
qed
qed
qed
theorem join_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
proof -
have "dual ((x \<squnion> y) \<squnion> z) = (dual x \<sqinter> dual y) \<sqinter> dual z"
by (simp only: dual_join)
also have "\<dots> = dual x \<sqinter> (dual y \<sqinter> dual z)"
by (rule meet_assoc)
also have "\<dots> = dual (x \<squnion> (y \<squnion> z))"
by (simp only: dual_join)
finally show ?thesis ..
qed
theorem meet_commute: "x \<sqinter> y = y \<sqinter> x"
proof
show "y \<sqinter> x \<sqsubseteq> x" ..
show "y \<sqinter> x \<sqsubseteq> y" ..
fix z assume "z \<sqsubseteq> y" and "z \<sqsubseteq> x"
then show "z \<sqsubseteq> y \<sqinter> x" ..
qed
theorem join_commute: "x \<squnion> y = y \<squnion> x"
proof -
have "dual (x \<squnion> y) = dual x \<sqinter> dual y" ..
also have "\<dots> = dual y \<sqinter> dual x"
by (rule meet_commute)
also have "\<dots> = dual (y \<squnion> x)"
by (simp only: dual_join)
finally show ?thesis ..
qed
theorem meet_join_absorb: "x \<sqinter> (x \<squnion> y) = x"
proof
show "x \<sqsubseteq> x" ..
show "x \<sqsubseteq> x \<squnion> y" ..
fix z assume "z \<sqsubseteq> x" and "z \<sqsubseteq> x \<squnion> y"
show "z \<sqsubseteq> x" by fact
qed
theorem join_meet_absorb: "x \<squnion> (x \<sqinter> y) = x"
proof -
have "dual x \<sqinter> (dual x \<squnion> dual y) = dual x"
by (rule meet_join_absorb)
then have "dual (x \<squnion> (x \<sqinter> y)) = dual x"
by (simp only: dual_meet dual_join)
then show ?thesis ..
qed
text {*
\medskip Some further algebraic properties hold as well. The
property idempotent (I) is a basic algebraic consequence of (AB).
*}
theorem meet_idem: "x \<sqinter> x = x"
proof -
have "x \<sqinter> (x \<squnion> (x \<sqinter> x)) = x" by (rule meet_join_absorb)
also have "x \<squnion> (x \<sqinter> x) = x" by (rule join_meet_absorb)
finally show ?thesis .
qed
theorem join_idem: "x \<squnion> x = x"
proof -
have "dual x \<sqinter> dual x = dual x"
by (rule meet_idem)
then have "dual (x \<squnion> x) = dual x"
by (simp only: dual_join)
then show ?thesis ..
qed
text {*
Meet and join are trivial for related elements.
*}
theorem meet_related [elim?]: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x"
proof
assume "x \<sqsubseteq> y"
show "x \<sqsubseteq> x" ..
show "x \<sqsubseteq> y" by fact
fix z assume "z \<sqsubseteq> x" and "z \<sqsubseteq> y"
show "z \<sqsubseteq> x" by fact
qed
theorem join_related [elim?]: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y"
proof -
assume "x \<sqsubseteq> y" then have "dual y \<sqsubseteq> dual x" ..
then have "dual y \<sqinter> dual x = dual y" by (rule meet_related)
also have "dual y \<sqinter> dual x = dual (y \<squnion> x)" by (simp only: dual_join)
also have "y \<squnion> x = x \<squnion> y" by (rule join_commute)
finally show ?thesis ..
qed
subsection {* Order versus algebraic structure *}
text {*
The @{text \<sqinter>} and @{text \<squnion>} operations are connected with the
underlying @{text \<sqsubseteq>} relation in a canonical manner.
*}
theorem meet_connection: "(x \<sqsubseteq> y) = (x \<sqinter> y = x)"
proof
assume "x \<sqsubseteq> y"
then have "is_inf x y x" ..
then show "x \<sqinter> y = x" ..
next
have "x \<sqinter> y \<sqsubseteq> y" ..
also assume "x \<sqinter> y = x"
finally show "x \<sqsubseteq> y" .
qed
theorem join_connection: "(x \<sqsubseteq> y) = (x \<squnion> y = y)"
proof
assume "x \<sqsubseteq> y"
then have "is_sup x y y" ..
then show "x \<squnion> y = y" ..
next
have "x \<sqsubseteq> x \<squnion> y" ..
also assume "x \<squnion> y = y"
finally show "x \<sqsubseteq> y" .
qed
text {*
\medskip The most fundamental result of the meta-theory of lattices
is as follows (we do not prove it here).
