(* Title : NSA.thy
Author : Jacques D. Fleuriot
Copyright : 1998 University of Cambridge
*)
header{*Infinite Numbers, Infinitesimals, Infinitely Close Relation*}
theory NSA = HRealAbs + RComplete:
constdefs
Infinitesimal :: "hypreal set"
"Infinitesimal == {x. \<forall>r \<in> Reals. 0 < r --> abs x < r}"
HFinite :: "hypreal set"
"HFinite == {x. \<exists>r \<in> Reals. abs x < r}"
HInfinite :: "hypreal set"
"HInfinite == {x. \<forall>r \<in> Reals. r < abs x}"
(* standard part map *)
st :: "hypreal => hypreal"
"st == (%x. @r. x \<in> HFinite & r \<in> Reals & r @= x)"
monad :: "hypreal => hypreal set"
"monad x == {y. x @= y}"
galaxy :: "hypreal => hypreal set"
"galaxy x == {y. (x + -y) \<in> HFinite}"
(* infinitely close *)
approx :: "[hypreal, hypreal] => bool" (infixl "@=" 50)
"x @= y == (x + -y) \<in> Infinitesimal"
defs
(*standard real numbers as a subset of the hyperreals*)
SReal_def: "Reals == {x. \<exists>r. x = hypreal_of_real r}"
syntax (xsymbols)
approx :: "[hypreal, hypreal] => bool" (infixl "\<approx>" 50)
(*--------------------------------------------------------------------
Closure laws for members of (embedded) set standard real Reals
--------------------------------------------------------------------*)
lemma SReal_add: "[| (x::hypreal) \<in> Reals; y \<in> Reals |] ==> x + y \<in> Reals"
apply (auto simp add: SReal_def)
apply (rule_tac x = "r + ra" in exI, simp)
done
lemma SReal_mult: "[| (x::hypreal) \<in> Reals; y \<in> Reals |] ==> x * y \<in> Reals"
apply (simp add: SReal_def, safe)
apply (rule_tac x = "r * ra" in exI)
apply (simp (no_asm) add: hypreal_of_real_mult)
done
lemma SReal_inverse: "(x::hypreal) \<in> Reals ==> inverse x \<in> Reals"
apply (simp add: SReal_def)
apply (blast intro: hypreal_of_real_inverse [symmetric])
done
lemma SReal_divide: "[| (x::hypreal) \<in> Reals; y \<in> Reals |] ==> x/y \<in> Reals"
apply (simp (no_asm_simp) add: SReal_mult SReal_inverse hypreal_divide_def)
done
lemma SReal_minus: "(x::hypreal) \<in> Reals ==> -x \<in> Reals"
apply (simp add: SReal_def)
apply (blast intro: hypreal_of_real_minus [symmetric])
done
lemma SReal_minus_iff: "(-x \<in> Reals) = ((x::hypreal) \<in> Reals)"
apply auto
apply (erule_tac [2] SReal_minus)
apply (drule SReal_minus, auto)
done
declare SReal_minus_iff [simp]
lemma SReal_add_cancel: "[| (x::hypreal) + y \<in> Reals; y \<in> Reals |] ==> x \<in> Reals"
apply (drule_tac x = y in SReal_minus)
apply (drule SReal_add, assumption, auto)
done
lemma SReal_hrabs: "(x::hypreal) \<in> Reals ==> abs x \<in> Reals"
apply (simp add: SReal_def)
apply (auto simp add: hypreal_of_real_hrabs)
done
lemma SReal_hypreal_of_real: "hypreal_of_real x \<in> Reals"
by (simp add: SReal_def)
declare SReal_hypreal_of_real [simp]
lemma SReal_number_of: "(number_of w ::hypreal) \<in> Reals"
apply (unfold hypreal_number_of_def)
apply (rule SReal_hypreal_of_real)
done
declare SReal_number_of [simp]
(** As always with numerals, 0 and 1 are special cases **)
lemma Reals_0: "(0::hypreal) \<in> Reals"
apply (subst hypreal_numeral_0_eq_0 [symmetric])
apply (rule SReal_number_of)
done
declare Reals_0 [simp]
lemma Reals_1: "(1::hypreal) \<in> Reals"
apply (subst hypreal_numeral_1_eq_1 [symmetric])
apply (rule SReal_number_of)
done
declare Reals_1 [simp]
lemma SReal_divide_number_of: "r \<in> Reals ==> r/(number_of w::hypreal) \<in> Reals"
apply (unfold hypreal_divide_def)
apply (blast intro!: SReal_number_of SReal_mult SReal_inverse)
done
(* Infinitesimal epsilon not in Reals *)
lemma SReal_epsilon_not_mem: "epsilon \<notin> Reals"
apply (simp add: SReal_def)
apply (auto simp add: hypreal_of_real_not_eq_epsilon [THEN not_sym])
done
lemma SReal_omega_not_mem: "omega \<notin> Reals"
apply (simp add: SReal_def)
apply (auto simp add: hypreal_of_real_not_eq_omega [THEN not_sym])
done
lemma SReal_UNIV_real: "{x. hypreal_of_real x \<in> Reals} = (UNIV::real set)"
by (simp add: SReal_def)
lemma SReal_iff: "(x \<in> Reals) = (\<exists>y. x = hypreal_of_real y)"
by (simp add: SReal_def)
lemma hypreal_of_real_image: "hypreal_of_real `(UNIV::real set) = Reals"
by (auto simp add: SReal_def)
lemma inv_hypreal_of_real_image: "inv hypreal_of_real ` Reals = UNIV"
apply (auto simp add: SReal_def)
apply (rule inj_hypreal_of_real [THEN inv_f_f, THEN subst], blast)
done
lemma SReal_hypreal_of_real_image:
"[| \<exists>x. x: P; P <= Reals |] ==> \<exists>Q. P = hypreal_of_real ` Q"
apply (simp add: SReal_def, blast)
done
lemma SReal_dense: "[| (x::hypreal) \<in> Reals; y \<in> Reals; x<y |] ==> \<exists>r \<in> Reals. x<r & r<y"
apply (auto simp add: SReal_iff)
apply (drule real_dense, safe)
apply (rule_tac x = "hypreal_of_real r" in bexI, auto)
done
(*------------------------------------------------------------------
Completeness of Reals
------------------------------------------------------------------*)
lemma SReal_sup_lemma: "P <= Reals ==> ((\<exists>x \<in> P. y < x) =
(\<exists>X. hypreal_of_real X \<in> P & y < hypreal_of_real X))"
by (blast dest!: SReal_iff [THEN iffD1])
lemma SReal_sup_lemma2:
"[| P <= Reals; \<exists>x. x \<in> P; \<exists>y \<in> Reals. \<forall>x \<in> P. x < y |]
==> (\<exists>X. X \<in> {w. hypreal_of_real w \<in> P}) &
(\<exists>Y. \<forall>X \<in> {w. hypreal_of_real w \<in> P}. X < Y)"
apply (rule conjI)
apply (fast dest!: SReal_iff [THEN iffD1])
apply (auto, frule subsetD, assumption)
apply (drule SReal_iff [THEN iffD1])
apply (auto, rule_tac x = ya in exI, auto)
done
(*------------------------------------------------------
lifting of ub and property of lub
-------------------------------------------------------*)
lemma hypreal_of_real_isUb_iff:
"(isUb (Reals) (hypreal_of_real ` Q) (hypreal_of_real Y)) =
(isUb (UNIV :: real set) Q Y)"
apply (simp add: isUb_def setle_def)
done
lemma hypreal_of_real_isLub1:
"isLub Reals (hypreal_of_real ` Q) (hypreal_of_real Y)
==> isLub (UNIV :: real set) Q Y"
apply (simp add: isLub_def leastP_def)
apply (auto intro: hypreal_of_real_isUb_iff [THEN iffD2]
simp add: hypreal_of_real_isUb_iff setge_def)
done
lemma hypreal_of_real_isLub2:
"isLub (UNIV :: real set) Q Y
==> isLub Reals (hypreal_of_real ` Q) (hypreal_of_real Y)"
apply (simp add: isLub_def leastP_def)
apply (auto simp add: hypreal_of_real_isUb_iff setge_def)
apply (frule_tac x2 = x in isUbD2a [THEN SReal_iff [THEN iffD1], THEN exE])
prefer 2 apply assumption
apply (drule_tac x = xa in spec)
apply (auto simp add: hypreal_of_real_isUb_iff)
done
lemma hypreal_of_real_isLub_iff: "(isLub Reals (hypreal_of_real ` Q) (hypreal_of_real Y)) =
(isLub (UNIV :: real set) Q Y)"
apply (blast intro: hypreal_of_real_isLub1 hypreal_of_real_isLub2)
done
(* lemmas *)
lemma lemma_isUb_hypreal_of_real:
"isUb Reals P Y ==> \<exists>Yo. isUb Reals P (hypreal_of_real Yo)"
by (auto simp add: SReal_iff isUb_def)
lemma lemma_isLub_hypreal_of_real:
"isLub Reals P Y ==> \<exists>Yo. isLub Reals P (hypreal_of_real Yo)"
by (auto simp add: isLub_def leastP_def isUb_def SReal_iff)
lemma lemma_isLub_hypreal_of_real2:
"\<exists>Yo. isLub Reals P (hypreal_of_real Yo) ==> \<exists>Y. isLub Reals P Y"
by (auto simp add: isLub_def leastP_def isUb_def)
lemma SReal_complete: "[| P <= Reals; \<exists>x. x \<in> P; \<exists>Y. isUb Reals P Y |]
==> \<exists>t::hypreal. isLub Reals P t"
apply (frule SReal_hypreal_of_real_image)
apply (auto, drule lemma_isUb_hypreal_of_real)
apply (auto intro!: reals_complete lemma_isLub_hypreal_of_real2 simp add: hypreal_of_real_isLub_iff hypreal_of_real_isUb_iff)
done
(*--------------------------------------------------------------------
Set of finite elements is a subring of the extended reals
--------------------------------------------------------------------*)
lemma HFinite_add: "[|x \<in> HFinite; y \<in> HFinite|] ==> (x+y) \<in> HFinite"
apply (simp add: HFinite_def)
apply (blast intro!: SReal_add hrabs_add_less)
done
lemma HFinite_mult: "[|x \<in> HFinite; y \<in> HFinite|] ==> x*y \<in> HFinite"
apply (simp add: HFinite_def)
apply (blast intro!: SReal_mult abs_mult_less)
done
