src/Doc/Tutorial/Misc/Tree.thy
author wenzelm
Thu, 22 Apr 2021 10:11:11 +0200
changeset 73595 aece5cc9efb7
parent 69597 ff784d5a5bfb
permissions -rw-r--r--
simplified typesetting of \<guillemotleft>...\<guillemotright>;

(*<*)
theory Tree imports Main begin
(*>*)

text\<open>\noindent
Define the datatype of \rmindex{binary trees}:
\<close>

datatype 'a tree = Tip | Node "'a tree" 'a "'a tree"(*<*)

primrec mirror :: "'a tree \<Rightarrow> 'a tree" where
"mirror Tip = Tip" |
"mirror (Node l x r) = Node (mirror r) x (mirror l)"(*>*)

text\<open>\noindent
Define a function \<^term>\<open>mirror\<close> that mirrors a binary tree
by swapping subtrees recursively. Prove
\<close>

lemma mirror_mirror: "mirror(mirror t) = t"
(*<*)
apply(induct_tac t)
by(auto)

primrec flatten :: "'a tree => 'a list" where
"flatten Tip = []" |
"flatten (Node l x r) = flatten l @ [x] @ flatten r"
(*>*)

text\<open>\noindent
Define a function \<^term>\<open>flatten\<close> that flattens a tree into a list
by traversing it in infix order. Prove
\<close>

lemma "flatten(mirror t) = rev(flatten t)"
(*<*)
apply(induct_tac t)
by(auto)

end
(*>*)