Replaced the puny nat_transitive.ML by the general fast_lin_arith.ML.
%%%% RULES.ML
\idx{empty_set} ~(x:0)
\idx{union_iff} A:Union(C) <-> (EX B:C. A:B)
\idx{power_set} A : Pow(B) <-> A <= B
\idx{infinity} 0:Inf & (ALL y:Inf. succ(y): Inf)
\idx{foundation} A=0 | (EX x:A. ALL y:x. ~ y:A)
\idx{replacement} (!!x y z.[| x:A; P(x,y); P(x,z) |] ==> y=z) ==>
y : PrimReplace(A,P) <-> (EX x:A. P(x,y))
\idx{Replace_def} Replace(A,P) == PrimReplace(A, %x y. (EX!z.P(x,z)) & P(x,y))
\idx{RepFun_def} RepFun(A,f) == Replace(A, %x u. u=f(x))
\idx{Collect_def} Collect(A,P) == \{ y . x:A, x=y & P(x)\}
\idx{the_def} The(P) == Union(\{y . x:\{0\}, P(y)\})
\idx{Upair_def} Upair(a,b) ==
\{y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)\}
\idx{Inter_def} Inter(A) == \{ x:Union(A) . ALL y:A. x:y\}
\idx{Un_def} A Un B == Union(Upair(A,B))
\idx{Int_def} A Int B == Inter(Upair(A,B))
\idx{Diff_def} A - B == \{ x:A . ~(x:B) \}
\idx{cons_def} cons(a,A) == Upair(a,a) Un A
\idx{succ_def} succ(i) == cons(i,i)
\idx{Pair_def} <a,b> == \{\{a,a\}, \{a,b\}\}
\idx{fst_def} fst(A) == THE x. EX y. A=<x,y>
\idx{snd_def} snd(A) == THE y. EX x. A=<x,y>
\idx{split_def} split(p,c) == THE y. EX a b. p=<a,b> & y=c(a,b)
\idx{Sigma_def} Sigma(A,B) == UN x:A. UN y:B(x). \{<x,y>\}
\idx{domain_def} domain(r) == \{a:Union(Union(r)) . EX b. <a,b> : r\}
\idx{range_def} range(r) == \{b:Union(Union(r)) . EX a. <a,b> : r\}
\idx{field_def} field(r) == domain(r) Un range(r)
\idx{image_def} r``A == \{y : range(r) . EX x:A. <x,y> : r\}
\idx{vimage_def} r -`` A == \{x : domain(r) . EX y:A. <x,y> : r\}
\idx{lam_def} Lambda(A,f) == RepFun(A, %x. <x,f(x)>)
\idx{apply_def} f`a == THE y. <a,y> : f
\idx{restrict_def} restrict(f,A) == lam x:A.f`x
\idx{Pi_def} Pi(A,B) == \{f: Pow(Sigma(A,B)). ALL x:A. EX! y. <x,y>: f\}
\idx{subset_def} A <= B == ALL x:A. x:B
\idx{strict_subset_def} A <! B == A <=B & ~(A=B)
\idx{extension} A = B <-> A <= B & B <= A
\idx{Ball_def} Ball(A,P) == ALL x. x:A --> P(x)
\idx{Bex_def} Bex(A,P) == EX x. x:A & P(x)
%%%% LEMMAS.ML
\idx{ballI} [| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)
\idx{bspec} [| ALL x:A. P(x); x: A |] ==> P(x)
\idx{ballE} [| ALL x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q
\idx{ball_cong} [| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==>
(ALL x:A. P(x)) <-> (ALL x:A'. P'(x))
\idx{bexI} [| P(x); x: A |] ==> EX x:A. P(x)
\idx{bexCI} [| ALL x:A. ~P(x) ==> P(a); a: A |] ==> EX x:A.P(x)
\idx{bexE} [| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q
