\begin{thebibliography}{10}
\bibitem{abramsky90}
Abramsky, S.,
\newblock The lazy lambda calculus,
\newblock In {\em Resesarch Topics in Functional Programming}, D.~A. Turner,
Ed. Addison-Wesley, 1977, pp.~65--116
\bibitem{aczel77}
Aczel, P.,
\newblock An introduction to inductive definitions,
\newblock In {\em Handbook of Mathematical Logic}, J.~Barwise, Ed.
North-Holland, 1977, pp.~739--782
\bibitem{aczel88}
Aczel, P.,
\newblock {\em Non-Well-Founded Sets},
\newblock CSLI, 1988
\bibitem{bm79}
Boyer, R.~S., Moore, J.~S.,
\newblock {\em A Computational Logic},
\newblock Academic Press, 1979
\bibitem{camilleri92}
Camilleri, J., Melham, T.~F.,
\newblock Reasoning with inductively defined relations in the {HOL} theorem
prover,
\newblock Tech. Rep. 265, Comp. Lab., Univ. Cambridge, August 1992
\bibitem{davey&priestley}
Davey, B.~A., Priestley, H.~A.,
\newblock {\em Introduction to Lattices and Order},
\newblock Cambridge Univ. Press, 1990
\bibitem{dybjer91}
Dybjer, P.,
\newblock Inductive sets and families in {Martin-L\"of's} type theory and their
set-theoretic semantics,
\newblock In {\em Logical Frameworks}, G.~Huet, G.~Plotkin, Eds. Cambridge
Univ. Press, 1991, pp.~280--306
\bibitem{IMPS}
Farmer, W.~M., Guttman, J.~D., Thayer, F.~J.,
\newblock {IMPS}: An interactive mathematical proof system,
\newblock {\em J. Auto. Reas. {\bf 11}}, 2 (1993), 213--248
\bibitem{hennessy90}
Hennessy, M.,
\newblock {\em The Semantics of Programming Languages: An Elementary
Introduction Using Structural Operational Semantics},
\newblock Wiley, 1990
\bibitem{huet88}
Huet, G.,
\newblock Induction principles formalized in the {Calculus of Constructions},
\newblock In {\em Programming of Future Generation Computers\/} (1988),
Elsevier, pp.~205--216
\bibitem{melham89}
Melham, T.~F.,
\newblock Automating recursive type definitions in higher order logic,
\newblock In {\em Current Trends in Hardware Verification and Automated Theorem
Proving}, G.~Birtwistle, P.~A. Subrahmanyam, Eds. Springer, 1989,
pp.~341--386
\bibitem{milner-ind}
Milner, R.,
\newblock How to derive inductions in {LCF},
\newblock note, Dept. Comp. Sci., Univ. Edinburgh, 1980
\bibitem{milner89}
Milner, R.,
\newblock {\em Communication and Concurrency},
\newblock Prentice-Hall, 1989
\bibitem{monahan84}
Monahan, B.~Q.,
\newblock {\em Data Type Proofs using Edinburgh {LCF}},
\newblock PhD thesis, University of Edinburgh, 1984
\bibitem{paulin92}
Paulin-Mohring, C.,
\newblock Inductive definitions in the system {Coq}: Rules and properties,
\newblock Research Report 92-49, LIP, Ecole Normale Sup\'erieure de Lyon, Dec.
1992
\bibitem{paulson87}
Paulson, L.~C.,
\newblock {\em Logic and Computation: Interactive proof with Cambridge LCF},
\newblock Cambridge Univ. Press, 1987
\bibitem{paulson91}
Paulson, L.~C.,
\newblock {\em {ML} for the Working Programmer},
\newblock Cambridge Univ. Press, 1991
\bibitem{paulson-coind}
Paulson, L.~C.,
\newblock Co-induction and co-recursion in higher-order logic,
\newblock Tech. Rep. 304, Comp. Lab., Univ. Cambridge, July 1993
\bibitem{isabelle-intro}
Paulson, L.~C.,
\newblock Introduction to {Isabelle},
\newblock Tech. Rep. 280, Comp. Lab., Univ. Cambridge, 1993
\bibitem{paulson-set-I}
Paulson, L.~C.,
\newblock Set theory for verification: {I}. {From} foundations to functions,
\newblock {\em J. Auto. Reas. {\bf 11}}, 3 (1993), 353--389
\bibitem{paulson-set-II}
Paulson, L.~C.,
\newblock Set theory for verification: {II}. {Induction} and recursion,
\newblock Tech. Rep. 312, Comp. Lab., Univ. Cambridge, 1993
\bibitem{paulson-final}
Paulson, L.~C.,
\newblock A concrete final coalgebra theorem for {ZF} set theory,
\newblock Tech. rep., Comp. Lab., Univ. Cambridge, 1994
\bibitem{pitts94}
Pitts, A.~M.,
\newblock A co-induction principle for recursively defined domains,
\newblock {\em Theoretical Comput. Sci.\/} (1994),
\newblock In press; available as Report 252, Comp. Lab., Univ. Cambridge
\bibitem{saaltink-fme}
Saaltink, M., Kromodimoeljo, S., Pase, B., Craigen, D., Meisels, I.,
\newblock An {EVES} data abstraction example,
\newblock In {\em FME '93: Industrial-Strength Formal Methods\/} (1993),
J.~C.~P. Woodcock, P.~G. Larsen, Eds., Springer, pp.~578--596,
\newblock LNCS 670
\bibitem{szasz93}
Szasz, N.,
\newblock A machine checked proof that {Ackermann's} function is not primitive
recursive,
\newblock In {\em Logical Environments}, G.~Huet, G.~Plotkin, Eds. Cambridge
Univ. Press, 1993, pp.~317--338
\end{thebibliography}