header{*Theory of Events for Security Protocols that use smartcards*}
theory EventSC imports "../Message" begin
consts (*Initial states of agents -- parameter of the construction*)
initState :: "agent => msg set"
datatype card = Card agent
text{*Four new events express the traffic between an agent and his card*}
datatype
event = Says agent agent msg
| Notes agent msg
| Gets agent msg
| Inputs agent card msg (*Agent sends to card and\<dots>*)
| C_Gets card msg (*\<dots> card receives it*)
| Outpts card agent msg (*Card sends to agent and\<dots>*)
| A_Gets agent msg (*agent receives it*)
consts
bad :: "agent set" (*compromised agents*)
stolen :: "card set" (* stolen smart cards *)
cloned :: "card set" (* cloned smart cards*)
secureM :: "bool"(*assumption of secure means between agents and their cards*)
abbreviation
insecureM :: bool where (*certain protocols make no assumption of secure means*)
"insecureM == \<not>secureM"
text{*Spy has access to his own key for spoof messages, but Server is secure*}
specification (bad)
Spy_in_bad [iff]: "Spy \<in> bad"
Server_not_bad [iff]: "Server \<notin> bad"
apply (rule exI [of _ "{Spy}"], simp) done
specification (stolen)
(*The server's card is secure by assumption\<dots>*)
Card_Server_not_stolen [iff]: "Card Server \<notin> stolen"
Card_Spy_not_stolen [iff]: "Card Spy \<notin> stolen"
apply blast done
specification (cloned)
(*\<dots> the spy's card is secure because she already can use it freely*)
Card_Server_not_cloned [iff]: "Card Server \<notin> cloned"
Card_Spy_not_cloned [iff]: "Card Spy \<notin> cloned"
apply blast done
primrec (*This definition is extended over the new events, subject to the
assumption of secure means*)
knows :: "agent => event list => msg set" (*agents' knowledge*) where
knows_Nil: "knows A [] = initState A" |
knows_Cons: "knows A (ev # evs) =
(case ev of
Says A' B X =>
if (A=A' | A=Spy) then insert X (knows A evs) else knows A evs
| Notes A' X =>
if (A=A' | (A=Spy & A'\<in>bad)) then insert X (knows A evs)
else knows A evs
| Gets A' X =>
if (A=A' & A \<noteq> Spy) then insert X (knows A evs)
else knows A evs
| Inputs A' C X =>
if secureM then
if A=A' then insert X (knows A evs) else knows A evs
else
if (A=A' | A=Spy) then insert X (knows A evs) else knows A evs
| C_Gets C X => knows A evs
| Outpts C A' X =>
if secureM then
if A=A' then insert X (knows A evs) else knows A evs
else
if A=Spy then insert X (knows A evs) else knows A evs
| A_Gets A' X =>
if (A=A' & A \<noteq> Spy) then insert X (knows A evs)
else knows A evs)"
primrec
(*The set of items that might be visible to someone is easily extended
over the new events*)
used :: "event list => msg set" where
used_Nil: "used [] = (UN B. parts (initState B))" |
used_Cons: "used (ev # evs) =
(case ev of
Says A B X => parts {X} \<union> (used evs)
| Notes A X => parts {X} \<union> (used evs)
| Gets A X => used evs
| Inputs A C X => parts{X} \<union> (used evs)
| C_Gets C X => used evs
| Outpts C A X => parts{X} \<union> (used evs)
| A_Gets A X => used evs)"
--{*@{term Gets} always follows @{term Says} in real protocols.
Likewise, @{term C_Gets} will always have to follow @{term Inputs}
and @{term A_Gets} will always have to follow @{term Outpts}*}
lemma Notes_imp_used [rule_format]: "Notes A X \<in> set evs \<longrightarrow> X \<in> used evs"
apply (induct_tac evs)
apply (auto split: event.split)
done
lemma Says_imp_used [rule_format]: "Says A B X \<in> set evs \<longrightarrow> X \<in> used evs"
apply (induct_tac evs)
apply (auto split: event.split)
done
lemma MPair_used [rule_format]:
"MPair X Y \<in> used evs \<longrightarrow> X \<in> used evs & Y \<in> used evs"
apply (induct_tac evs)
apply (auto split: event.split)
done
subsection{*Function @{term knows}*}
(*Simplifying
parts(insert X (knows Spy evs)) = parts{X} \<union> parts(knows Spy evs).