\idx{bex_cong} [| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==>
(EX x:A. P(x)) <-> (EX x:A'. P'(x))
\idx{subsetI} (!!x.x:A ==> x:B) ==> A <= B
\idx{subsetD} [| A <= B; c:A |] ==> c:B
\idx{subsetCE} [| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P
\idx{subset_refl} A <= A
\idx{subset_trans} [| A<=B; B<=C |] ==> A<=C
\idx{equalityI} [| A <= B; B <= A |] ==> A = B
\idx{equalityD1} A = B ==> A<=B
\idx{equalityD2} A = B ==> B<=A
\idx{equalityE} [| A = B; [| A<=B; B<=A |] ==> P |] ==> P
\idx{emptyE} a:0 ==> P
\idx{empty_subsetI} 0 <= A
\idx{equals0I} [| !!y. y:A ==> False |] ==> A=0
\idx{equals0D} [| A=0; a:A |] ==> P
\idx{PowI} A <= B ==> A : Pow(B)
\idx{PowD} A : Pow(B) ==> A<=B
\idx{ReplaceI} [| x: A; P(x,b); !!y. P(x,y) ==> y=b |] ==>
b : \{y. x:A, P(x,y)\}
\idx{ReplaceE} [| b : \{y. x:A, P(x,y)\};
!!x. [| x: A; P(x,b); ALL y. P(x,y)-->y=b |] ==> R
|] ==> R
\idx{Replace_cong} [| A=B; !!x y. x:B ==> P(x,y) <-> Q(x,y) |] ==>
\{y. x:A, P(x,y)\} = \{y. x:B, Q(x,y)\}
\idx{RepFunI} [| a : A |] ==> f(a) : RepFun(A,f)
\idx{RepFunE} [| b : RepFun(A, %x.f(x));
!!x.[| x:A; b=f(x) |] ==> P |] ==> P
\idx{RepFun_cong} [| A=B; !!x. x:B ==> f(x)=g(x) |] ==>
RepFun(A, %x.f(x)) = RepFun(B, %x.g(x))
\idx{separation} x : Collect(A,P) <-> x:A & P(x)
\idx{CollectI} [| a:A; P(a) |] ==> a : \{x:A. P(x)\}
\idx{CollectE} [| a : \{x:A. P(x)\}; [| a:A; P(a) |] ==> R |] ==> R
\idx{CollectD1} a : \{x:A. P(x)\} ==> a:A
\idx{CollectD2} a : \{x:A. P(x)\} ==> P(a)
\idx{Collect_cong} [| A=B; !!x. x:B ==> P(x) <-> Q(x) |] ==>
\{x:A. P(x)\} = \{x:B. Q(x)\}
\idx{UnionI} [| B: C; A: B |] ==> A: Union(C)
\idx{UnionE} [| A : Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R
\idx{InterI} [| !!x. x: C ==> A: x; c:C |] ==> A : Inter(C)
\idx{InterD} [| A : Inter(C); B : C |] ==> A : B
\idx{InterE} [| A : Inter(C); A:B ==> R; ~ B:C ==> R |] ==> R
\idx{UN_I} [| a: A; b: B(a) |] ==> b: (UN x:A. B(x))
\idx{UN_E} [| b : (UN x:A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R
\idx{INT_I} [| !!x. x: A ==> b: B(x); a: A |] ==> b: (INT x:A. B(x))
\idx{INT_E} [| b : (INT x:A. B(x)); a: A |] ==> b : B(a)
%%%% UPAIR.ML
\idx{pairing} a:Upair(b,c) <-> (a=b | a=c)
\idx{UpairI1} a : Upair(a,b)
\idx{UpairI2} b : Upair(a,b)
\idx{UpairE} [| a : Upair(b,c); a = b ==> P; a = c ==> P |] ==> P
\idx{UnI1} c : A ==> c : A Un B
\idx{UnI2} c : B ==> c : A Un B
\idx{UnCI} (~c : B ==> c : A) ==> c : A Un B
\idx{UnE} [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P
