Removed remaining references to Main.thy in reconstruction code.
(* Title: Pure/theory.ML
ID: $Id$
Author: Lawrence C Paulson and Markus Wenzel
The abstract type "theory" of theories.
*)
signature BASIC_THEORY =
sig
type theory
exception THEORY of string * theory list
val rep_theory: theory ->
{sign: Sign.sg,
const_deps: unit Graph.T,
final_consts: typ list Symtab.table,
axioms: term Symtab.table,
oracles: ((Sign.sg * Object.T -> term) * stamp) Symtab.table,
parents: theory list,
ancestors: theory list}
val sign_of: theory -> Sign.sg
val is_draft: theory -> bool
val syn_of: theory -> Syntax.syntax
val parents_of: theory -> theory list
val ancestors_of: theory -> theory list
val subthy: theory * theory -> bool
val eq_thy: theory * theory -> bool
val cert_axm: Sign.sg -> string * term -> string * term
val read_def_axm: Sign.sg * (indexname -> typ option) * (indexname -> sort option) ->
string list -> string * string -> string * term
val read_axm: Sign.sg -> string * string -> string * term
val inferT_axm: Sign.sg -> string * term -> string * term
end
signature THEORY =
sig
include BASIC_THEORY
val axiomK: string
val oracleK: string
(*theory extension primitives*)
val add_classes: (bclass * xclass list) list -> theory -> theory
val add_classes_i: (bclass * class list) list -> theory -> theory
val add_classrel: (xclass * xclass) list -> theory -> theory
val add_classrel_i: (class * class) list -> theory -> theory
val add_defsort: string -> theory -> theory
val add_defsort_i: sort -> theory -> theory
val add_types: (bstring * int * mixfix) list -> theory -> theory
val add_nonterminals: bstring list -> theory -> theory
val add_tyabbrs: (bstring * string list * string * mixfix) list
-> theory -> theory
val add_tyabbrs_i: (bstring * string list * typ * mixfix) list
-> theory -> theory
val add_arities: (xstring * string list * string) list -> theory -> theory
val add_arities_i: (string * sort list * sort) list -> theory -> theory
val add_consts: (bstring * string * mixfix) list -> theory -> theory
val add_consts_i: (bstring * typ * mixfix) list -> theory -> theory
val add_syntax: (bstring * string * mixfix) list -> theory -> theory
val add_syntax_i: (bstring * typ * mixfix) list -> theory -> theory
val add_modesyntax: string * bool -> (bstring * string * mixfix) list -> theory -> theory
val add_modesyntax_i: string * bool -> (bstring * typ * mixfix) list -> theory -> theory
val del_modesyntax: string * bool -> (bstring * string * mixfix) list -> theory -> theory
val del_modesyntax_i: string * bool -> (bstring * typ * mixfix) list -> theory -> theory
val add_trfuns:
(string * (Syntax.ast list -> Syntax.ast)) list *
(string * (term list -> term)) list *
(string * (term list -> term)) list *
(string * (Syntax.ast list -> Syntax.ast)) list -> theory -> theory
val add_trfunsT:
(string * (bool -> typ -> term list -> term)) list -> theory -> theory
val add_advanced_trfuns:
(string * (Sign.sg -> Syntax.ast list -> Syntax.ast)) list *
(string * (Sign.sg -> term list -> term)) list *
(string * (Sign.sg -> term list -> term)) list *
(string * (Sign.sg -> Syntax.ast list -> Syntax.ast)) list -> theory -> theory
val add_advanced_trfunsT:
(string * (Sign.sg -> bool -> typ -> term list -> term)) list -> theory -> theory
val add_tokentrfuns:
(string * string * (string -> string * real)) list -> theory -> theory
val add_mode_tokentrfuns: string -> (string * (string -> string * real)) list
-> theory -> theory
val add_trrules: (xstring * string) Syntax.trrule list -> theory -> theory
val add_trrules_i: Syntax.ast Syntax.trrule list -> theory -> theory
val add_axioms: (bstring * string) list -> theory -> theory
val add_axioms_i: (bstring * term) list -> theory -> theory
val add_oracle: bstring * (Sign.sg * Object.T -> term) -> theory -> theory
val add_finals: bool -> string list -> theory -> theory
val add_finals_i: bool -> term list -> theory -> theory
val add_defs: bool -> (bstring * string) list -> theory -> theory
val add_defs_i: bool -> (bstring * term) list -> theory -> theory
val add_path: string -> theory -> theory
val parent_path: theory -> theory
val root_path: theory -> theory
val absolute_path: theory -> theory
val hide_space: bool -> string * xstring list -> theory -> theory
val hide_space_i: bool -> string * string list -> theory -> theory
val hide_classes: bool -> string list -> theory -> theory
val hide_types: bool -> string list -> theory -> theory
val hide_consts: bool -> string list -> theory -> theory
val add_name: string -> theory -> theory
val copy: theory -> theory
val prep_ext: theory -> theory
val prep_ext_merge: theory list -> theory
val requires: theory -> string -> string -> unit
val assert_super: theory -> theory -> theory
val pre_pure: theory
end;
signature PRIVATE_THEORY =
sig
include THEORY
val init_data: Object.kind -> (Object.T * (Object.T -> Object.T) * (Object.T -> Object.T) *
(Object.T * Object.T -> Object.T) * (Sign.sg -> Object.T -> unit)) -> theory -> theory
val print_data: Object.kind -> theory -> unit
val get_data: Object.kind -> (Object.T -> 'a) -> theory -> 'a
val put_data: Object.kind -> ('a -> Object.T) -> 'a -> theory -> theory
end;
structure Theory: PRIVATE_THEORY =
struct
(** datatype theory **)
(*Note: dependencies are only tracked for non-overloaded constant definitions*)
datatype theory =
Theory of {
sign: Sign.sg,
const_deps: unit Graph.T,
final_consts: typ list Symtab.table,
axioms: term Symtab.table,
oracles: ((Sign.sg * Object.T -> term) * stamp) Symtab.table,
parents: theory list,
ancestors: theory list};
fun make_theory sign const_deps final_consts axioms oracles parents ancestors =
Theory {sign = sign, const_deps = const_deps, final_consts = final_consts, axioms = axioms,
oracles = oracles, parents = parents, ancestors = ancestors};
fun rep_theory (Theory args) = args;
val sign_of = #sign o rep_theory;
val is_draft = Sign.is_draft o sign_of;
val syn_of = Sign.syn_of o sign_of;
val parents_of = #parents o rep_theory;
val ancestors_of = #ancestors o rep_theory;
(*errors involving theories*)
exception THEORY of string * theory list;
(*compare theories*)
val subthy = Sign.subsig o pairself sign_of;
val eq_thy = Sign.eq_sg o pairself sign_of;
(*check for some theory*)
fun requires thy name what =
if Sign.exists_stamp name (sign_of thy) then ()
else error ("Require theory " ^ quote name ^ " as an ancestor for " ^ what);
fun assert_super thy1 thy2 =
if subthy (thy1, thy2) then thy2
else raise THEORY ("Not a super theory", [thy1, thy2]);
(*partial Pure theory*)
val pre_pure =
make_theory Sign.pre_pure Graph.empty Symtab.empty Symtab.empty Symtab.empty [] [];