lemma HFinite_minus_iff: "(-x \<in> HFinite) = (x \<in> HFinite)"
by (simp add: HFinite_def)
lemma SReal_subset_HFinite: "Reals <= HFinite"
apply (auto simp add: SReal_def HFinite_def)
apply (rule_tac x = "1 + abs (hypreal_of_real r) " in exI)
apply (auto simp add: hypreal_of_real_hrabs)
apply (rule_tac x = "1 + abs r" in exI, simp)
done
lemma HFinite_hypreal_of_real [simp]: "hypreal_of_real x \<in> HFinite"
by (auto intro: SReal_subset_HFinite [THEN subsetD])
lemma HFiniteD: "x \<in> HFinite ==> \<exists>t \<in> Reals. abs x < t"
by (simp add: HFinite_def)
lemma HFinite_hrabs_iff: "(abs x \<in> HFinite) = (x \<in> HFinite)"
by (simp add: HFinite_def)
declare HFinite_hrabs_iff [iff]
lemma HFinite_number_of: "number_of w \<in> HFinite"
by (rule SReal_number_of [THEN SReal_subset_HFinite [THEN subsetD]])
declare HFinite_number_of [simp]
(** As always with numerals, 0 and 1 are special cases **)
lemma HFinite_0: "0 \<in> HFinite"
apply (subst hypreal_numeral_0_eq_0 [symmetric])
apply (rule HFinite_number_of)
done
declare HFinite_0 [simp]
lemma HFinite_1: "1 \<in> HFinite"
apply (subst hypreal_numeral_1_eq_1 [symmetric])
apply (rule HFinite_number_of)
done
declare HFinite_1 [simp]
lemma HFinite_bounded: "[|x \<in> HFinite; y <= x; 0 <= y |] ==> y \<in> HFinite"
apply (case_tac "x <= 0")
apply (drule_tac y = x in order_trans)
apply (drule_tac [2] hypreal_le_anti_sym)
apply (auto simp add: linorder_not_le)
apply (auto intro: order_le_less_trans simp add: abs_if HFinite_def)
done
(*------------------------------------------------------------------
Set of infinitesimals is a subring of the hyperreals
------------------------------------------------------------------*)
lemma InfinitesimalD:
"x \<in> Infinitesimal ==> \<forall>r \<in> Reals. 0 < r --> abs x < r"
apply (simp add: Infinitesimal_def)
done
lemma Infinitesimal_zero: "0 \<in> Infinitesimal"
by (simp add: Infinitesimal_def)
declare Infinitesimal_zero [iff]
lemma hypreal_sum_of_halves: "x/(2::hypreal) + x/(2::hypreal) = x"
by auto
lemma hypreal_half_gt_zero: "0 < r ==> 0 < r/(2::hypreal)"
by auto
lemma Infinitesimal_add:
"[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> (x+y) \<in> Infinitesimal"
apply (auto simp add: Infinitesimal_def)
apply (rule hypreal_sum_of_halves [THEN subst])
apply (drule hypreal_half_gt_zero)
apply (blast intro: hrabs_add_less hrabs_add_less SReal_divide_number_of)
done
lemma Infinitesimal_minus_iff: "(-x:Infinitesimal) = (x:Infinitesimal)"
by (simp add: Infinitesimal_def)
declare Infinitesimal_minus_iff [simp]
lemma Infinitesimal_diff: "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> x-y \<in> Infinitesimal"
by (simp add: hypreal_diff_def Infinitesimal_add)
lemma Infinitesimal_mult:
"[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> (x * y) \<in> Infinitesimal"
apply (auto simp add: Infinitesimal_def)
apply (case_tac "y=0")
apply (cut_tac [2] a = "abs x" and b = 1 and c = "abs y" and d = r in mult_strict_mono, auto)
done
lemma Infinitesimal_HFinite_mult: "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> (x * y) \<in> Infinitesimal"
apply (auto dest!: HFiniteD simp add: Infinitesimal_def)
apply (frule hrabs_less_gt_zero)
apply (drule_tac x = "r/t" in bspec)
apply (blast intro: SReal_divide)
apply (simp add: zero_less_divide_iff)
apply (case_tac "x=0 | y=0")
apply (cut_tac [2] a = "abs x" and b = "r/t" and c = "abs y" in mult_strict_mono)
apply (auto simp add: zero_less_divide_iff)
done
lemma Infinitesimal_HFinite_mult2: "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> (y * x) \<in> Infinitesimal"
by (auto dest: Infinitesimal_HFinite_mult simp add: hypreal_mult_commute)
(*** rather long proof ***)
lemma HInfinite_inverse_Infinitesimal:
"x \<in> HInfinite ==> inverse x: Infinitesimal"
apply (auto simp add: HInfinite_def Infinitesimal_def)
apply (erule_tac x = "inverse r" in ballE)
apply (frule_tac a1 = r and z = "abs x" in positive_imp_inverse_positive [THEN order_less_trans], assumption)
apply (drule inverse_inverse_eq [symmetric, THEN subst])
apply (rule inverse_less_iff_less [THEN iffD1])
apply (auto simp add: SReal_inverse)
done
lemma HInfinite_mult: "[|x \<in> HInfinite;y \<in> HInfinite|] ==> (x*y) \<in> HInfinite"
apply (simp add: HInfinite_def, auto)
apply (erule_tac x = 1 in ballE)
apply (erule_tac x = r in ballE)
apply (case_tac "y=0")
apply (cut_tac [2] c = 1 and d = "abs x" and a = r and b = "abs y" in mult_strict_mono)
apply (auto simp add: mult_ac)
done
lemma HInfinite_add_ge_zero:
"[|x \<in> HInfinite; 0 <= y; 0 <= x|] ==> (x + y): HInfinite"
by (auto intro!: hypreal_add_zero_less_le_mono
simp add: abs_if hypreal_add_commute hypreal_le_add_order HInfinite_def)
lemma HInfinite_add_ge_zero2: "[|x \<in> HInfinite; 0 <= y; 0 <= x|] ==> (y + x): HInfinite"
by (auto intro!: HInfinite_add_ge_zero simp add: hypreal_add_commute)
lemma HInfinite_add_gt_zero: "[|x \<in> HInfinite; 0 < y; 0 < x|] ==> (x + y): HInfinite"
by (blast intro: HInfinite_add_ge_zero order_less_imp_le)
lemma HInfinite_minus_iff: "(-x \<in> HInfinite) = (x \<in> HInfinite)"
by (simp add: HInfinite_def)
lemma HInfinite_add_le_zero: "[|x \<in> HInfinite; y <= 0; x <= 0|] ==> (x + y): HInfinite"
apply (drule HInfinite_minus_iff [THEN iffD2])
apply (rule HInfinite_minus_iff [THEN iffD1])
apply (auto intro: HInfinite_add_ge_zero)
done
lemma HInfinite_add_lt_zero: "[|x \<in> HInfinite; y < 0; x < 0|] ==> (x + y): HInfinite"
by (blast intro: HInfinite_add_le_zero order_less_imp_le)
lemma HFinite_sum_squares: "[|a: HFinite; b: HFinite; c: HFinite|]
==> a*a + b*b + c*c \<in> HFinite"
apply (auto intro: HFinite_mult HFinite_add)
done
lemma not_Infinitesimal_not_zero: "x \<notin> Infinitesimal ==> x \<noteq> 0"
by auto
lemma not_Infinitesimal_not_zero2: "x \<in> HFinite - Infinitesimal ==> x \<noteq> 0"
by auto
lemma Infinitesimal_hrabs_iff: "(abs x \<in> Infinitesimal) = (x \<in> Infinitesimal)"
by (auto simp add: hrabs_def)
declare Infinitesimal_hrabs_iff [iff]
lemma HFinite_diff_Infinitesimal_hrabs: "x \<in> HFinite - Infinitesimal ==> abs x \<in> HFinite - Infinitesimal"
by blast
lemma hrabs_less_Infinitesimal:
"[| e \<in> Infinitesimal; abs x < e |] ==> x \<in> Infinitesimal"
apply (auto simp add: Infinitesimal_def abs_less_iff)
done
lemma hrabs_le_Infinitesimal: "[| e \<in> Infinitesimal; abs x <= e |] ==> x \<in> Infinitesimal"
by (blast dest: order_le_imp_less_or_eq intro: hrabs_less_Infinitesimal)
lemma Infinitesimal_interval:
"[| e \<in> Infinitesimal; e' \<in> Infinitesimal; e' < x ; x < e |]
==> x \<in> Infinitesimal"
apply (auto simp add: Infinitesimal_def abs_less_iff)
done
lemma Infinitesimal_interval2: "[| e \<in> Infinitesimal; e' \<in> Infinitesimal;
e' <= x ; x <= e |] ==> x \<in> Infinitesimal"
apply (auto intro: Infinitesimal_interval simp add: order_le_less)
done
lemma not_Infinitesimal_mult:
"[| x \<notin> Infinitesimal; y \<notin> Infinitesimal|] ==> (x*y) \<notin>Infinitesimal"
apply (unfold Infinitesimal_def, clarify)
apply (simp add: linorder_not_less)
apply (erule_tac x = "r*ra" in ballE)
prefer 2 apply (fast intro: SReal_mult)
apply (auto simp add: zero_less_mult_iff)
apply (cut_tac c = ra and d = "abs y" and a = r and b = "abs x" in mult_mono, auto)
done
lemma Infinitesimal_mult_disj: "x*y \<in> Infinitesimal ==> x \<in> Infinitesimal | y \<in> Infinitesimal"
apply (rule ccontr)
apply (drule de_Morgan_disj [THEN iffD1])
apply (fast dest: not_Infinitesimal_mult)
done
lemma HFinite_Infinitesimal_not_zero: "x \<in> HFinite-Infinitesimal ==> x \<noteq> 0"
by blast
lemma HFinite_Infinitesimal_diff_mult: "[| x \<in> HFinite - Infinitesimal;
y \<in> HFinite - Infinitesimal
|] ==> (x*y) \<in> HFinite - Infinitesimal"
apply clarify
apply (blast dest: HFinite_mult not_Infinitesimal_mult)
done
lemma Infinitesimal_subset_HFinite:
"Infinitesimal <= HFinite"
apply (simp add: Infinitesimal_def HFinite_def, auto)
apply (rule_tac x = 1 in bexI, auto)
done
lemma Infinitesimal_hypreal_of_real_mult: "x \<in> Infinitesimal ==> x * hypreal_of_real r \<in> Infinitesimal"
by (erule HFinite_hypreal_of_real [THEN [2] Infinitesimal_HFinite_mult])