Given a structure with binary operations @{text \<sqinter>} and @{text \<squnion>}
such that (A), (C), and (AB) hold (cf.\
\S\ref{sec:lattice-algebra}). This structure represents a lattice,
if the relation @{term "x \<sqsubseteq> y"} is defined as @{term "x \<sqinter> y = x"}
(alternatively as @{term "x \<squnion> y = y"}). Furthermore, infimum and
supremum with respect to this ordering coincide with the original
@{text \<sqinter>} and @{text \<squnion>} operations.
*}
subsection {* Example instances *}
subsubsection {* Linear orders *}
text {*
Linear orders with @{term minimum} and @{term maximum} operations
are a (degenerate) example of lattice structures.
*}
definition
minimum :: "'a::linear_order \<Rightarrow> 'a \<Rightarrow> 'a" where
"minimum x y = (if x \<sqsubseteq> y then x else y)"
definition
maximum :: "'a::linear_order \<Rightarrow> 'a \<Rightarrow> 'a" where
"maximum x y = (if x \<sqsubseteq> y then y else x)"
lemma is_inf_minimum: "is_inf x y (minimum x y)"
proof
let ?min = "minimum x y"
from leq_linear show "?min \<sqsubseteq> x" by (auto simp add: minimum_def)
from leq_linear show "?min \<sqsubseteq> y" by (auto simp add: minimum_def)
fix z assume "z \<sqsubseteq> x" and "z \<sqsubseteq> y"
with leq_linear show "z \<sqsubseteq> ?min" by (auto simp add: minimum_def)
qed
lemma is_sup_maximum: "is_sup x y (maximum x y)" (* FIXME dualize!? *)
proof
let ?max = "maximum x y"
from leq_linear show "x \<sqsubseteq> ?max" by (auto simp add: maximum_def)
from leq_linear show "y \<sqsubseteq> ?max" by (auto simp add: maximum_def)
fix z assume "x \<sqsubseteq> z" and "y \<sqsubseteq> z"
with leq_linear show "?max \<sqsubseteq> z" by (auto simp add: maximum_def)
qed
instance linear_order \<subseteq> lattice
proof
fix x y :: "'a::linear_order"
from is_inf_minimum show "\<exists>inf. is_inf x y inf" ..
from is_sup_maximum show "\<exists>sup. is_sup x y sup" ..
qed
text {*
The lattice operations on linear orders indeed coincide with @{term
minimum} and @{term maximum}.
*}
theorem meet_mimimum: "x \<sqinter> y = minimum x y"
by (rule meet_equality) (rule is_inf_minimum)
theorem meet_maximum: "x \<squnion> y = maximum x y"
by (rule join_equality) (rule is_sup_maximum)
subsubsection {* Binary products *}
text {*
The class of lattices is closed under direct binary products (cf.\
\S\ref{sec:prod-order}).
*}
lemma is_inf_prod: "is_inf p q (fst p \<sqinter> fst q, snd p \<sqinter> snd q)"
proof
show "(fst p \<sqinter> fst q, snd p \<sqinter> snd q) \<sqsubseteq> p"
proof -
have "fst p \<sqinter> fst q \<sqsubseteq> fst p" ..
moreover have "snd p \<sqinter> snd q \<sqsubseteq> snd p" ..
ultimately show ?thesis by (simp add: leq_prod_def)
qed
show "(fst p \<sqinter> fst q, snd p \<sqinter> snd q) \<sqsubseteq> q"
proof -
have "fst p \<sqinter> fst q \<sqsubseteq> fst q" ..
moreover have "snd p \<sqinter> snd q \<sqsubseteq> snd q" ..
ultimately show ?thesis by (simp add: leq_prod_def)
qed
fix r assume rp: "r \<sqsubseteq> p" and rq: "r \<sqsubseteq> q"
show "r \<sqsubseteq> (fst p \<sqinter> fst q, snd p \<sqinter> snd q)"
proof -
have "fst r \<sqsubseteq> fst p \<sqinter> fst q"
proof
from rp show "fst r \<sqsubseteq> fst p" by (simp add: leq_prod_def)
from rq show "fst r \<sqsubseteq> fst q" by (simp add: leq_prod_def)
qed
moreover have "snd r \<sqsubseteq> snd p \<sqinter> snd q"
proof
from rp show "snd r \<sqsubseteq> snd p" by (simp add: leq_prod_def)
from rq show "snd r \<sqsubseteq> snd q" by (simp add: leq_prod_def)
qed
ultimately show ?thesis by (simp add: leq_prod_def)
qed
qed
lemma is_sup_prod: "is_sup p q (fst p \<squnion> fst q, snd p \<squnion> snd q)" (* FIXME dualize!? *)
proof
show "p \<sqsubseteq> (fst p \<squnion> fst q, snd p \<squnion> snd q)"
proof -
have "fst p \<sqsubseteq> fst p \<squnion> fst q" ..
moreover have "snd p \<sqsubseteq> snd p \<squnion> snd q" ..