(** extend theory **)
(*name spaces*)
val axiomK = "axiom";
val oracleK = "oracle";
(* extend logical part of a theory *)
fun err_dup_axms names =
error ("Duplicate axiom name(s): " ^ commas_quote names);
fun err_dup_oras names =
error ("Duplicate oracles: " ^ commas_quote names);
fun ext_theory thy ext_sg ext_deps new_axms new_oras =
let
val Theory {sign, const_deps, final_consts, axioms, oracles, parents, ancestors} = thy;
val draft = Sign.is_draft sign;
val axioms' =
Symtab.extend (if draft then axioms else Symtab.empty, new_axms)
handle Symtab.DUPS names => err_dup_axms names;
val oracles' =
Symtab.extend (oracles, new_oras)
handle Symtab.DUPS names => err_dup_oras names;
val (parents', ancestors') =
if draft then (parents, ancestors) else ([thy], thy :: ancestors);
in
make_theory (ext_sg sign) (ext_deps const_deps) final_consts axioms' oracles' parents' ancestors'
end;
(* extend signature of a theory *)
fun ext_sign extfun decls thy = ext_theory thy (extfun decls) I [] [];
val add_classes = ext_sign Sign.add_classes;
val add_classes_i = ext_sign Sign.add_classes_i;
val add_classrel = ext_sign Sign.add_classrel;
val add_classrel_i = ext_sign Sign.add_classrel_i;
val add_defsort = ext_sign Sign.add_defsort;
val add_defsort_i = ext_sign Sign.add_defsort_i;
val add_types = ext_sign Sign.add_types;
val add_nonterminals = ext_sign Sign.add_nonterminals;
val add_tyabbrs = ext_sign Sign.add_tyabbrs;
val add_tyabbrs_i = ext_sign Sign.add_tyabbrs_i;
val add_arities = ext_sign Sign.add_arities;
val add_arities_i = ext_sign Sign.add_arities_i;
val add_consts = ext_sign Sign.add_consts;
val add_consts_i = ext_sign Sign.add_consts_i;
val add_syntax = ext_sign Sign.add_syntax;
val add_syntax_i = ext_sign Sign.add_syntax_i;
val add_modesyntax = curry (ext_sign Sign.add_modesyntax);
val add_modesyntax_i = curry (ext_sign Sign.add_modesyntax_i);
val del_modesyntax = curry (ext_sign Sign.del_modesyntax);
val del_modesyntax_i = curry (ext_sign Sign.del_modesyntax_i);
val add_trfuns = ext_sign Sign.add_trfuns;
val add_trfunsT = ext_sign Sign.add_trfunsT;
val add_advanced_trfuns = ext_sign Sign.add_advanced_trfuns;
val add_advanced_trfunsT = ext_sign Sign.add_advanced_trfunsT;
val add_tokentrfuns = ext_sign Sign.add_tokentrfuns;
fun add_mode_tokentrfuns m = add_tokentrfuns o map (fn (s, f) => (m, s, f));
val add_trrules = ext_sign Sign.add_trrules;
val add_trrules_i = ext_sign Sign.add_trrules_i;
val add_path = ext_sign Sign.add_path;
val parent_path = add_path "..";
val root_path = add_path "/";
val absolute_path = add_path "//";
val add_space = ext_sign Sign.add_space;
val hide_space = ext_sign o Sign.hide_space;
val hide_space_i = ext_sign o Sign.hide_space_i;
fun hide_classes b = curry (hide_space_i b) Sign.classK;
fun hide_types b = curry (hide_space_i b) Sign.typeK;
fun hide_consts b = curry (hide_space_i b) Sign.constK;
val add_name = ext_sign Sign.add_name;
val copy = ext_sign (K Sign.copy) ();
val prep_ext = ext_sign (K Sign.prep_ext) ();
(** add axioms **)
(* prepare axioms *)
fun err_in_axm name =
error ("The error(s) above occurred in axiom " ^ quote name);
fun no_vars sg tm = (case (term_vars tm, term_tvars tm) of
([], []) => tm
| (ts, ixns) => error (Pretty.string_of (Pretty.block (Pretty.breaks