lemma Infinitesimal_hypreal_of_real_mult2: "x \<in> Infinitesimal ==> hypreal_of_real r * x \<in> Infinitesimal"
by (erule HFinite_hypreal_of_real [THEN [2] Infinitesimal_HFinite_mult2])
(*----------------------------------------------------------------------
Infinitely close relation @=
----------------------------------------------------------------------*)
lemma mem_infmal_iff: "(x \<in> Infinitesimal) = (x @= 0)"
by (simp add: Infinitesimal_def approx_def)
lemma approx_minus_iff: " (x @= y) = (x + -y @= 0)"
by (simp add: approx_def)
lemma approx_minus_iff2: " (x @= y) = (-y + x @= 0)"
by (simp add: approx_def hypreal_add_commute)
lemma approx_refl: "x @= x"
by (simp add: approx_def Infinitesimal_def)
declare approx_refl [iff]
lemma approx_sym: "x @= y ==> y @= x"
apply (simp add: approx_def)
apply (rule hypreal_minus_distrib1 [THEN subst])
apply (erule Infinitesimal_minus_iff [THEN iffD2])
done
lemma approx_trans: "[| x @= y; y @= z |] ==> x @= z"
apply (simp add: approx_def)
apply (drule Infinitesimal_add, assumption, auto)
done
lemma approx_trans2: "[| r @= x; s @= x |] ==> r @= s"
by (blast intro: approx_sym approx_trans)
lemma approx_trans3: "[| x @= r; x @= s|] ==> r @= s"
by (blast intro: approx_sym approx_trans)
lemma number_of_approx_reorient: "(number_of w @= x) = (x @= number_of w)"
by (blast intro: approx_sym)
lemma zero_approx_reorient: "(0 @= x) = (x @= 0)"
by (blast intro: approx_sym)
lemma one_approx_reorient: "(1 @= x) = (x @= 1)"
by (blast intro: approx_sym)
ML
{*
val SReal_add = thm "SReal_add";
val SReal_mult = thm "SReal_mult";
val SReal_inverse = thm "SReal_inverse";
val SReal_divide = thm "SReal_divide";
val SReal_minus = thm "SReal_minus";
val SReal_minus_iff = thm "SReal_minus_iff";
val SReal_add_cancel = thm "SReal_add_cancel";
val SReal_hrabs = thm "SReal_hrabs";
val SReal_hypreal_of_real = thm "SReal_hypreal_of_real";
val SReal_number_of = thm "SReal_number_of";
val Reals_0 = thm "Reals_0";
val Reals_1 = thm "Reals_1";
val SReal_divide_number_of = thm "SReal_divide_number_of";
val SReal_epsilon_not_mem = thm "SReal_epsilon_not_mem";
val SReal_omega_not_mem = thm "SReal_omega_not_mem";
val SReal_UNIV_real = thm "SReal_UNIV_real";
val SReal_iff = thm "SReal_iff";
val hypreal_of_real_image = thm "hypreal_of_real_image";
val inv_hypreal_of_real_image = thm "inv_hypreal_of_real_image";
val SReal_hypreal_of_real_image = thm "SReal_hypreal_of_real_image";
val SReal_dense = thm "SReal_dense";
val SReal_sup_lemma = thm "SReal_sup_lemma";
val SReal_sup_lemma2 = thm "SReal_sup_lemma2";
val hypreal_of_real_isUb_iff = thm "hypreal_of_real_isUb_iff";
val hypreal_of_real_isLub1 = thm "hypreal_of_real_isLub1";
val hypreal_of_real_isLub2 = thm "hypreal_of_real_isLub2";
val hypreal_of_real_isLub_iff = thm "hypreal_of_real_isLub_iff";
val lemma_isUb_hypreal_of_real = thm "lemma_isUb_hypreal_of_real";
val lemma_isLub_hypreal_of_real = thm "lemma_isLub_hypreal_of_real";
val lemma_isLub_hypreal_of_real2 = thm "lemma_isLub_hypreal_of_real2";
val SReal_complete = thm "SReal_complete";
val HFinite_add = thm "HFinite_add";
val HFinite_mult = thm "HFinite_mult";
val HFinite_minus_iff = thm "HFinite_minus_iff";
val SReal_subset_HFinite = thm "SReal_subset_HFinite";
val HFinite_hypreal_of_real = thm "HFinite_hypreal_of_real";
val HFiniteD = thm "HFiniteD";
val HFinite_hrabs_iff = thm "HFinite_hrabs_iff";
val HFinite_number_of = thm "HFinite_number_of";
val HFinite_0 = thm "HFinite_0";
val HFinite_1 = thm "HFinite_1";
val HFinite_bounded = thm "HFinite_bounded";
val InfinitesimalD = thm "InfinitesimalD";
val Infinitesimal_zero = thm "Infinitesimal_zero";
val hypreal_sum_of_halves = thm "hypreal_sum_of_halves";
val hypreal_half_gt_zero = thm "hypreal_half_gt_zero";
val Infinitesimal_add = thm "Infinitesimal_add";
val Infinitesimal_minus_iff = thm "Infinitesimal_minus_iff";
val Infinitesimal_diff = thm "Infinitesimal_diff";
val Infinitesimal_mult = thm "Infinitesimal_mult";
val Infinitesimal_HFinite_mult = thm "Infinitesimal_HFinite_mult";
val Infinitesimal_HFinite_mult2 = thm "Infinitesimal_HFinite_mult2";
val HInfinite_inverse_Infinitesimal = thm "HInfinite_inverse_Infinitesimal";
val HInfinite_mult = thm "HInfinite_mult";
val HInfinite_add_ge_zero = thm "HInfinite_add_ge_zero";
val HInfinite_add_ge_zero2 = thm "HInfinite_add_ge_zero2";
val HInfinite_add_gt_zero = thm "HInfinite_add_gt_zero";
val HInfinite_minus_iff = thm "HInfinite_minus_iff";
val HInfinite_add_le_zero = thm "HInfinite_add_le_zero";
val HInfinite_add_lt_zero = thm "HInfinite_add_lt_zero";
val HFinite_sum_squares = thm "HFinite_sum_squares";
val not_Infinitesimal_not_zero = thm "not_Infinitesimal_not_zero";
val not_Infinitesimal_not_zero2 = thm "not_Infinitesimal_not_zero2";
val Infinitesimal_hrabs_iff = thm "Infinitesimal_hrabs_iff";
val HFinite_diff_Infinitesimal_hrabs = thm "HFinite_diff_Infinitesimal_hrabs";
val hrabs_less_Infinitesimal = thm "hrabs_less_Infinitesimal";
val hrabs_le_Infinitesimal = thm "hrabs_le_Infinitesimal";
val Infinitesimal_interval = thm "Infinitesimal_interval";
val Infinitesimal_interval2 = thm "Infinitesimal_interval2";
val not_Infinitesimal_mult = thm "not_Infinitesimal_mult";
val Infinitesimal_mult_disj = thm "Infinitesimal_mult_disj";
val HFinite_Infinitesimal_not_zero = thm "HFinite_Infinitesimal_not_zero";
val HFinite_Infinitesimal_diff_mult = thm "HFinite_Infinitesimal_diff_mult";
val Infinitesimal_subset_HFinite = thm "Infinitesimal_subset_HFinite";
val Infinitesimal_hypreal_of_real_mult = thm "Infinitesimal_hypreal_of_real_mult";
val Infinitesimal_hypreal_of_real_mult2 = thm "Infinitesimal_hypreal_of_real_mult2";
val mem_infmal_iff = thm "mem_infmal_iff";
val approx_minus_iff = thm "approx_minus_iff";
val approx_minus_iff2 = thm "approx_minus_iff2";
val approx_refl = thm "approx_refl";
val approx_sym = thm "approx_sym";
val approx_trans = thm "approx_trans";
val approx_trans2 = thm "approx_trans2";
val approx_trans3 = thm "approx_trans3";
val number_of_approx_reorient = thm "number_of_approx_reorient";
val zero_approx_reorient = thm "zero_approx_reorient";
val one_approx_reorient = thm "one_approx_reorient";
(*** re-orientation, following HOL/Integ/Bin.ML
We re-orient x @=y where x is 0, 1 or a numeral, unless y is as well!
***)
(*reorientation simprules using ==, for the following simproc*)
val meta_zero_approx_reorient = zero_approx_reorient RS eq_reflection;
val meta_one_approx_reorient = one_approx_reorient RS eq_reflection;
val meta_number_of_approx_reorient = number_of_approx_reorient RS eq_reflection
(*reorientation simplification procedure: reorients (polymorphic)
0 = x, 1 = x, nnn = x provided x isn't 0, 1 or a numeral.*)
fun reorient_proc sg _ (_ $ t $ u) =
case u of
Const("0", _) => None
| Const("1", _) => None
| Const("Numeral.number_of", _) $ _ => None
| _ => Some (case t of
Const("0", _) => meta_zero_approx_reorient
| Const("1", _) => meta_one_approx_reorient
| Const("Numeral.number_of", _) $ _ =>
meta_number_of_approx_reorient);
val approx_reorient_simproc =
Bin_Simprocs.prep_simproc
("reorient_simproc", ["0@=x", "1@=x", "number_of w @= x"], reorient_proc);
Addsimprocs [approx_reorient_simproc];
*}
lemma Infinitesimal_approx_minus: "(x-y \<in> Infinitesimal) = (x @= y)"
by (auto simp add: hypreal_diff_def approx_minus_iff [symmetric] mem_infmal_iff)
lemma approx_monad_iff: "(x @= y) = (monad(x)=monad(y))"
apply (simp add: monad_def)
apply (auto dest: approx_sym elim!: approx_trans equalityCE)
done
lemma Infinitesimal_approx: "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> x @= y"
apply (simp add: mem_infmal_iff)
apply (blast intro: approx_trans approx_sym)
done
lemma approx_add: "[| a @= b; c @= d |] ==> a+c @= b+d"
proof (unfold approx_def)
assume inf: "a + - b \<in> Infinitesimal" "c + - d \<in> Infinitesimal"
have "a + c + - (b + d) = (a + - b) + (c + - d)" by arith
also have "... \<in> Infinitesimal" using inf by (rule Infinitesimal_add)
finally show "a + c + - (b + d) \<in> Infinitesimal" .