ultimately show ?thesis by (simp add: leq_prod_def)
qed
show "q \<sqsubseteq> (fst p \<squnion> fst q, snd p \<squnion> snd q)"
proof -
have "fst q \<sqsubseteq> fst p \<squnion> fst q" ..
moreover have "snd q \<sqsubseteq> snd p \<squnion> snd q" ..
ultimately show ?thesis by (simp add: leq_prod_def)
qed
fix r assume "pr": "p \<sqsubseteq> r" and qr: "q \<sqsubseteq> r"
show "(fst p \<squnion> fst q, snd p \<squnion> snd q) \<sqsubseteq> r"
proof -
have "fst p \<squnion> fst q \<sqsubseteq> fst r"
proof
from "pr" show "fst p \<sqsubseteq> fst r" by (simp add: leq_prod_def)
from qr show "fst q \<sqsubseteq> fst r" by (simp add: leq_prod_def)
qed
moreover have "snd p \<squnion> snd q \<sqsubseteq> snd r"
proof
from "pr" show "snd p \<sqsubseteq> snd r" by (simp add: leq_prod_def)
from qr show "snd q \<sqsubseteq> snd r" by (simp add: leq_prod_def)
qed
ultimately show ?thesis by (simp add: leq_prod_def)
qed
qed
instance prod :: (lattice, lattice) lattice
proof
fix p q :: "'a::lattice \<times> 'b::lattice"
from is_inf_prod show "\<exists>inf. is_inf p q inf" ..
from is_sup_prod show "\<exists>sup. is_sup p q sup" ..
qed
text {*
The lattice operations on a binary product structure indeed coincide
with the products of the original ones.
*}
theorem meet_prod: "p \<sqinter> q = (fst p \<sqinter> fst q, snd p \<sqinter> snd q)"
by (rule meet_equality) (rule is_inf_prod)
theorem join_prod: "p \<squnion> q = (fst p \<squnion> fst q, snd p \<squnion> snd q)"
by (rule join_equality) (rule is_sup_prod)
subsubsection {* General products *}
text {*
The class of lattices is closed under general products (function
spaces) as well (cf.\ \S\ref{sec:fun-order}).
*}
lemma is_inf_fun: "is_inf f g (\<lambda>x. f x \<sqinter> g x)"
proof
show "(\<lambda>x. f x \<sqinter> g x) \<sqsubseteq> f"
proof
fix x show "f x \<sqinter> g x \<sqsubseteq> f x" ..
qed
show "(\<lambda>x. f x \<sqinter> g x) \<sqsubseteq> g"
proof
fix x show "f x \<sqinter> g x \<sqsubseteq> g x" ..
qed
fix h assume hf: "h \<sqsubseteq> f" and hg: "h \<sqsubseteq> g"
show "h \<sqsubseteq> (\<lambda>x. f x \<sqinter> g x)"
proof
fix x
show "h x \<sqsubseteq> f x \<sqinter> g x"
proof
from hf show "h x \<sqsubseteq> f x" ..
from hg show "h x \<sqsubseteq> g x" ..
qed
qed
qed
lemma is_sup_fun: "is_sup f g (\<lambda>x. f x \<squnion> g x)" (* FIXME dualize!? *)
proof
show "f \<sqsubseteq> (\<lambda>x. f x \<squnion> g x)"
proof
fix x show "f x \<sqsubseteq> f x \<squnion> g x" ..
qed
show "g \<sqsubseteq> (\<lambda>x. f x \<squnion> g x)"
proof
fix x show "g x \<sqsubseteq> f x \<squnion> g x" ..
qed
fix h assume fh: "f \<sqsubseteq> h" and gh: "g \<sqsubseteq> h"
show "(\<lambda>x. f x \<squnion> g x) \<sqsubseteq> h"
proof
fix x
show "f x \<squnion> g x \<sqsubseteq> h x"
proof
from fh show "f x \<sqsubseteq> h x" ..
from gh show "g x \<sqsubseteq> h x" ..
qed
qed
qed
instance "fun" :: (type, lattice) lattice
proof
fix f g :: "'a \<Rightarrow> 'b::lattice"
show "\<exists>inf. is_inf f g inf" by rule (rule is_inf_fun) (* FIXME @{text "from \<dots> show \<dots> .."} does not work!? unification incompleteness!? *)
show "\<exists>sup. is_sup f g sup" by rule (rule is_sup_fun)
qed
text {*
The lattice operations on a general product structure (function
space) indeed emerge by point-wise lifting of the original ones.
*}
theorem meet_fun: "f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)"
by (rule meet_equality) (rule is_inf_fun)
theorem join_fun: "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)"
by (rule join_equality) (rule is_sup_fun)
subsection {* Monotonicity and semi-morphisms *}
text {*
The lattice operations are monotone in both argument positions. In
fact, monotonicity of the second position is trivial due to
commutativity.