This version won't loop with the simplifier.*)
lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs"] for A evs
lemma knows_Spy_Says [simp]:
"knows Spy (Says A B X # evs) = insert X (knows Spy evs)"
by simp
text{*Letting the Spy see "bad" agents' notes avoids redundant case-splits
on whether @{term "A=Spy"} and whether @{term "A\<in>bad"}*}
lemma knows_Spy_Notes [simp]:
"knows Spy (Notes A X # evs) =
(if A\<in>bad then insert X (knows Spy evs) else knows Spy evs)"
by simp
lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs"
by simp
lemma knows_Spy_Inputs_secureM [simp]:
"secureM \<Longrightarrow> knows Spy (Inputs A C X # evs) =
(if A=Spy then insert X (knows Spy evs) else knows Spy evs)"
by simp
lemma knows_Spy_Inputs_insecureM [simp]:
"insecureM \<Longrightarrow> knows Spy (Inputs A C X # evs) = insert X (knows Spy evs)"
by simp
lemma knows_Spy_C_Gets [simp]: "knows Spy (C_Gets C X # evs) = knows Spy evs"
by simp
lemma knows_Spy_Outpts_secureM [simp]:
"secureM \<Longrightarrow> knows Spy (Outpts C A X # evs) =
(if A=Spy then insert X (knows Spy evs) else knows Spy evs)"
by simp
lemma knows_Spy_Outpts_insecureM [simp]:
"insecureM \<Longrightarrow> knows Spy (Outpts C A X # evs) = insert X (knows Spy evs)"
by simp
lemma knows_Spy_A_Gets [simp]: "knows Spy (A_Gets A X # evs) = knows Spy evs"
by simp
lemma knows_Spy_subset_knows_Spy_Says:
"knows Spy evs \<subseteq> knows Spy (Says A B X # evs)"
by (simp add: subset_insertI)
lemma knows_Spy_subset_knows_Spy_Notes:
"knows Spy evs \<subseteq> knows Spy (Notes A X # evs)"
by force
lemma knows_Spy_subset_knows_Spy_Gets:
"knows Spy evs \<subseteq> knows Spy (Gets A X # evs)"
by (simp add: subset_insertI)
lemma knows_Spy_subset_knows_Spy_Inputs:
"knows Spy evs \<subseteq> knows Spy (Inputs A C X # evs)"
by auto
lemma knows_Spy_equals_knows_Spy_Gets:
"knows Spy evs = knows Spy (C_Gets C X # evs)"
by (simp add: subset_insertI)
lemma knows_Spy_subset_knows_Spy_Outpts: "knows Spy evs \<subseteq> knows Spy (Outpts C A X # evs)"
by auto
lemma knows_Spy_subset_knows_Spy_A_Gets: "knows Spy evs \<subseteq> knows Spy (A_Gets A X # evs)"
by (simp add: subset_insertI)
text{*Spy sees what is sent on the traffic*}
lemma Says_imp_knows_Spy [rule_format]:
"Says A B X \<in> set evs \<longrightarrow> X \<in> knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
lemma Notes_imp_knows_Spy [rule_format]:
"Notes A X \<in> set evs \<longrightarrow> A\<in> bad \<longrightarrow> X \<in> knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
(*Nothing can be stated on a Gets event*)
lemma Inputs_imp_knows_Spy_secureM [rule_format (no_asm)]:
"Inputs Spy C X \<in> set evs \<longrightarrow> secureM \<longrightarrow> X \<in> knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
lemma Inputs_imp_knows_Spy_insecureM [rule_format (no_asm)]:
"Inputs A C X \<in> set evs \<longrightarrow> insecureM \<longrightarrow> X \<in> knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
(*Nothing can be stated on a C_Gets event*)
lemma Outpts_imp_knows_Spy_secureM [rule_format (no_asm)]:
"Outpts C Spy X \<in> set evs \<longrightarrow> secureM \<longrightarrow> X \<in> knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
lemma Outpts_imp_knows_Spy_insecureM [rule_format (no_asm)]:
"Outpts C A X \<in> set evs \<longrightarrow> insecureM \<longrightarrow> X \<in> knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
(*Nothing can be stated on an A_Gets event*)
text{*Elimination rules: derive contradictions from old Says events containing
items known to be fresh*}
lemmas knows_Spy_partsEs =
Says_imp_knows_Spy [THEN parts.Inj, THEN revcut_rl]
parts.Body [THEN revcut_rl]
subsection{*Knowledge of Agents*}
lemma knows_Says: "knows A (Says A B X # evs) = insert X (knows A evs)"
by simp
lemma knows_Notes: "knows A (Notes A X # evs) = insert X (knows A evs)"
by simp
lemma knows_Gets:
"A \<noteq> Spy \<longrightarrow> knows A (Gets A X # evs) = insert X (knows A evs)"
by simp
lemma knows_Inputs: "knows A (Inputs A C X # evs) = insert X (knows A evs)"
by simp
lemma knows_C_Gets: "knows A (C_Gets C X # evs) = knows A evs"
by simp
lemma knows_Outpts_secureM:
"secureM \<longrightarrow> knows A (Outpts C A X # evs) = insert X (knows A evs)"
by simp
lemma knows_Outpts_insecureM:
"insecureM \<longrightarrow> knows Spy (Outpts C A X # evs) = insert X (knows Spy evs)"
by simp
(*somewhat equivalent to knows_Spy_Outpts_insecureM*)