qed
lemma approx_minus: "a @= b ==> -a @= -b"
apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym])
apply (drule approx_minus_iff [THEN iffD1])
apply (simp (no_asm) add: hypreal_add_commute)
done
lemma approx_minus2: "-a @= -b ==> a @= b"
by (auto dest: approx_minus)
lemma approx_minus_cancel: "(-a @= -b) = (a @= b)"
by (blast intro: approx_minus approx_minus2)
declare approx_minus_cancel [simp]
lemma approx_add_minus: "[| a @= b; c @= d |] ==> a + -c @= b + -d"
by (blast intro!: approx_add approx_minus)
lemma approx_mult1: "[| a @= b; c: HFinite|] ==> a*c @= b*c"
by (simp add: approx_def Infinitesimal_HFinite_mult minus_mult_left
left_distrib [symmetric]
del: minus_mult_left [symmetric])
lemma approx_mult2: "[|a @= b; c: HFinite|] ==> c*a @= c*b"
apply (simp (no_asm_simp) add: approx_mult1 hypreal_mult_commute)
done
lemma approx_mult_subst: "[|u @= v*x; x @= y; v \<in> HFinite|] ==> u @= v*y"
by (blast intro: approx_mult2 approx_trans)
lemma approx_mult_subst2: "[| u @= x*v; x @= y; v \<in> HFinite |] ==> u @= y*v"
by (blast intro: approx_mult1 approx_trans)
lemma approx_mult_subst_SReal: "[| u @= x*hypreal_of_real v; x @= y |] ==> u @= y*hypreal_of_real v"
by (auto intro: approx_mult_subst2)
lemma approx_eq_imp: "a = b ==> a @= b"
by (simp add: approx_def)
lemma Infinitesimal_minus_approx: "x \<in> Infinitesimal ==> -x @= x"
by (blast intro: Infinitesimal_minus_iff [THEN iffD2]
mem_infmal_iff [THEN iffD1] approx_trans2)
lemma bex_Infinitesimal_iff: "(\<exists>y \<in> Infinitesimal. x + -z = y) = (x @= z)"
by (simp add: approx_def)
lemma bex_Infinitesimal_iff2: "(\<exists>y \<in> Infinitesimal. x = z + y) = (x @= z)"
by (force simp add: bex_Infinitesimal_iff [symmetric])
lemma Infinitesimal_add_approx: "[| y \<in> Infinitesimal; x + y = z |] ==> x @= z"
apply (rule bex_Infinitesimal_iff [THEN iffD1])
apply (drule Infinitesimal_minus_iff [THEN iffD2])
apply (auto simp add: minus_add_distrib hypreal_add_assoc [symmetric])
done
lemma Infinitesimal_add_approx_self: "y \<in> Infinitesimal ==> x @= x + y"
apply (rule bex_Infinitesimal_iff [THEN iffD1])
apply (drule Infinitesimal_minus_iff [THEN iffD2])
apply (auto simp add: minus_add_distrib hypreal_add_assoc [symmetric])
done
lemma Infinitesimal_add_approx_self2: "y \<in> Infinitesimal ==> x @= y + x"
by (auto dest: Infinitesimal_add_approx_self simp add: hypreal_add_commute)
lemma Infinitesimal_add_minus_approx_self: "y \<in> Infinitesimal ==> x @= x + -y"
by (blast intro!: Infinitesimal_add_approx_self Infinitesimal_minus_iff [THEN iffD2])
lemma Infinitesimal_add_cancel: "[| y \<in> Infinitesimal; x+y @= z|] ==> x @= z"
apply (drule_tac x = x in Infinitesimal_add_approx_self [THEN approx_sym])
apply (erule approx_trans3 [THEN approx_sym], assumption)
done
lemma Infinitesimal_add_right_cancel: "[| y \<in> Infinitesimal; x @= z + y|] ==> x @= z"
apply (drule_tac x = z in Infinitesimal_add_approx_self2 [THEN approx_sym])
apply (erule approx_trans3 [THEN approx_sym])
apply (simp add: hypreal_add_commute)
apply (erule approx_sym)
done
lemma approx_add_left_cancel: "d + b @= d + c ==> b @= c"
apply (drule approx_minus_iff [THEN iffD1])
apply (simp add: minus_add_distrib approx_minus_iff [symmetric] add_ac)
done
lemma approx_add_right_cancel: "b + d @= c + d ==> b @= c"
apply (rule approx_add_left_cancel)
apply (simp add: hypreal_add_commute)
done
lemma approx_add_mono1: "b @= c ==> d + b @= d + c"
apply (rule approx_minus_iff [THEN iffD2])
apply (simp add: minus_add_distrib approx_minus_iff [symmetric] add_ac)
done
lemma approx_add_mono2: "b @= c ==> b + a @= c + a"
apply (simp (no_asm_simp) add: hypreal_add_commute approx_add_mono1)
done
lemma approx_add_left_iff: "(a + b @= a + c) = (b @= c)"
by (fast elim: approx_add_left_cancel approx_add_mono1)
declare approx_add_left_iff [simp]
lemma approx_add_right_iff: "(b + a @= c + a) = (b @= c)"
apply (simp (no_asm) add: hypreal_add_commute)
done
declare approx_add_right_iff [simp]
lemma approx_HFinite: "[| x \<in> HFinite; x @= y |] ==> y \<in> HFinite"
apply (drule bex_Infinitesimal_iff2 [THEN iffD2], safe)
apply (drule Infinitesimal_subset_HFinite [THEN subsetD, THEN HFinite_minus_iff [THEN iffD2]])
apply (drule HFinite_add)
apply (auto simp add: hypreal_add_assoc)
done
lemma approx_hypreal_of_real_HFinite: "x @= hypreal_of_real D ==> x \<in> HFinite"
by (rule approx_sym [THEN [2] approx_HFinite], auto)
lemma approx_mult_HFinite: "[|a @= b; c @= d; b: HFinite; d: HFinite|] ==> a*c @= b*d"
apply (rule approx_trans)
apply (rule_tac [2] approx_mult2)
apply (rule approx_mult1)
prefer 2 apply (blast intro: approx_HFinite approx_sym, auto)
done
lemma approx_mult_hypreal_of_real: "[|a @= hypreal_of_real b; c @= hypreal_of_real d |]
==> a*c @= hypreal_of_real b*hypreal_of_real d"
apply (blast intro!: approx_mult_HFinite approx_hypreal_of_real_HFinite HFinite_hypreal_of_real)
done
lemma approx_SReal_mult_cancel_zero: "[| a \<in> Reals; a \<noteq> 0; a*x @= 0 |] ==> x @= 0"
apply (drule SReal_inverse [THEN SReal_subset_HFinite [THEN subsetD]])
apply (auto dest: approx_mult2 simp add: hypreal_mult_assoc [symmetric])
done
(* REM comments: newly added *)
lemma approx_mult_SReal1: "[| a \<in> Reals; x @= 0 |] ==> x*a @= 0"
by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult1)
lemma approx_mult_SReal2: "[| a \<in> Reals; x @= 0 |] ==> a*x @= 0"
by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult2)
lemma approx_mult_SReal_zero_cancel_iff: "[|a \<in> Reals; a \<noteq> 0 |] ==> (a*x @= 0) = (x @= 0)"
by (blast intro: approx_SReal_mult_cancel_zero approx_mult_SReal2)
declare approx_mult_SReal_zero_cancel_iff [simp]
lemma approx_SReal_mult_cancel: "[| a \<in> Reals; a \<noteq> 0; a* w @= a*z |] ==> w @= z"
apply (drule SReal_inverse [THEN SReal_subset_HFinite [THEN subsetD]])
apply (auto dest: approx_mult2 simp add: hypreal_mult_assoc [symmetric])
done
lemma approx_SReal_mult_cancel_iff1: "[| a \<in> Reals; a \<noteq> 0|] ==> (a* w @= a*z) = (w @= z)"
by (auto intro!: approx_mult2 SReal_subset_HFinite [THEN subsetD] intro: approx_SReal_mult_cancel)
declare approx_SReal_mult_cancel_iff1 [simp]
lemma approx_le_bound: "[| z <= f; f @= g; g <= z |] ==> f @= z"
apply (simp add: bex_Infinitesimal_iff2 [symmetric], auto)
apply (rule_tac x = "g+y-z" in bexI)
apply (simp (no_asm))
apply (rule Infinitesimal_interval2)
apply (rule_tac [2] Infinitesimal_zero, auto)
done
(*-----------------------------------------------------------------
Zero is the only infinitesimal that is also a real
-----------------------------------------------------------------*)
lemma Infinitesimal_less_SReal:
"[| x \<in> Reals; y \<in> Infinitesimal; 0 < x |] ==> y < x"
apply (simp add: Infinitesimal_def)
apply (rule abs_ge_self [THEN order_le_less_trans], auto)
done
lemma Infinitesimal_less_SReal2: "y \<in> Infinitesimal ==> \<forall>r \<in> Reals. 0 < r --> y < r"
by (blast intro: Infinitesimal_less_SReal)
lemma SReal_not_Infinitesimal:
"[| 0 < y; y \<in> Reals|] ==> y \<notin> Infinitesimal"
apply (simp add: Infinitesimal_def)
apply (auto simp add: hrabs_def)
done
lemma SReal_minus_not_Infinitesimal: "[| y < 0; y \<in> Reals |] ==> y \<notin> Infinitesimal"
apply (subst Infinitesimal_minus_iff [symmetric])
apply (rule SReal_not_Infinitesimal, auto)
done
lemma SReal_Int_Infinitesimal_zero: "Reals Int Infinitesimal = {0}"
apply auto
apply (cut_tac x = x and y = 0 in linorder_less_linear)
apply (blast dest: SReal_not_Infinitesimal SReal_minus_not_Infinitesimal)
done
lemma SReal_Infinitesimal_zero: "[| x \<in> Reals; x \<in> Infinitesimal|] ==> x = 0"
by (cut_tac SReal_Int_Infinitesimal_zero, blast)
lemma SReal_HFinite_diff_Infinitesimal: "[| x \<in> Reals; x \<noteq> 0 |] ==> x \<in> HFinite - Infinitesimal"
by (auto dest: SReal_Infinitesimal_zero SReal_subset_HFinite [THEN subsetD])
lemma hypreal_of_real_HFinite_diff_Infinitesimal: "hypreal_of_real x \<noteq> 0 ==> hypreal_of_real x \<in> HFinite - Infinitesimal"
by (rule SReal_HFinite_diff_Infinitesimal, auto)
lemma hypreal_of_real_Infinitesimal_iff_0: "(hypreal_of_real x \<in> Infinitesimal) = (x=0)"
apply auto
apply (rule ccontr)
apply (rule hypreal_of_real_HFinite_diff_Infinitesimal [THEN DiffD2], auto)
done
declare hypreal_of_real_Infinitesimal_iff_0 [iff]
lemma number_of_not_Infinitesimal: "number_of w \<noteq> (0::hypreal) ==> number_of w \<notin> Infinitesimal"
by (fast dest: SReal_number_of [THEN SReal_Infinitesimal_zero])
declare number_of_not_Infinitesimal [simp]
(*again: 1 is a special case, but not 0 this time*)
lemma one_not_Infinitesimal: "1 \<notin> Infinitesimal"
apply (subst hypreal_numeral_1_eq_1 [symmetric])
apply (rule number_of_not_Infinitesimal)
apply (simp (no_asm))
done
declare one_not_Infinitesimal [simp]
lemma approx_SReal_not_zero: "[| y \<in> Reals; x @= y; y\<noteq> 0 |] ==> x \<noteq> 0"