\idx{IntI} [| c : A; c : B |] ==> c : A Int B
\idx{IntD1} c : A Int B ==> c : A
\idx{IntD2} c : A Int B ==> c : B
\idx{IntE} [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P
\idx{DiffI} [| c : A; ~ c : B |] ==> c : A - B
\idx{DiffD1} c : A - B ==> c : A
\idx{DiffD2} [| c : A - B; c : B |] ==> P
\idx{DiffE} [| c : A - B; [| c:A; ~ c:B |] ==> P |] ==> P
\idx{consI1} a : cons(a,B)
\idx{consI2} a : B ==> a : cons(b,B)
\idx{consCI} (~ a:B ==> a=b) ==> a: cons(b,B)
\idx{consE} [| a : cons(b,A); a=b ==> P; a:A ==> P |] ==> P
\idx{singletonI} a : \{a\}
\idx{singletonE} [| a : \{b\}; a=b ==> P |] ==> P
\idx{succI1} i : succ(i)
\idx{succI2} i : j ==> i : succ(j)
\idx{succCI} (~ i:j ==> i=j) ==> i: succ(j)
\idx{succE} [| i : succ(j); i=j ==> P; i:j ==> P |] ==> P
\idx{succ_neq_0} [| succ(n)=0 |] ==> P
\idx{succ_inject} succ(m) = succ(n) ==> m=n
\idx{the_equality} [| P(a); !!x. P(x) ==> x=a |] ==> (THE x. P(x)) = a
\idx{theI} EX! x. P(x) ==> P(THE x. P(x))
\idx{mem_anti_sym} [| a:b; b:a |] ==> P
\idx{mem_anti_refl} a:a ==> P
%%% SUBSET.ML
\idx{Union_upper} B:A ==> B <= Union(A)
\idx{Union_least} [| !!x. x:A ==> x<=C |] ==> Union(A) <= C
\idx{Inter_lower} B:A ==> Inter(A) <= B
\idx{Inter_greatest} [| a:A; !!x. x:A ==> C<=x |] ==> C <= Inter(A)
\idx{Un_upper1} A <= A Un B
\idx{Un_upper2} B <= A Un B
\idx{Un_least} [| A<=C; B<=C |] ==> A Un B <= C
\idx{Int_lower1} A Int B <= A
\idx{Int_lower2} A Int B <= B
\idx{Int_greatest} [| C<=A; C<=B |] ==> C <= A Int B
\idx{Diff_subset} A-B <= A
\idx{Diff_contains} [| C<=A; C Int B = 0 |] ==> C <= A-B
\idx{Collect_subset} Collect(A,P) <= A
%%% PAIR.ML
\idx{Pair_inject1} <a,b> = <c,d> ==> a=c
\idx{Pair_inject2} <a,b> = <c,d> ==> b=d
\idx{Pair_inject} [| <a,b> = <c,d>; [| a=c; b=d |] ==> P |] ==> P
\idx{Pair_neq_0} <a,b>=0 ==> P
\idx{fst_conv} fst(<a,b>) = a
\idx{snd_conv} snd(<a,b>) = b
\idx{split_conv} split(<a,b>, %x y.c(x,y)) = c(a,b)
\idx{SigmaI} [| a:A; b:B(a) |] ==> <a,b> : (SUM x:A. B(x))
\idx{SigmaE} [| c: (SUM x:A. B(x));
!!x y.[| x:A; y:B(x); c=<x,y> |] ==> P
|] ==> P
\idx{SigmaE2} [| <a,b> : (SUM x:A. B(x));
[| a:A; b:B(a) |] ==> P
|] ==> P
%%% DOMRANGE.ML
\idx{domainI} <a,b>: r ==> a : domain(r)
\idx{domainE} [| a : domain(r); !!y. <a,y>: r ==> P |] ==> P
\idx{domain_subset} domain(Sigma(A,B)) <= A
\idx{rangeI} <a,b>: r ==> b : range(r)
\idx{rangeE} [| b : range(r); !!x. <x,b>: r ==> P |] ==> P
\idx{range_subset} range(A*B) <= B
\idx{fieldI1} <a,b>: r ==> a : field(r)
\idx{fieldI2} <a,b>: r ==> b : field(r)