*}
theorem meet_mono: "x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> w \<Longrightarrow> x \<sqinter> y \<sqsubseteq> z \<sqinter> w"
proof -
{
fix a b c :: "'a::lattice"
assume "a \<sqsubseteq> c" have "a \<sqinter> b \<sqsubseteq> c \<sqinter> b"
proof
have "a \<sqinter> b \<sqsubseteq> a" ..
also have "\<dots> \<sqsubseteq> c" by fact
finally show "a \<sqinter> b \<sqsubseteq> c" .
show "a \<sqinter> b \<sqsubseteq> b" ..
qed
} note this [elim?]
assume "x \<sqsubseteq> z" then have "x \<sqinter> y \<sqsubseteq> z \<sqinter> y" ..
also have "\<dots> = y \<sqinter> z" by (rule meet_commute)
also assume "y \<sqsubseteq> w" then have "y \<sqinter> z \<sqsubseteq> w \<sqinter> z" ..
also have "\<dots> = z \<sqinter> w" by (rule meet_commute)
finally show ?thesis .
qed
theorem join_mono: "x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> w \<Longrightarrow> x \<squnion> y \<sqsubseteq> z \<squnion> w"
proof -
assume "x \<sqsubseteq> z" then have "dual z \<sqsubseteq> dual x" ..
moreover assume "y \<sqsubseteq> w" then have "dual w \<sqsubseteq> dual y" ..
ultimately have "dual z \<sqinter> dual w \<sqsubseteq> dual x \<sqinter> dual y"
by (rule meet_mono)
then have "dual (z \<squnion> w) \<sqsubseteq> dual (x \<squnion> y)"
by (simp only: dual_join)
then show ?thesis ..
qed
text {*
\medskip A semi-morphisms is a function @{text f} that preserves the
lattice operations in the following manner: @{term "f (x \<sqinter> y) \<sqsubseteq> f x
\<sqinter> f y"} and @{term "f x \<squnion> f y \<sqsubseteq> f (x \<squnion> y)"}, respectively. Any of
these properties is equivalent with monotonicity.
*}
theorem meet_semimorph:
"(\<And>x y. f (x \<sqinter> y) \<sqsubseteq> f x \<sqinter> f y) \<equiv> (\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y)"
proof
assume morph: "\<And>x y. f (x \<sqinter> y) \<sqsubseteq> f x \<sqinter> f y"
fix x y :: "'a::lattice"
assume "x \<sqsubseteq> y"
then have "x \<sqinter> y = x" ..
then have "x = x \<sqinter> y" ..
also have "f \<dots> \<sqsubseteq> f x \<sqinter> f y" by (rule morph)
also have "\<dots> \<sqsubseteq> f y" ..
finally show "f x \<sqsubseteq> f y" .
next
assume mono: "\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y"
show "\<And>x y. f (x \<sqinter> y) \<sqsubseteq> f x \<sqinter> f y"
proof -
fix x y
show "f (x \<sqinter> y) \<sqsubseteq> f x \<sqinter> f y"
proof
have "x \<sqinter> y \<sqsubseteq> x" .. then show "f (x \<sqinter> y) \<sqsubseteq> f x" by (rule mono)
have "x \<sqinter> y \<sqsubseteq> y" .. then show "f (x \<sqinter> y) \<sqsubseteq> f y" by (rule mono)
qed
qed
qed
lemma join_semimorph:
"(\<And>x y. f x \<squnion> f y \<sqsubseteq> f (x \<squnion> y)) \<equiv> (\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y)"
proof
assume morph: "\<And>x y. f x \<squnion> f y \<sqsubseteq> f (x \<squnion> y)"
fix x y :: "'a::lattice"
assume "x \<sqsubseteq> y" then have "x \<squnion> y = y" ..
have "f x \<sqsubseteq> f x \<squnion> f y" ..
also have "\<dots> \<sqsubseteq> f (x \<squnion> y)" by (rule morph)
also from `x \<sqsubseteq> y` have "x \<squnion> y = y" ..
finally show "f x \<sqsubseteq> f y" .
next
assume mono: "\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y"
show "\<And>x y. f x \<squnion> f y \<sqsubseteq> f (x \<squnion> y)"
proof -
fix x y
show "f x \<squnion> f y \<sqsubseteq> f (x \<squnion> y)"
proof
have "x \<sqsubseteq> x \<squnion> y" .. then show "f x \<sqsubseteq> f (x \<squnion> y)" by (rule mono)
have "y \<sqsubseteq> x \<squnion> y" .. then show "f y \<sqsubseteq> f (x \<squnion> y)" by (rule mono)
qed
qed
qed
end