apply (cut_tac x = 0 and y = y in linorder_less_linear, simp)
apply (blast dest: approx_sym [THEN mem_infmal_iff [THEN iffD2]] SReal_not_Infinitesimal SReal_minus_not_Infinitesimal)
done
lemma HFinite_diff_Infinitesimal_approx: "[| x @= y; y \<in> HFinite - Infinitesimal |]
==> x \<in> HFinite - Infinitesimal"
apply (auto intro: approx_sym [THEN [2] approx_HFinite]
simp add: mem_infmal_iff)
apply (drule approx_trans3, assumption)
apply (blast dest: approx_sym)
done
(*The premise y\<noteq>0 is essential; otherwise x/y =0 and we lose the
HFinite premise.*)
lemma Infinitesimal_ratio: "[| y \<noteq> 0; y \<in> Infinitesimal; x/y \<in> HFinite |] ==> x \<in> Infinitesimal"
apply (drule Infinitesimal_HFinite_mult2, assumption)
apply (simp add: hypreal_divide_def hypreal_mult_assoc)
done
(*------------------------------------------------------------------
Standard Part Theorem: Every finite x: R* is infinitely
close to a unique real number (i.e a member of Reals)
------------------------------------------------------------------*)
(*------------------------------------------------------------------
Uniqueness: Two infinitely close reals are equal
------------------------------------------------------------------*)
lemma SReal_approx_iff: "[|x \<in> Reals; y \<in> Reals|] ==> (x @= y) = (x = y)"
apply auto
apply (simp add: approx_def)
apply (drule_tac x = y in SReal_minus)
apply (drule SReal_add, assumption)
apply (drule SReal_Infinitesimal_zero, assumption)
apply (drule sym)
apply (simp add: hypreal_eq_minus_iff [symmetric])
done
lemma number_of_approx_iff: "(number_of v @= number_of w) = (number_of v = (number_of w :: hypreal))"
by (auto simp add: SReal_approx_iff)
declare number_of_approx_iff [simp]
(*And also for 0 @= #nn and 1 @= #nn, #nn @= 0 and #nn @= 1.*)
lemma [simp]: "(0 @= number_of w) = ((number_of w :: hypreal) = 0)"
"(number_of w @= 0) = ((number_of w :: hypreal) = 0)"
"(1 @= number_of w) = ((number_of w :: hypreal) = 1)"
"(number_of w @= 1) = ((number_of w :: hypreal) = 1)"
"~ (0 @= 1)" "~ (1 @= 0)"
by (auto simp only: SReal_number_of SReal_approx_iff Reals_0 Reals_1)
lemma hypreal_of_real_approx_iff: "(hypreal_of_real k @= hypreal_of_real m) = (k = m)"
apply auto
apply (rule inj_hypreal_of_real [THEN injD])
apply (rule SReal_approx_iff [THEN iffD1], auto)
done
declare hypreal_of_real_approx_iff [simp]
lemma hypreal_of_real_approx_number_of_iff: "(hypreal_of_real k @= number_of w) = (k = number_of w)"
by (subst hypreal_of_real_approx_iff [symmetric], auto)
declare hypreal_of_real_approx_number_of_iff [simp]
(*And also for 0 and 1.*)
(*And also for 0 @= #nn and 1 @= #nn, #nn @= 0 and #nn @= 1.*)
lemma [simp]: "(hypreal_of_real k @= 0) = (k = 0)"
"(hypreal_of_real k @= 1) = (k = 1)"
by (simp_all add: hypreal_of_real_approx_iff [symmetric])
lemma approx_unique_real: "[| r \<in> Reals; s \<in> Reals; r @= x; s @= x|] ==> r = s"
by (blast intro: SReal_approx_iff [THEN iffD1] approx_trans2)
(*------------------------------------------------------------------
Existence of unique real infinitely close
------------------------------------------------------------------*)
(* lemma about lubs *)
lemma hypreal_isLub_unique:
"[| isLub R S x; isLub R S y |] ==> x = (y::hypreal)"
apply (frule isLub_isUb)
apply (frule_tac x = y in isLub_isUb)
apply (blast intro!: hypreal_le_anti_sym dest!: isLub_le_isUb)
done
lemma lemma_st_part_ub: "x \<in> HFinite ==> \<exists>u. isUb Reals {s. s \<in> Reals & s < x} u"
apply (drule HFiniteD, safe)
apply (rule exI, rule isUbI)
apply (auto intro: setleI isUbI simp add: abs_less_iff)
done
lemma lemma_st_part_nonempty: "x \<in> HFinite ==> \<exists>y. y \<in> {s. s \<in> Reals & s < x}"
apply (drule HFiniteD, safe)
apply (drule SReal_minus)
apply (rule_tac x = "-t" in exI)
apply (auto simp add: abs_less_iff)
done
lemma lemma_st_part_subset: "{s. s \<in> Reals & s < x} <= Reals"
by auto
lemma lemma_st_part_lub: "x \<in> HFinite ==> \<exists>t. isLub Reals {s. s \<in> Reals & s < x} t"
by (blast intro!: SReal_complete lemma_st_part_ub lemma_st_part_nonempty lemma_st_part_subset)
lemma lemma_hypreal_le_left_cancel: "((t::hypreal) + r <= t) = (r <= 0)"
apply safe
apply (drule_tac c = "-t" in add_left_mono)
apply (drule_tac [2] c = t in add_left_mono)
apply (auto simp add: hypreal_add_assoc [symmetric])
done
lemma lemma_st_part_le1: "[| x \<in> HFinite; isLub Reals {s. s \<in> Reals & s < x} t;
r \<in> Reals; 0 < r |] ==> x <= t + r"
apply (frule isLubD1a)
apply (rule ccontr, drule linorder_not_le [THEN iffD2])
apply (drule_tac x = t in SReal_add, assumption)
apply (drule_tac y = "t + r" in isLubD1 [THEN setleD], auto)
done
lemma hypreal_setle_less_trans: "!!x::hypreal. [| S *<= x; x < y |] ==> S *<= y"
apply (simp add: setle_def)
apply (auto dest!: bspec order_le_less_trans intro: order_less_imp_le)
done
lemma hypreal_gt_isUb:
"!!x::hypreal. [| isUb R S x; x < y; y \<in> R |] ==> isUb R S y"
apply (simp add: isUb_def)
apply (blast intro: hypreal_setle_less_trans)
done
lemma lemma_st_part_gt_ub: "[| x \<in> HFinite; x < y; y \<in> Reals |]
==> isUb Reals {s. s \<in> Reals & s < x} y"
apply (auto dest: order_less_trans intro: order_less_imp_le intro!: isUbI setleI)
done
lemma lemma_minus_le_zero: "t <= t + -r ==> r <= (0::hypreal)"
apply (drule_tac c = "-t" in add_left_mono)
apply (auto simp add: hypreal_add_assoc [symmetric])
done
lemma lemma_st_part_le2: "[| x \<in> HFinite;
isLub Reals {s. s \<in> Reals & s < x} t;
r \<in> Reals; 0 < r |]
==> t + -r <= x"
apply (frule isLubD1a)
apply (rule ccontr, drule linorder_not_le [THEN iffD1])
apply (drule SReal_minus, drule_tac x = t in SReal_add, assumption)
apply (drule lemma_st_part_gt_ub, assumption+)
apply (drule isLub_le_isUb, assumption)
apply (drule lemma_minus_le_zero)
apply (auto dest: order_less_le_trans)
done
lemma lemma_hypreal_le_swap: "((x::hypreal) <= t + r) = (x + -t <= r)"
by auto
lemma lemma_st_part1a: "[| x \<in> HFinite;
isLub Reals {s. s \<in> Reals & s < x} t;
r \<in> Reals; 0 < r |]
==> x + -t <= r"
apply (blast intro!: lemma_hypreal_le_swap [THEN iffD1] lemma_st_part_le1)
done
lemma lemma_hypreal_le_swap2: "(t + -r <= x) = (-(x + -t) <= (r::hypreal))"
by auto
lemma lemma_st_part2a: "[| x \<in> HFinite;
isLub Reals {s. s \<in> Reals & s < x} t;
r \<in> Reals; 0 < r |]
==> -(x + -t) <= r"
apply (blast intro!: lemma_hypreal_le_swap2 [THEN iffD1] lemma_st_part_le2)
done
lemma lemma_SReal_ub: "(x::hypreal) \<in> Reals ==> isUb Reals {s. s \<in> Reals & s < x} x"
by (auto intro: isUbI setleI order_less_imp_le)
lemma lemma_SReal_lub: "(x::hypreal) \<in> Reals ==> isLub Reals {s. s \<in> Reals & s < x} x"
apply (auto intro!: isLubI2 lemma_SReal_ub setgeI)
apply (frule isUbD2a)
apply (rule_tac x = x and y = y in linorder_cases)
apply (auto intro!: order_less_imp_le)
apply (drule SReal_dense, assumption, assumption, safe)
apply (drule_tac y = r in isUbD)
apply (auto dest: order_less_le_trans)
done
lemma lemma_st_part_not_eq1: "[| x \<in> HFinite;
isLub Reals {s. s \<in> Reals & s < x} t;
r \<in> Reals; 0 < r |]
==> x + -t \<noteq> r"
apply auto
apply (frule isLubD1a [THEN SReal_minus])
apply (drule SReal_add_cancel, assumption)
apply (drule_tac x = x in lemma_SReal_lub)
apply (drule hypreal_isLub_unique, assumption, auto)
done
lemma lemma_st_part_not_eq2: "[| x \<in> HFinite;
isLub Reals {s. s \<in> Reals & s < x} t;
r \<in> Reals; 0 < r |]
==> -(x + -t) \<noteq> r"
apply (auto simp add: minus_add_distrib)
apply (frule isLubD1a)
apply (drule SReal_add_cancel, assumption)
apply (drule_tac x = "-x" in SReal_minus, simp)
apply (drule_tac x = x in lemma_SReal_lub)
apply (drule hypreal_isLub_unique, assumption, auto)
done
lemma lemma_st_part_major: "[| x \<in> HFinite;
isLub Reals {s. s \<in> Reals & s < x} t;
r \<in> Reals; 0 < r |]
==> abs (x + -t) < r"
apply (frule lemma_st_part1a)
apply (frule_tac [4] lemma_st_part2a, auto)
apply (drule order_le_imp_less_or_eq)+
apply (auto dest: lemma_st_part_not_eq1 lemma_st_part_not_eq2 simp add: abs_less_iff)
done
lemma lemma_st_part_major2: "[| x \<in> HFinite;
isLub Reals {s. s \<in> Reals & s < x} t |]
==> \<forall>r \<in> Reals. 0 < r --> abs (x + -t) < r"
apply (blast dest!: lemma_st_part_major)
done
(*----------------------------------------------
Existence of real and Standard Part Theorem
----------------------------------------------*)
lemma lemma_st_part_Ex: "x \<in> HFinite ==>
\<exists>t \<in> Reals. \<forall>r \<in> Reals. 0 < r --> abs (x + -t) < r"
apply (frule lemma_st_part_lub, safe)
apply (frule isLubD1a)
apply (blast dest: lemma_st_part_major2)
done
lemma st_part_Ex:
"x \<in> HFinite ==> \<exists>t \<in> Reals. x @= t"
apply (simp add: approx_def Infinitesimal_def)
apply (drule lemma_st_part_Ex, auto)
done
(*--------------------------------
Unique real infinitely close
-------------------------------*)