lemma knows_subset_knows_Says: "knows A evs \<subseteq> knows A (Says A' B X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_Notes: "knows A evs \<subseteq> knows A (Notes A' X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_Gets: "knows A evs \<subseteq> knows A (Gets A' X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_Inputs: "knows A evs \<subseteq> knows A (Inputs A' C X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_C_Gets: "knows A evs \<subseteq> knows A (C_Gets C X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_Outpts: "knows A evs \<subseteq> knows A (Outpts C A' X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_A_Gets: "knows A evs \<subseteq> knows A (A_Gets A' X # evs)"
by (simp add: subset_insertI)
text{*Agents know what they say*}
lemma Says_imp_knows [rule_format]: "Says A B X \<in> set evs \<longrightarrow> X \<in> knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
text{*Agents know what they note*}
lemma Notes_imp_knows [rule_format]: "Notes A X \<in> set evs \<longrightarrow> X \<in> knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
text{*Agents know what they receive*}
lemma Gets_imp_knows_agents [rule_format]:
"A \<noteq> Spy \<longrightarrow> Gets A X \<in> set evs \<longrightarrow> X \<in> knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
(*Agents know what they input to their smart card*)
lemma Inputs_imp_knows_agents [rule_format (no_asm)]:
"Inputs A (Card A) X \<in> set evs \<longrightarrow> X \<in> knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
(*Nothing to prove about C_Gets*)
(*Agents know what they obtain as output of their smart card,
if the means is secure...*)
lemma Outpts_imp_knows_agents_secureM [rule_format (no_asm)]:
"secureM \<longrightarrow> Outpts (Card A) A X \<in> set evs \<longrightarrow> X \<in> knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
(*otherwise only the spy knows the outputs*)
lemma Outpts_imp_knows_agents_insecureM [rule_format (no_asm)]:
"insecureM \<longrightarrow> Outpts (Card A) A X \<in> set evs \<longrightarrow> X \<in> knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
(*end lemmas about agents' knowledge*)
lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) \<subseteq> used evs"
apply (induct_tac "evs", force)
apply (simp add: parts_insert_knows_A knows_Cons add: event.split, blast)
done
lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro]
lemma initState_into_used: "X \<in> parts (initState B) \<Longrightarrow> X \<in> used evs"
apply (induct_tac "evs")
apply (simp_all add: parts_insert_knows_A split add: event.split, blast)
done
lemma used_Says [simp]: "used (Says A B X # evs) = parts{X} \<union> used evs"
by simp
lemma used_Notes [simp]: "used (Notes A X # evs) = parts{X} \<union> used evs"
by simp
lemma used_Gets [simp]: "used (Gets A X # evs) = used evs"
by simp
lemma used_Inputs [simp]: "used (Inputs A C X # evs) = parts{X} \<union> used evs"
by simp
lemma used_C_Gets [simp]: "used (C_Gets C X # evs) = used evs"
by simp
lemma used_Outpts [simp]: "used (Outpts C A X # evs) = parts{X} \<union> used evs"
by simp
lemma used_A_Gets [simp]: "used (A_Gets A X # evs) = used evs"
by simp
lemma used_nil_subset: "used [] \<subseteq> used evs"
apply simp
apply (blast intro: initState_into_used)
done
(*Novel lemmas*)
lemma Says_parts_used [rule_format (no_asm)]:
"Says A B X \<in> set evs \<longrightarrow> (parts {X}) \<subseteq> used evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
lemma Notes_parts_used [rule_format (no_asm)]:
"Notes A X \<in> set evs \<longrightarrow> (parts {X}) \<subseteq> used evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
lemma Outpts_parts_used [rule_format (no_asm)]:
"Outpts C A X \<in> set evs \<longrightarrow> (parts {X}) \<subseteq> used evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
lemma Inputs_parts_used [rule_format (no_asm)]:
"Inputs A C X \<in> set evs \<longrightarrow> (parts {X}) \<subseteq> used evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
text{*NOTE REMOVAL--laws above are cleaner, as they don't involve "case"*}
declare knows_Cons [simp del]
used_Nil [simp del] used_Cons [simp del]
lemma knows_subset_knows_Cons: "knows A evs \<subseteq> knows A (e # evs)"
by (induct e, auto simp: knows_Cons)
lemma initState_subset_knows: "initState A \<subseteq> knows A evs"
apply (induct_tac evs, simp)
apply (blast intro: knows_subset_knows_Cons [THEN subsetD])
done
text{*For proving @{text new_keys_not_used}*}
lemma keysFor_parts_insert:
"\<lbrakk> K \<in> keysFor (parts (insert X G)); X \<in> synth (analz H) \<rbrakk>
\<Longrightarrow> K \<in> keysFor (parts (G \<union> H)) \<or> Key (invKey K) \<in> parts H";
by (force
dest!: parts_insert_subset_Un [THEN keysFor_mono, THEN [2] rev_subsetD]
analz_subset_parts [THEN keysFor_mono, THEN [2] rev_subsetD]
intro: analz_subset_parts [THEN subsetD] parts_mono [THEN [2] rev_subsetD])
end