(Pretty.str "Illegal schematic variable(s) in term:" ::
map (Sign.pretty_term sg) ts @
map (Sign.pretty_typ sg o TVar) ixns)))));
fun cert_axm sg (name, raw_tm) =
let
val (t, T, _) = Sign.certify_term (Sign.pp sg) sg raw_tm
handle TYPE (msg, _, _) => error msg
| TERM (msg, _) => error msg;
in
Term.no_dummy_patterns t handle TERM (msg, _) => error msg;
assert (T = propT) "Term not of type prop";
(name, no_vars sg t)
end;
(*some duplication of code with read_def_cterm*)
fun read_def_axm (sg, types, sorts) used (name, str) =
let
val ts = Syntax.read (Sign.is_logtype sg) (Sign.syn_of sg) propT str;
val (t, _) = Sign.infer_types (Sign.pp sg) sg types sorts used true (ts, propT);
in cert_axm sg (name, t) end
handle ERROR => err_in_axm name;
fun read_axm sg name_str = read_def_axm (sg, K NONE, K NONE) [] name_str;
fun inferT_axm sg (name, pre_tm) =
let val (t, _) = Sign.infer_types (Sign.pp sg) sg
(K NONE) (K NONE) [] true ([pre_tm], propT);
in (name, no_vars sg t) end
handle ERROR => err_in_axm name;
(* extend axioms of a theory *)
fun ext_axms prep_axm raw_axms (thy as Theory {sign, ...}) =
let
val raw_axms' = map (apfst (Sign.full_name sign)) raw_axms;
val axioms =
map (apsnd (Term.compress_term o Logic.varify) o prep_axm sign) raw_axms';
val ext_sg = Sign.add_space (axiomK, map fst axioms);
in ext_theory thy ext_sg I axioms [] end;
val add_axioms = ext_axms read_axm;
val add_axioms_i = ext_axms cert_axm;
(* add oracle **)
fun add_oracle (raw_name, oracle) (thy as Theory {sign, ...}) =
let
val name = Sign.full_name sign raw_name;
val ext_sg = Sign.add_space (oracleK, [name]);
in ext_theory thy ext_sg I [] [(name, (oracle, stamp ()))] end;
(** add constant definitions **)
(* clash_types, clash_consts *)
(*check if types have common instance (ignoring sorts)*)
fun clash_types ty1 ty2 =
let
val ty1' = Type.varifyT ty1;
val ty2' = incr_tvar (maxidx_of_typ ty1' + 1) (Type.varifyT ty2);
in Type.raw_unify (ty1', ty2') end;
fun clash_consts (c1, ty1) (c2, ty2) =
c1 = c2 andalso clash_types ty1 ty2;
(* clash_defns *)
fun clash_defn c_ty (name, tm) =
let val (c, ty') = dest_Const (head_of (fst (Logic.dest_equals (Logic.strip_imp_concl tm)))) in
if clash_consts c_ty (c, ty') then SOME (name, ty') else NONE
end handle TERM _ => NONE;
fun clash_defns c_ty axms =
distinct (List.mapPartial (clash_defn c_ty) axms);
(* overloading *)
datatype overloading = NoOverloading | Useless | Plain;
fun overloading sg declT defT =
let val T = Term.incr_tvar (maxidx_of_typ declT + 1) (Type.varifyT defT) in
if Sign.typ_instance sg (declT, T) then NoOverloading
else if Sign.typ_instance sg (Type.strip_sorts declT, Type.strip_sorts T) then Useless
else Plain
end;
(* dest_defn *)
fun dest_defn tm =
let
fun err msg = raise TERM (msg, [tm]);
val (lhs, rhs) = Logic.dest_equals (Logic.strip_imp_concl tm)
handle TERM _ => err "Not a meta-equality (==)";
val (head, args) = strip_comb lhs;
val c_ty as (c, ty) = dest_Const head
handle TERM _ => err "Head of lhs not a constant";
fun dest_free (Free (x, _)) = x
| dest_free (Const ("TYPE", Type ("itself", [TFree (x, _)]))) = x
| dest_free _ = raise Match;
val show_frees = commas_quote o map dest_free;
val show_tfrees = commas_quote o map fst;
val lhs_dups = duplicates args;
val rhs_extras = gen_rems (op =) (term_frees rhs, args);