lemma st_part_Ex1: "x \<in> HFinite ==> EX! t. t \<in> Reals & x @= t"
apply (drule st_part_Ex, safe)
apply (drule_tac [2] approx_sym, drule_tac [2] approx_sym, drule_tac [2] approx_sym)
apply (auto intro!: approx_unique_real)
done
(*------------------------------------------------------------------
Finite and Infinite --- more theorems
------------------------------------------------------------------*)
lemma HFinite_Int_HInfinite_empty: "HFinite Int HInfinite = {}"
apply (simp add: HFinite_def HInfinite_def)
apply (auto dest: order_less_trans)
done
declare HFinite_Int_HInfinite_empty [simp]
lemma HFinite_not_HInfinite:
assumes x: "x \<in> HFinite" shows "x \<notin> HInfinite"
proof
assume x': "x \<in> HInfinite"
with x have "x \<in> HFinite \<inter> HInfinite" by blast
thus False by auto
qed
lemma not_HFinite_HInfinite: "x\<notin> HFinite ==> x \<in> HInfinite"
apply (simp add: HInfinite_def HFinite_def, auto)
apply (drule_tac x = "r + 1" in bspec)
apply (auto simp add: SReal_add)
done
lemma HInfinite_HFinite_disj: "x \<in> HInfinite | x \<in> HFinite"
by (blast intro: not_HFinite_HInfinite)
lemma HInfinite_HFinite_iff: "(x \<in> HInfinite) = (x \<notin> HFinite)"
by (blast dest: HFinite_not_HInfinite not_HFinite_HInfinite)
lemma HFinite_HInfinite_iff: "(x \<in> HFinite) = (x \<notin> HInfinite)"
apply (simp (no_asm) add: HInfinite_HFinite_iff)
done
(*------------------------------------------------------------------
Finite, Infinite and Infinitesimal --- more theorems
------------------------------------------------------------------*)
lemma HInfinite_diff_HFinite_Infinitesimal_disj: "x \<notin> Infinitesimal ==> x \<in> HInfinite | x \<in> HFinite - Infinitesimal"
by (fast intro: not_HFinite_HInfinite)
lemma HFinite_inverse: "[| x \<in> HFinite; x \<notin> Infinitesimal |] ==> inverse x \<in> HFinite"
apply (cut_tac x = "inverse x" in HInfinite_HFinite_disj)
apply (auto dest!: HInfinite_inverse_Infinitesimal)
done
lemma HFinite_inverse2: "x \<in> HFinite - Infinitesimal ==> inverse x \<in> HFinite"
by (blast intro: HFinite_inverse)
(* stronger statement possible in fact *)
lemma Infinitesimal_inverse_HFinite: "x \<notin> Infinitesimal ==> inverse(x) \<in> HFinite"
apply (drule HInfinite_diff_HFinite_Infinitesimal_disj)
apply (blast intro: HFinite_inverse HInfinite_inverse_Infinitesimal Infinitesimal_subset_HFinite [THEN subsetD])
done
lemma HFinite_not_Infinitesimal_inverse: "x \<in> HFinite - Infinitesimal ==> inverse x \<in> HFinite - Infinitesimal"
apply (auto intro: Infinitesimal_inverse_HFinite)
apply (drule Infinitesimal_HFinite_mult2, assumption)
apply (simp add: not_Infinitesimal_not_zero hypreal_mult_inverse)
done
lemma approx_inverse: "[| x @= y; y \<in> HFinite - Infinitesimal |]
==> inverse x @= inverse y"
apply (frule HFinite_diff_Infinitesimal_approx, assumption)
apply (frule not_Infinitesimal_not_zero2)
apply (frule_tac x = x in not_Infinitesimal_not_zero2)
apply (drule HFinite_inverse2)+
apply (drule approx_mult2, assumption, auto)
apply (drule_tac c = "inverse x" in approx_mult1, assumption)
apply (auto intro: approx_sym simp add: hypreal_mult_assoc)
done
(*Used for NSLIM_inverse, NSLIMSEQ_inverse*)
lemmas hypreal_of_real_approx_inverse = hypreal_of_real_HFinite_diff_Infinitesimal [THEN [2] approx_inverse]
lemma inverse_add_Infinitesimal_approx: "[| x \<in> HFinite - Infinitesimal;
h \<in> Infinitesimal |] ==> inverse(x + h) @= inverse x"
apply (auto intro: approx_inverse approx_sym Infinitesimal_add_approx_self)
done
lemma inverse_add_Infinitesimal_approx2: "[| x \<in> HFinite - Infinitesimal;
h \<in> Infinitesimal |] ==> inverse(h + x) @= inverse x"
apply (rule hypreal_add_commute [THEN subst])
apply (blast intro: inverse_add_Infinitesimal_approx)
done
lemma inverse_add_Infinitesimal_approx_Infinitesimal: "[| x \<in> HFinite - Infinitesimal;
h \<in> Infinitesimal |] ==> inverse(x + h) + -inverse x @= h"
apply (rule approx_trans2)
apply (auto intro: inverse_add_Infinitesimal_approx simp add: mem_infmal_iff approx_minus_iff [symmetric])
done
lemma Infinitesimal_square_iff: "(x \<in> Infinitesimal) = (x*x \<in> Infinitesimal)"
apply (auto intro: Infinitesimal_mult)
apply (rule ccontr, frule Infinitesimal_inverse_HFinite)
apply (frule not_Infinitesimal_not_zero)
apply (auto dest: Infinitesimal_HFinite_mult simp add: hypreal_mult_assoc)
done
declare Infinitesimal_square_iff [symmetric, simp]
lemma HFinite_square_iff: "(x*x \<in> HFinite) = (x \<in> HFinite)"
apply (auto intro: HFinite_mult)
apply (auto dest: HInfinite_mult simp add: HFinite_HInfinite_iff)
done
declare HFinite_square_iff [simp]
lemma HInfinite_square_iff: "(x*x \<in> HInfinite) = (x \<in> HInfinite)"
by (auto simp add: HInfinite_HFinite_iff)
declare HInfinite_square_iff [simp]
lemma approx_HFinite_mult_cancel: "[| a: HFinite-Infinitesimal; a* w @= a*z |] ==> w @= z"
apply safe
apply (frule HFinite_inverse, assumption)
apply (drule not_Infinitesimal_not_zero)
apply (auto dest: approx_mult2 simp add: hypreal_mult_assoc [symmetric])
done
lemma approx_HFinite_mult_cancel_iff1: "a: HFinite-Infinitesimal ==> (a * w @= a * z) = (w @= z)"
by (auto intro: approx_mult2 approx_HFinite_mult_cancel)
lemma HInfinite_HFinite_add_cancel: "[| x + y \<in> HInfinite; y \<in> HFinite |] ==> x \<in> HInfinite"
apply (rule ccontr)
apply (drule HFinite_HInfinite_iff [THEN iffD2])
apply (auto dest: HFinite_add simp add: HInfinite_HFinite_iff)
done
lemma HInfinite_HFinite_add: "[| x \<in> HInfinite; y \<in> HFinite |] ==> x + y \<in> HInfinite"
apply (rule_tac y = "-y" in HInfinite_HFinite_add_cancel)
apply (auto simp add: hypreal_add_assoc HFinite_minus_iff)
done
lemma HInfinite_ge_HInfinite: "[| x \<in> HInfinite; x <= y; 0 <= x |] ==> y \<in> HInfinite"
by (auto intro: HFinite_bounded simp add: HInfinite_HFinite_iff)
lemma Infinitesimal_inverse_HInfinite: "[| x \<in> Infinitesimal; x \<noteq> 0 |] ==> inverse x \<in> HInfinite"
apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2])
apply (auto dest: Infinitesimal_HFinite_mult2)
done
lemma HInfinite_HFinite_not_Infinitesimal_mult: "[| x \<in> HInfinite; y \<in> HFinite - Infinitesimal |]
==> x * y \<in> HInfinite"
apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2])
apply (frule HFinite_Infinitesimal_not_zero)
apply (drule HFinite_not_Infinitesimal_inverse)
apply (safe, drule HFinite_mult)
apply (auto simp add: hypreal_mult_assoc HFinite_HInfinite_iff)
done
lemma HInfinite_HFinite_not_Infinitesimal_mult2: "[| x \<in> HInfinite; y \<in> HFinite - Infinitesimal |]
==> y * x \<in> HInfinite"
apply (auto simp add: hypreal_mult_commute HInfinite_HFinite_not_Infinitesimal_mult)
done
lemma HInfinite_gt_SReal: "[| x \<in> HInfinite; 0 < x; y \<in> Reals |] ==> y < x"
by (auto dest!: bspec simp add: HInfinite_def hrabs_def order_less_imp_le)
lemma HInfinite_gt_zero_gt_one: "[| x \<in> HInfinite; 0 < x |] ==> 1 < x"
by (auto intro: HInfinite_gt_SReal)
lemma not_HInfinite_one: "1 \<notin> HInfinite"
apply (simp (no_asm) add: HInfinite_HFinite_iff)
done
declare not_HInfinite_one [simp]
(*------------------------------------------------------------------
more about absolute value (hrabs)
------------------------------------------------------------------*)
lemma approx_hrabs_disj: "abs x @= x | abs x @= -x"
by (cut_tac x = x in hrabs_disj, auto)
(*------------------------------------------------------------------
Theorems about monads
------------------------------------------------------------------*)
lemma monad_hrabs_Un_subset: "monad (abs x) <= monad(x) Un monad(-x)"
by (rule_tac x1 = x in hrabs_disj [THEN disjE], auto)
lemma Infinitesimal_monad_eq: "e \<in> Infinitesimal ==> monad (x+e) = monad x"
by (fast intro!: Infinitesimal_add_approx_self [THEN approx_sym] approx_monad_iff [THEN iffD1])
lemma mem_monad_iff: "(u \<in> monad x) = (-u \<in> monad (-x))"
by (simp add: monad_def)
lemma Infinitesimal_monad_zero_iff: "(x \<in> Infinitesimal) = (x \<in> monad 0)"
by (auto intro: approx_sym simp add: monad_def mem_infmal_iff)
lemma monad_zero_minus_iff: "(x \<in> monad 0) = (-x \<in> monad 0)"
apply (simp (no_asm) add: Infinitesimal_monad_zero_iff [symmetric])
done
lemma monad_zero_hrabs_iff: "(x \<in> monad 0) = (abs x \<in> monad 0)"
apply (rule_tac x1 = x in hrabs_disj [THEN disjE])
apply (auto simp add: monad_zero_minus_iff [symmetric])
done
lemma mem_monad_self: "x \<in> monad x"
by (simp add: monad_def)
declare mem_monad_self [simp]
(*------------------------------------------------------------------
Proof that x @= y ==> abs x @= abs y
------------------------------------------------------------------*)
lemma approx_subset_monad: "x @= y ==> {x,y}<=monad x"
apply (simp (no_asm))
apply (simp add: approx_monad_iff)
done
lemma approx_subset_monad2: "x @= y ==> {x,y}<=monad y"
apply (drule approx_sym)
apply (fast dest: approx_subset_monad)
done