\idx{fieldCI} (~ <c,a>:r ==> <a,b>: r) ==> a : field(r)
\idx{fieldE} [| a : field(r);
!!x. <a,x>: r ==> P;
!!x. <x,a>: r ==> P
|] ==> P
\idx{field_subset} field(A*A) <= A
\idx{imageI} [| <a,b>: r; a:A |] ==> b : r``A
\idx{imageE} [| b: r``A; !!x.[| <x,b>: r; x:A |] ==> P |] ==> P
\idx{vimageI} [| <a,b>: r; b:B |] ==> a : r-``B
\idx{vimageE} [| a: r-``B; !!x.[| <a,x>: r; x:B |] ==> P |] ==> P
%%% FUNC.ML
\idx{fun_is_rel} f: (PROD x:A.B(x)) ==> f <= Sigma(A,B)
\idx{apply_equality} [| <a,b>: f; f: (PROD x:A.B(x)) |] ==> f`a = b
\idx{apply_equality2} [| <a,b>: f; <a,c>: f; f: (PROD x:A.B(x)) |] ==> b=c
\idx{apply_type} [| f: (PROD x:A.B(x)); a:A |] ==> f`a : B(a)
\idx{apply_Pair} [| f: (PROD x:A.B(x)); a:A |] ==> <a,f`a>: f
\idx{apply_iff} [| f: (PROD x:A.B(x)); a:A |] ==> <a,b>: f <-> f`a = b
\idx{domain_type} [| <a,b> : f; f: (PROD x:A.B(x)) |] ==> a : A
\idx{range_type} [| <a,b> : f; f: (PROD x:A.B(x)) |] ==> b : B(a)
\idx{Pi_type} [| f: A->C; !!x. x:A ==> f`x : B(x) |] ==> f: Pi(A,B)
\idx{domain_of_fun} f : Pi(A,B) ==> domain(f)=A
\idx{range_of_fun} f : Pi(A,B) ==> f: A->range(f)
\idx{fun_extension} [| f : (PROD x:A.B(x)); g: (PROD x:A.D(x));
!!x. x:A ==> f`x = g`x
|] ==> f=g
\idx{lamI} a:A ==> <a,b(a)> : (lam x:A. b(x))
\idx{lamE} [| p: (lam x:A. b(x)); !!x.[| x:A; p=<x,b(x)> |] ==> P
|] ==> P
\idx{lam_type} [| !!x. x:A ==> b(x): B(x) |] ==>
(lam x:A.b(x)) : (PROD x:A.B(x))
\idx{beta_conv} a : A ==> (lam x:A.b(x)) ` a = b(a)
\idx{eta_conv} f : (PROD x:A.B(x)) ==> (lam x:A. f`x) = f
\idx{lam_theI} (!!x. x:A ==> EX! y. Q(x,y)) ==> EX h. ALL x:A. Q(x, h`x)
\idx{restrict_conv} a : A ==> restrict(f,A) ` a = f`a
\idx{restrict_type} [| !!x. x:A ==> f`x: B(x) |] ==>
restrict(f,A) : (PROD x:A.B(x))
\idx{fun_empty} 0: 0->0
\idx{fun_single} \{<a,b>\} : \{a\} -> \{b\}
\idx{fun_disjoint_Un} [| f: A->B; g: C->D; A Int C = 0 |] ==>
(f Un g) : (A Un C) -> (B Un D)
\idx{fun_disjoint_apply1} [| a:A; f: A->B; g: C->D; A Int C = 0 |] ==>
(f Un g)`a = f`a
\idx{fun_disjoint_apply2} [| c:C; f: A->B; g: C->D; A Int C = 0 |] ==>
(f Un g)`c = g`c
%%% SIMPDATA.ML
a\in a & \bimp & False\\
a\in \emptyset & \bimp & False\\
a \in A \union B & \bimp & a\in A \disj a\in B\\
a \in A \inter B & \bimp & a\in A \conj a\in B\\
a \in A-B & \bimp & a\in A \conj \neg (a\in B)\\
a \in {\tt cons}(b,B) & \bimp & a=b \disj a\in B\\
i \in {\tt succ}(j) & \bimp & i=j \disj i\in j\\
A\in \bigcup(C) & \bimp & (\exists B. B\in C \conj A\in B)\\
A\in \bigcap(C) & \bimp & (\forall B. B\in C \imp A\in B)