val rhs_extrasT = gen_rems (op =) (term_tfrees rhs, typ_tfrees ty);
in
if not (forall (can dest_free) args) then
err "Arguments (on lhs) must be variables"
else if not (null lhs_dups) then
err ("Duplicate variables on lhs: " ^ show_frees lhs_dups)
else if not (null rhs_extras) then
err ("Extra variables on rhs: " ^ show_frees rhs_extras)
else if not (null rhs_extrasT) then
err ("Extra type variables on rhs: " ^ show_tfrees rhs_extrasT)
else if exists_Const (fn c_ty' => c_ty' = c_ty) rhs then
err ("Constant to be defined occurs on rhs")
else (c_ty, rhs)
end;
(* check_defn *)
fun err_in_defn sg name msg =
(error_msg msg;
error ("The error(s) above occurred in definition " ^ quote (Sign.full_name sg name)));
fun cycle_msg namess = "Cyclic dependency of constants:\n" ^
cat_lines (map (space_implode " -> " o map quote o rev) namess);
fun add_deps (c, cs) deps =
let fun declare (G, x) = Graph.new_node (x, ()) G handle Graph.DUP _ => G
in Library.foldl declare (deps, c :: cs) |> Graph.add_deps_acyclic (c, cs) end;
fun check_defn sg overloaded final_consts ((deps, axms), def as (name, tm)) =
let
fun is_final (c, ty) =
case Symtab.lookup(final_consts,c) of
SOME [] => true
| SOME tys => exists (curry (Sign.typ_instance sg) ty) tys
| NONE => false;
fun pretty_const (c, ty) = [Pretty.str c, Pretty.str " ::", Pretty.brk 1,
Pretty.quote (Sign.pretty_typ sg (#1 (Type.freeze_thaw_type ty)))];
fun def_txt (c_ty, txt) = Pretty.block
(Pretty.str "Definition of " :: pretty_const c_ty @
(if txt = "" then [] else [Pretty.str txt]));
fun show_defn c (dfn, ty') = Pretty.block
(Pretty.str " " :: pretty_const (c, ty') @ [Pretty.str " in ", Pretty.str dfn]);
val (c_ty as (c, ty), rhs) = dest_defn tm
handle TERM (msg, _) => err_in_defn sg name msg;
val c_decl =
(case Sign.const_type sg c of SOME T => T
| NONE => err_in_defn sg name ("Undeclared constant " ^ quote c));
val clashed = clash_defns c_ty axms;
in
if not (null clashed) then
err_in_defn sg name (Pretty.string_of (Pretty.chunks
(def_txt (c_ty, " clashes with") :: map (show_defn c) clashed)))
else if is_final c_ty then
err_in_defn sg name (Pretty.string_of (Pretty.block
([Pretty.str "The constant",Pretty.brk 1] @
pretty_const c_ty @
[Pretty.brk 1,Pretty.str "has been declared final"])))
else
(case overloading sg c_decl ty of
NoOverloading =>
(add_deps (c, Term.term_consts rhs) deps
handle Graph.CYCLES namess => err_in_defn sg name (cycle_msg namess),
def :: axms)
| Useless =>
err_in_defn sg name (Pretty.string_of (Pretty.chunks
[Library.setmp show_sorts true def_txt (c_ty, ""), Pretty.str
"imposes additional sort constraints on the declared type of the constant"]))
| Plain =>
(if not overloaded then warning (Pretty.string_of (Pretty.chunks
[def_txt (c_ty, ""), Pretty.str ("is strictly less general than the declared type (see "
^ quote (Sign.full_name sg name) ^ ")")]))
else (); (deps, def :: axms)))
end;
(* add_defs *)
fun ext_defns prep_axm overloaded raw_axms thy =
let
val Theory {sign, const_deps, final_consts, axioms, oracles, parents, ancestors} = thy;
val all_axioms = List.concat (map (Symtab.dest o #axioms o rep_theory) (thy :: ancestors));
val axms = map (prep_axm sign) raw_axms;
val (const_deps', _) = Library.foldl (check_defn sign overloaded final_consts) ((const_deps, all_axioms), axms);