lemma mem_monad_approx: "u \<in> monad x ==> x @= u"
by (simp add: monad_def)
lemma approx_mem_monad: "x @= u ==> u \<in> monad x"
by (simp add: monad_def)
lemma approx_mem_monad2: "x @= u ==> x \<in> monad u"
apply (simp add: monad_def)
apply (blast intro!: approx_sym)
done
lemma approx_mem_monad_zero: "[| x @= y;x \<in> monad 0 |] ==> y \<in> monad 0"
apply (drule mem_monad_approx)
apply (fast intro: approx_mem_monad approx_trans)
done
lemma Infinitesimal_approx_hrabs: "[| x @= y; x \<in> Infinitesimal |] ==> abs x @= abs y"
apply (drule Infinitesimal_monad_zero_iff [THEN iffD1])
apply (blast intro: approx_mem_monad_zero monad_zero_hrabs_iff [THEN iffD1] mem_monad_approx approx_trans3)
done
lemma less_Infinitesimal_less: "[| 0 < x; x \<notin>Infinitesimal; e :Infinitesimal |] ==> e < x"
apply (rule ccontr)
apply (auto intro: Infinitesimal_zero [THEN [2] Infinitesimal_interval]
dest!: order_le_imp_less_or_eq simp add: linorder_not_less)
done
lemma Ball_mem_monad_gt_zero: "[| 0 < x; x \<notin> Infinitesimal; u \<in> monad x |] ==> 0 < u"
apply (drule mem_monad_approx [THEN approx_sym])
apply (erule bex_Infinitesimal_iff2 [THEN iffD2, THEN bexE])
apply (drule_tac e = "-xa" in less_Infinitesimal_less, auto)
done
lemma Ball_mem_monad_less_zero: "[| x < 0; x \<notin> Infinitesimal; u \<in> monad x |] ==> u < 0"
apply (drule mem_monad_approx [THEN approx_sym])
apply (erule bex_Infinitesimal_iff [THEN iffD2, THEN bexE])
apply (cut_tac x = "-x" and e = xa in less_Infinitesimal_less, auto)
done
lemma lemma_approx_gt_zero: "[|0 < x; x \<notin> Infinitesimal; x @= y|] ==> 0 < y"
by (blast dest: Ball_mem_monad_gt_zero approx_subset_monad)
lemma lemma_approx_less_zero: "[|x < 0; x \<notin> Infinitesimal; x @= y|] ==> y < 0"
by (blast dest: Ball_mem_monad_less_zero approx_subset_monad)
lemma approx_hrabs1: "[| x @= y; x < 0; x \<notin> Infinitesimal |] ==> abs x @= abs y"
apply (frule lemma_approx_less_zero)
apply (assumption+)
apply (simp add: abs_if)
done
lemma approx_hrabs2: "[| x @= y; 0 < x; x \<notin> Infinitesimal |] ==> abs x @= abs y"
apply (frule lemma_approx_gt_zero)
apply (assumption+)
apply (simp add: abs_if)
done
lemma approx_hrabs: "x @= y ==> abs x @= abs y"
apply (rule_tac Q = "x \<in> Infinitesimal" in excluded_middle [THEN disjE])
apply (rule_tac x1 = x and y1 = 0 in linorder_less_linear [THEN disjE])
apply (auto intro: approx_hrabs1 approx_hrabs2 Infinitesimal_approx_hrabs)
done
lemma approx_hrabs_zero_cancel: "abs(x) @= 0 ==> x @= 0"
apply (cut_tac x = x in hrabs_disj)
apply (auto dest: approx_minus)
done
lemma approx_hrabs_add_Infinitesimal: "e \<in> Infinitesimal ==> abs x @= abs(x+e)"
by (fast intro: approx_hrabs Infinitesimal_add_approx_self)
lemma approx_hrabs_add_minus_Infinitesimal: "e \<in> Infinitesimal ==> abs x @= abs(x + -e)"
by (fast intro: approx_hrabs Infinitesimal_add_minus_approx_self)
lemma hrabs_add_Infinitesimal_cancel: "[| e \<in> Infinitesimal; e' \<in> Infinitesimal;
abs(x+e) = abs(y+e')|] ==> abs x @= abs y"
apply (drule_tac x = x in approx_hrabs_add_Infinitesimal)
apply (drule_tac x = y in approx_hrabs_add_Infinitesimal)
apply (auto intro: approx_trans2)
done
lemma hrabs_add_minus_Infinitesimal_cancel: "[| e \<in> Infinitesimal; e' \<in> Infinitesimal;
abs(x + -e) = abs(y + -e')|] ==> abs x @= abs y"
apply (drule_tac x = x in approx_hrabs_add_minus_Infinitesimal)
apply (drule_tac x = y in approx_hrabs_add_minus_Infinitesimal)
apply (auto intro: approx_trans2)
done
lemma hypreal_less_minus_iff: "((x::hypreal) < y) = (0 < y + -x)"
by arith
(* interesting slightly counterintuitive theorem: necessary
for proving that an open interval is an NS open set
*)
lemma Infinitesimal_add_hypreal_of_real_less:
"[| x < y; u \<in> Infinitesimal |]
==> hypreal_of_real x + u < hypreal_of_real y"
apply (simp add: Infinitesimal_def)
apply (drule hypreal_of_real_less_iff [THEN iffD2])
apply (drule_tac x = "hypreal_of_real y + -hypreal_of_real x" in bspec)
apply (auto simp add: hypreal_add_commute abs_less_iff SReal_add SReal_minus)
done
lemma Infinitesimal_add_hrabs_hypreal_of_real_less: "[| x \<in> Infinitesimal; abs(hypreal_of_real r) < hypreal_of_real y |]
==> abs (hypreal_of_real r + x) < hypreal_of_real y"
apply (drule_tac x = "hypreal_of_real r" in approx_hrabs_add_Infinitesimal)
apply (drule approx_sym [THEN bex_Infinitesimal_iff2 [THEN iffD2]])
apply (auto intro!: Infinitesimal_add_hypreal_of_real_less simp add: hypreal_of_real_hrabs)
done
lemma Infinitesimal_add_hrabs_hypreal_of_real_less2: "[| x \<in> Infinitesimal; abs(hypreal_of_real r) < hypreal_of_real y |]
==> abs (x + hypreal_of_real r) < hypreal_of_real y"
apply (rule hypreal_add_commute [THEN subst])
apply (erule Infinitesimal_add_hrabs_hypreal_of_real_less, assumption)
done
lemma hypreal_of_real_le_add_Infininitesimal_cancel: "[| u \<in> Infinitesimal; v \<in> Infinitesimal;
hypreal_of_real x + u <= hypreal_of_real y + v |]
==> hypreal_of_real x <= hypreal_of_real y"
apply (simp add: linorder_not_less [symmetric], auto)
apply (drule_tac u = "v-u" in Infinitesimal_add_hypreal_of_real_less)
apply (auto simp add: Infinitesimal_diff)
done
lemma hypreal_of_real_le_add_Infininitesimal_cancel2: "[| u \<in> Infinitesimal; v \<in> Infinitesimal;
hypreal_of_real x + u <= hypreal_of_real y + v |]
==> x <= y"
apply (blast intro!: hypreal_of_real_le_iff [THEN iffD1] hypreal_of_real_le_add_Infininitesimal_cancel)
done
lemma hypreal_of_real_less_Infinitesimal_le_zero: "[| hypreal_of_real x < e; e \<in> Infinitesimal |] ==> hypreal_of_real x <= 0"
apply (rule linorder_not_less [THEN iffD1], safe)
apply (drule Infinitesimal_interval)
apply (drule_tac [4] SReal_hypreal_of_real [THEN SReal_Infinitesimal_zero], auto)
done
(*used once, in Lim/NSDERIV_inverse*)
lemma Infinitesimal_add_not_zero: "[| h \<in> Infinitesimal; x \<noteq> 0 |] ==> hypreal_of_real x + h \<noteq> 0"
apply auto
apply (subgoal_tac "h = - hypreal_of_real x", auto)
done
lemma Infinitesimal_square_cancel: "x*x + y*y \<in> Infinitesimal ==> x*x \<in> Infinitesimal"
apply (rule Infinitesimal_interval2)
apply (rule_tac [3] zero_le_square, assumption)
apply (auto simp add: zero_le_square)
done
declare Infinitesimal_square_cancel [simp]
lemma HFinite_square_cancel: "x*x + y*y \<in> HFinite ==> x*x \<in> HFinite"
apply (rule HFinite_bounded, assumption)
apply (auto simp add: zero_le_square)
done
declare HFinite_square_cancel [simp]
lemma Infinitesimal_square_cancel2: "x*x + y*y \<in> Infinitesimal ==> y*y \<in> Infinitesimal"
apply (rule Infinitesimal_square_cancel)
apply (rule hypreal_add_commute [THEN subst])
apply (simp (no_asm))
done
declare Infinitesimal_square_cancel2 [simp]
lemma HFinite_square_cancel2: "x*x + y*y \<in> HFinite ==> y*y \<in> HFinite"
apply (rule HFinite_square_cancel)
apply (rule hypreal_add_commute [THEN subst])
apply (simp (no_asm))
done
declare HFinite_square_cancel2 [simp]
lemma Infinitesimal_sum_square_cancel: "x*x + y*y + z*z \<in> Infinitesimal ==> x*x \<in> Infinitesimal"
apply (rule Infinitesimal_interval2, assumption)
apply (rule_tac [2] zero_le_square, simp)
apply (insert zero_le_square [of y])
apply (insert zero_le_square [of z], simp)
done
declare Infinitesimal_sum_square_cancel [simp]
lemma HFinite_sum_square_cancel: "x*x + y*y + z*z \<in> HFinite ==> x*x \<in> HFinite"
apply (rule HFinite_bounded, assumption)
apply (rule_tac [2] zero_le_square)
apply (insert zero_le_square [of y])
apply (insert zero_le_square [of z], simp)
done
declare HFinite_sum_square_cancel [simp]
lemma Infinitesimal_sum_square_cancel2: "y*y + x*x + z*z \<in> Infinitesimal ==> x*x \<in> Infinitesimal"
apply (rule Infinitesimal_sum_square_cancel)
apply (simp add: add_ac)
done
declare Infinitesimal_sum_square_cancel2 [simp]
lemma HFinite_sum_square_cancel2: "y*y + x*x + z*z \<in> HFinite ==> x*x \<in> HFinite"
apply (rule HFinite_sum_square_cancel)
apply (simp add: add_ac)
done
declare HFinite_sum_square_cancel2 [simp]
lemma Infinitesimal_sum_square_cancel3: "z*z + y*y + x*x \<in> Infinitesimal ==> x*x \<in> Infinitesimal"
apply (rule Infinitesimal_sum_square_cancel)
apply (simp add: add_ac)
done
declare Infinitesimal_sum_square_cancel3 [simp]
lemma HFinite_sum_square_cancel3: "z*z + y*y + x*x \<in> HFinite ==> x*x \<in> HFinite"
apply (rule HFinite_sum_square_cancel)
apply (simp add: add_ac)
done
declare HFinite_sum_square_cancel3 [simp]
lemma monad_hrabs_less: "[| y \<in> monad x; 0 < hypreal_of_real e |]
==> abs (y + -x) < hypreal_of_real e"
apply (drule mem_monad_approx [THEN approx_sym])
apply (drule bex_Infinitesimal_iff [THEN iffD2])
apply (auto dest!: InfinitesimalD)
done
lemma mem_monad_SReal_HFinite: "x \<in> monad (hypreal_of_real a) ==> x \<in> HFinite"
apply (drule mem_monad_approx [THEN approx_sym])
apply (drule bex_Infinitesimal_iff2 [THEN iffD2])
apply (safe dest!: Infinitesimal_subset_HFinite [THEN subsetD])