\qquad (\exists B. B\in C)\\
a \in {\tt Collect}(A,P) & \bimp & a\in A \conj P(a)\\
b \in {\tt RepFun}(A,f) & \bimp & (\exists x. x\in A \conj b=f(x))
equalities.ML perm.ML plus.ML nat.ML
----------------------------------------------------------------
equalities.ML
\idx{Int_absorb} A Int A = A
\idx{Int_commute} A Int B = B Int A
\idx{Int_assoc} (A Int B) Int C = A Int (B Int C)
\idx{Int_Un_distrib} (A Un B) Int C = (A Int C) Un (B Int C)
\idx{Un_absorb} A Un A = A
\idx{Un_commute} A Un B = B Un A
\idx{Un_assoc} (A Un B) Un C = A Un (B Un C)
\idx{Un_Int_distrib} (A Int B) Un C = (A Un C) Int (B Un C)
\idx{Diff_cancel} A-A = 0
\idx{Diff_disjoint} A Int (B-A) = 0
\idx{Diff_partition} A<=B ==> A Un (B-A) = B
\idx{double_complement} [| A<=B; B<= C |] ==> (B - (C-A)) = A
\idx{Diff_Un} A - (B Un C) = (A-B) Int (A-C)
\idx{Diff_Int} A - (B Int C) = (A-B) Un (A-C)
\idx{Union_Un_distrib} Union(A Un B) = Union(A) Un Union(B)
\idx{Inter_Un_distrib} [| a:A; b:B |] ==>
Inter(A Un B) = Inter(A) Int Inter(B)
\idx{Int_Union_RepFun} A Int Union(B) = (UN C:B. A Int C)
\idx{Un_Inter_RepFun} b:B ==>
A Un Inter(B) = (INT C:B. A Un C)
\idx{SUM_Un_distrib1} (SUM x:A Un B. C(x)) =
(SUM x:A. C(x)) Un (SUM x:B. C(x))
\idx{SUM_Un_distrib2} (SUM x:C. A(x) Un B(x)) =
(SUM x:C. A(x)) Un (SUM x:C. B(x))
\idx{SUM_Int_distrib1} (SUM x:A Int B. C(x)) =
(SUM x:A. C(x)) Int (SUM x:B. C(x))
\idx{SUM_Int_distrib2} (SUM x:C. A(x) Int B(x)) =
(SUM x:C. A(x)) Int (SUM x:C. B(x))
----------------------------------------------------------------
perm.ML
\idx{comp_def}
r O s == \{xz : domain(s)*range(r) .
EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r\}),
\idx{id_def} (*the identity function for A*)
id(A) == (lam x:A. x)),
\idx{inj_def}
inj(A,B) ==
\{ f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x\}),
\idx{surj_def}
surj(A,B) == \{ f: A->B . ALL y:B. EX x:A. f`x=y\}),
\idx{bij_def}
bij(A,B) == inj(A,B) Int surj(A,B))
\idx{surj_is_fun} f: surj(A,B) ==> f: A->B
\idx{fun_is_surj} f : Pi(A,B) ==> f: surj(A,range(f))
\idx{inj_is_fun} f: inj(A,B) ==> f: A->B
\idx{inj_equality} [| <a,b>:f; <c,b>:f; f: inj(A,B) |] ==> a=c
\idx{bij_is_fun} f: bij(A,B) ==> f: A->B
\idx{inj_converse_surj} f: inj(A,B) ==> converse(f): surj(range(f), A)
\idx{left_inverse} [| f: inj(A,B); a: A |] ==> converse(f)`(f`a) = a
\idx{right_inverse} [| f: inj(A,B); b: range(f) |] ==>
f`(converse(f)`b) = b
\idx{inj_converse_inj} f: inj(A,B) ==> converse(f): inj(range(f), A)
\idx{bij_converse_bij} f: bij(A,B) ==> converse(f): bij(B,A)