in
make_theory sign const_deps' final_consts axioms oracles parents ancestors
|> add_axioms_i axms
end;
val add_defs_i = ext_defns cert_axm;
val add_defs = ext_defns read_axm;
(* add_finals *)
fun ext_finals prep_term overloaded raw_terms thy =
let
val Theory {sign, const_deps, final_consts, axioms, oracles, parents, ancestors} = thy;
fun mk_final (finals,tm) =
let
fun err msg = raise TERM(msg,[tm]);
val (c,ty) = dest_Const tm
handle TERM _ => err "Can only make constants final";
val c_decl =
(case Sign.const_type sign c of SOME T => T
| NONE => err ("Undeclared constant " ^ quote c));
val simple =
case overloading sign c_decl ty of
NoOverloading => true
| Useless => err "Sort restrictions too strong"
| Plain => if overloaded then false
else err "Type is more general than declared";
val typ_instance = Sign.typ_instance sign;
in
if simple then
(case Symtab.lookup(finals,c) of
SOME [] => err "Constant already final"
| _ => Symtab.update((c,[]),finals))
else
(case Symtab.lookup(finals,c) of
SOME [] => err "Constant already completely final"
| SOME tys => if exists (curry typ_instance ty) tys
then err "Instance of constant is already final"
else Symtab.update((c,ty::gen_rem typ_instance (tys,ty)),finals)
| NONE => Symtab.update((c,[ty]),finals))
end;
val consts = map (prep_term sign) raw_terms;
val final_consts' = Library.foldl mk_final (final_consts,consts);
in
make_theory sign const_deps final_consts' axioms oracles parents ancestors
end;
local
fun read_term sg = Sign.simple_read_term sg TypeInfer.logicT;
fun cert_term sg = #1 o Sign.certify_term (Sign.pp sg) sg;
in
val add_finals = ext_finals read_term;
val add_finals_i = ext_finals cert_term;
end;
fun merge_final sg =
let
fun merge_single (tys,ty) =
if exists (curry (Sign.typ_instance sg) ty) tys
then tys
else (ty::gen_rem (Sign.typ_instance sg) (tys,ty));
fun merge ([],_) = []
| merge (_,[]) = []
| merge input = Library.foldl merge_single input;
in
SOME o merge
end;
(** additional theory data **)
val init_data = curry (ext_sign Sign.init_data);
fun print_data kind = Sign.print_data kind o sign_of;
fun get_data kind f = Sign.get_data kind f o sign_of;
fun put_data kind f = ext_sign (Sign.put_data kind f);
(** merge theories **) (*exception ERROR*)
(*merge list of theories from left to right, preparing extend*)
fun prep_ext_merge thys =
let
val sign' = Sign.prep_ext_merge (map sign_of thys)
val depss = map (#const_deps o rep_theory) thys;
val deps' = Library.foldl (Graph.merge_acyclic (K true)) (hd depss, tl depss)
handle Graph.CYCLES namess => error (cycle_msg namess);
val final_constss = map (#final_consts o rep_theory) thys;
val final_consts' =
Library.foldl (Symtab.join (merge_final sign')) (hd final_constss, tl final_constss);
val axioms' = Symtab.empty;
fun eq_ora ((_, (_, s1: stamp)), (_, (_, s2))) = s1 = s2;
val oracles' =
Symtab.make (gen_distinct eq_ora
(List.concat (map (Symtab.dest o #oracles o rep_theory) thys)))
handle Symtab.DUPS names => err_dup_oras names;
val parents' = gen_distinct eq_thy thys;
val ancestors' =
gen_distinct eq_thy (parents' @ List.concat (map ancestors_of thys));
in
make_theory sign' deps' final_consts' axioms' oracles' parents' ancestors'
end;
end;
structure BasicTheory: BASIC_THEORY = Theory;
open BasicTheory;