\idx{comp_type} [| s<=A*B; r<=B*C |] ==> (r O s) <= A*C
\idx{comp_assoc} (r O s) O t = r O (s O t)
\idx{left_comp_id} r<=A*B ==> id(B) O r = r
\idx{right_comp_id} r<=A*B ==> r O id(A) = r
\idx{comp_func} [| g: A->B; f: B->C |] ==> (f O g) : A->C
\idx{comp_func_apply} [| g: A->B; f: B->C; a:A |] ==> (f O g)`a = f`(g`a)
\idx{comp_inj} [| g: inj(A,B); f: inj(B,C) |] ==> (f O g) : inj(A,C)
\idx{comp_surj} [| g: surj(A,B); f: surj(B,C) |] ==> (f O g) : surj(A,C)
\idx{comp_bij} [| g: bij(A,B); f: bij(B,C) |] ==> (f O g) : bij(A,C)
\idx{left_comp_inverse} f: inj(A,B) ==> converse(f) O f = id(A)
\idx{right_comp_inverse} f: surj(A,B) ==> f O converse(f) = id(B)
\idx{bij_disjoint_Un}
[| f: bij(A,B); g: bij(C,D); A Int C = 0; B Int D = 0 |] ==>
(f Un g) : bij(A Un C, B Un D)
\idx{restrict_bij} [| f: inj(A,B); C<=A |] ==> restrict(f,C): bij(C, f``C)
----------------------------------------------------------------
plus.ML
\idx{plus_def} A+B == \{0\}*A Un \{\{0\}\}*B
\idx{Inl_def} Inl(a) == < 0 ,a>
\idx{Inr_def} Inr(b) == <\{0\},b>
\idx{when_def} when(u,c,d) ==
THE y. EX z.(u=Inl(z) & y=c(z)) | (u=Inr(z) & y=d(z))
\idx{plus_InlI} a : A ==> Inl(a) : A+B
\idx{plus_InrI} b : B ==> Inr(b) : A+B
\idx{Inl_inject} Inl(a) = Inl(b) ==> a=b
\idx{Inr_inject} Inr(a) = Inr(b) ==> a=b
\idx{Inl_neq_Inr} Inl(a)=Inr(b) ==> P
\idx{plusE2} u: A+B ==> (EX x. x:A & u=Inl(x)) | (EX y. y:B & u=Inr(y))
\idx{when_Inl_conv} when(Inl(a),c,d) = c(a)
\idx{when_Inr_conv} when(Inr(b),c,d) = d(b)
\idx{when_type} [| u: A+B;
!!x. x: A ==> c(x): C(Inl(x));
!!y. y: B ==> d(y): C(Inr(y))
|] ==> when(u,c,d) : C(u)
----------------------------------------------------------------
nat.ML
\idx{nat_def} nat == lfp(lam r: Pow(Inf). \{0\} Un RepFun(r,succ))
\idx{nat_case_def} nat_case(n,a,b) ==
THE y. n=0 & y=a | (EX x. n=succ(x) & y=b(x))
\idx{nat_rec_def} nat_rec(k,a,b) ==
transrec(nat, k, %n f. nat_case(n, a, %m. b(m, f`m)))
\idx{nat_0_I} 0 : nat
\idx{nat_succ_I} n : nat ==> succ(n) : nat
\idx{nat_induct}
[| n: nat; P(0); !!x. [| x: nat; P(x) |] ==> P(succ(x))
|] ==> P(n)
\idx{nat_case_0_conv} nat_case(0,a,b) = a
\idx{nat_case_succ_conv} nat_case(succ(m),a,b) = b(m)
\idx{nat_case_type}
[| n: nat; a: C(0); !!m. m: nat ==> b(m): C(succ(m))
|] ==> nat_case(n,a,b) : C(n)
\idx{nat_rec_0_conv} nat_rec(0,a,b) = a
\idx{nat_rec_succ_conv} m: nat ==> nat_rec(succ(m),a,b) = b(m, nat_rec(m,a,b))
\idx{nat_rec_type}
[| n: nat;
a: C(0);
!!m z. [| m: nat; z: C(m) |] ==> b(m,z): C(succ(m))
|] ==> nat_rec(n,a,b) : C(n)