apply (erule SReal_hypreal_of_real [THEN SReal_subset_HFinite [THEN subsetD], THEN HFinite_add])
done
(*------------------------------------------------------------------
Theorems about standard part
------------------------------------------------------------------*)
lemma st_approx_self: "x \<in> HFinite ==> st x @= x"
apply (simp add: st_def)
apply (frule st_part_Ex, safe)
apply (rule someI2)
apply (auto intro: approx_sym)
done
lemma st_SReal: "x \<in> HFinite ==> st x \<in> Reals"
apply (simp add: st_def)
apply (frule st_part_Ex, safe)
apply (rule someI2)
apply (auto intro: approx_sym)
done
lemma st_HFinite: "x \<in> HFinite ==> st x \<in> HFinite"
by (erule st_SReal [THEN SReal_subset_HFinite [THEN subsetD]])
lemma st_SReal_eq: "x \<in> Reals ==> st x = x"
apply (simp add: st_def)
apply (rule some_equality)
apply (fast intro: SReal_subset_HFinite [THEN subsetD])
apply (blast dest: SReal_approx_iff [THEN iffD1])
done
(* ???should be added to simpset *)
lemma st_hypreal_of_real: "st (hypreal_of_real x) = hypreal_of_real x"
by (rule SReal_hypreal_of_real [THEN st_SReal_eq])
lemma st_eq_approx: "[| x \<in> HFinite; y \<in> HFinite; st x = st y |] ==> x @= y"
by (auto dest!: st_approx_self elim!: approx_trans3)
lemma approx_st_eq:
assumes "x \<in> HFinite" and "y \<in> HFinite" and "x @= y"
shows "st x = st y"
proof -
have "st x @= x" "st y @= y" "st x \<in> Reals" "st y \<in> Reals"
by (simp_all add: st_approx_self st_SReal prems)
with prems show ?thesis
by (fast elim: approx_trans approx_trans2 SReal_approx_iff [THEN iffD1])
qed
lemma st_eq_approx_iff: "[| x \<in> HFinite; y \<in> HFinite|]
==> (x @= y) = (st x = st y)"
by (blast intro: approx_st_eq st_eq_approx)
lemma st_Infinitesimal_add_SReal: "[| x \<in> Reals; e \<in> Infinitesimal |] ==> st(x + e) = x"
apply (frule st_SReal_eq [THEN subst])
prefer 2 apply assumption
apply (frule SReal_subset_HFinite [THEN subsetD])
apply (frule Infinitesimal_subset_HFinite [THEN subsetD])
apply (drule st_SReal_eq)
apply (rule approx_st_eq)
apply (auto intro: HFinite_add simp add: Infinitesimal_add_approx_self [THEN approx_sym])
done
lemma st_Infinitesimal_add_SReal2: "[| x \<in> Reals; e \<in> Infinitesimal |]
==> st(e + x) = x"
apply (rule hypreal_add_commute [THEN subst])
apply (blast intro!: st_Infinitesimal_add_SReal)
done
lemma HFinite_st_Infinitesimal_add: "x \<in> HFinite ==>
\<exists>e \<in> Infinitesimal. x = st(x) + e"
apply (blast dest!: st_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2])
done
lemma st_add:
assumes x: "x \<in> HFinite" and y: "y \<in> HFinite"
shows "st (x + y) = st(x) + st(y)"
proof -
from HFinite_st_Infinitesimal_add [OF x]
obtain ex where ex: "ex \<in> Infinitesimal" "st x + ex = x"
by (blast intro: sym)
from HFinite_st_Infinitesimal_add [OF y]
obtain ey where ey: "ey \<in> Infinitesimal" "st y + ey = y"
by (blast intro: sym)
have "st (x + y) = st ((st x + ex) + (st y + ey))"
by (simp add: ex ey)
also have "... = st ((ex + ey) + (st x + st y))" by (simp add: add_ac)
also have "... = st x + st y"
by (simp add: prems st_SReal SReal_add Infinitesimal_add
st_Infinitesimal_add_SReal2)
finally show ?thesis .
qed
lemma st_number_of: "st (number_of w) = number_of w"
by (rule SReal_number_of [THEN st_SReal_eq])
declare st_number_of [simp]
(*the theorem above for the special cases of zero and one*)
lemma [simp]: "st 0 = 0" "st 1 = 1"
by (simp_all add: st_SReal_eq)
lemma st_minus: assumes "y \<in> HFinite" shows "st(-y) = -st(y)"
proof -
have "st (- y) + st y = 0"
by (simp add: prems st_add [symmetric] HFinite_minus_iff)
thus ?thesis by arith
qed
lemma st_diff:
"[| x \<in> HFinite; y \<in> HFinite |] ==> st (x-y) = st(x) - st(y)"
apply (simp add: hypreal_diff_def)
apply (frule_tac y1 = y in st_minus [symmetric])
apply (drule_tac x1 = y in HFinite_minus_iff [THEN iffD2])
apply (simp (no_asm_simp) add: st_add)
done
(* lemma *)
lemma lemma_st_mult: "[| x \<in> HFinite; y \<in> HFinite;
e \<in> Infinitesimal;
ea \<in> Infinitesimal |]
==> e*y + x*ea + e*ea \<in> Infinitesimal"
apply (frule_tac x = e and y = y in Infinitesimal_HFinite_mult)
apply (frule_tac [2] x = ea and y = x in Infinitesimal_HFinite_mult)
apply (drule_tac [3] Infinitesimal_mult)
apply (auto intro: Infinitesimal_add simp add: add_ac mult_ac)
done
lemma st_mult: "[| x \<in> HFinite; y \<in> HFinite |]
==> st (x * y) = st(x) * st(y)"
apply (frule HFinite_st_Infinitesimal_add)
apply (frule_tac x = y in HFinite_st_Infinitesimal_add, safe)
apply (subgoal_tac "st (x * y) = st ((st x + e) * (st y + ea))")
apply (drule_tac [2] sym, drule_tac [2] sym)
prefer 2 apply simp
apply (erule_tac V = "x = st x + e" in thin_rl)
apply (erule_tac V = "y = st y + ea" in thin_rl)
apply (simp add: left_distrib right_distrib)
apply (drule st_SReal)+
apply (simp (no_asm_use) add: hypreal_add_assoc)
apply (rule st_Infinitesimal_add_SReal)
apply (blast intro!: SReal_mult)
apply (drule SReal_subset_HFinite [THEN subsetD])+
apply (rule hypreal_add_assoc [THEN subst])
apply (blast intro!: lemma_st_mult)
done
lemma st_Infinitesimal: "x \<in> Infinitesimal ==> st x = 0"
apply (subst hypreal_numeral_0_eq_0 [symmetric])
apply (rule st_number_of [THEN subst])
apply (rule approx_st_eq)
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD] simp add: mem_infmal_iff [symmetric])
done
lemma st_not_Infinitesimal: "st(x) \<noteq> 0 ==> x \<notin> Infinitesimal"
by (fast intro: st_Infinitesimal)
lemma st_inverse: "[| x \<in> HFinite; st x \<noteq> 0 |]
==> st(inverse x) = inverse (st x)"
apply (rule_tac c1 = "st x" in hypreal_mult_left_cancel [THEN iffD1])
apply (auto simp add: st_mult [symmetric] st_not_Infinitesimal HFinite_inverse)
apply (subst hypreal_mult_inverse, auto)
done
lemma st_divide: "[| x \<in> HFinite; y \<in> HFinite; st y \<noteq> 0 |]
==> st(x/y) = (st x) / (st y)"
apply (auto simp add: hypreal_divide_def st_mult st_not_Infinitesimal HFinite_inverse st_inverse)
done
declare st_divide [simp]
lemma st_idempotent: "x \<in> HFinite ==> st(st(x)) = st(x)"
by (blast intro: st_HFinite st_approx_self approx_st_eq)
declare st_idempotent [simp]
(*** lemmas ***)
lemma Infinitesimal_add_st_less: "[| x \<in> HFinite; y \<in> HFinite;
u \<in> Infinitesimal; st x < st y
|] ==> st x + u < st y"
apply (drule st_SReal)+
apply (auto intro!: Infinitesimal_add_hypreal_of_real_less simp add: SReal_iff)
done
lemma Infinitesimal_add_st_le_cancel: "[| x \<in> HFinite; y \<in> HFinite;
u \<in> Infinitesimal; st x <= st y + u
|] ==> st x <= st y"
apply (simp add: linorder_not_less [symmetric])
apply (auto dest: Infinitesimal_add_st_less)
done
lemma st_le: "[| x \<in> HFinite; y \<in> HFinite; x <= y |] ==> st(x) <= st(y)"
apply (frule HFinite_st_Infinitesimal_add)
apply (rotate_tac 1)
apply (frule HFinite_st_Infinitesimal_add, safe)
apply (rule Infinitesimal_add_st_le_cancel)
apply (rule_tac [3] x = ea and y = e in Infinitesimal_diff)
apply (auto simp add: hypreal_add_assoc [symmetric])
done
lemma st_zero_le: "[| 0 <= x; x \<in> HFinite |] ==> 0 <= st x"
apply (subst hypreal_numeral_0_eq_0 [symmetric])
apply (rule st_number_of [THEN subst])
apply (rule st_le, auto)
done
lemma st_zero_ge: "[| x <= 0; x \<in> HFinite |] ==> st x <= 0"
apply (subst hypreal_numeral_0_eq_0 [symmetric])
apply (rule st_number_of [THEN subst])
apply (rule st_le, auto)
done
lemma st_hrabs: "x \<in> HFinite ==> abs(st x) = st(abs x)"
apply (simp add: linorder_not_le st_zero_le abs_if st_minus
linorder_not_less)
apply (auto dest!: st_zero_ge [OF order_less_imp_le])
done
(*--------------------------------------------------------------------
Alternative definitions for HFinite using Free ultrafilter
--------------------------------------------------------------------*)
lemma FreeUltrafilterNat_Rep_hypreal: "[| X \<in> Rep_hypreal x; Y \<in> Rep_hypreal x |]
==> {n. X n = Y n} \<in> FreeUltrafilterNat"
apply (rule_tac z = x in eq_Abs_hypreal, auto, ultra)
done
lemma HFinite_FreeUltrafilterNat:
"x \<in> HFinite
==> \<exists>X \<in> Rep_hypreal x. \<exists>u. {n. abs (X n) < u} \<in> FreeUltrafilterNat"
apply (rule eq_Abs_hypreal [of x])
apply (auto simp add: HFinite_def abs_less_iff minus_less_iff [of x]
hypreal_less SReal_iff hypreal_minus hypreal_of_real_def)
apply (rule_tac x=x in bexI)
apply (rule_tac x=y in exI, auto, ultra)
done
lemma FreeUltrafilterNat_HFinite:
"\<exists>X \<in> Rep_hypreal x.
\<exists>u. {n. abs (X n) < u} \<in> FreeUltrafilterNat
==> x \<in> HFinite"
apply (rule eq_Abs_hypreal [of x])
apply (auto simp add: HFinite_def abs_less_iff minus_less_iff [of x])
apply (rule_tac x = "hypreal_of_real u" in bexI)
apply (auto simp add: hypreal_less SReal_iff hypreal_minus hypreal_of_real_def, ultra+)
done
lemma HFinite_FreeUltrafilterNat_iff: "(x \<in> HFinite) = (\<exists>X \<in> Rep_hypreal x.
\<exists>u. {n. abs (X n) < u} \<in> FreeUltrafilterNat)"
apply (blast intro!: HFinite_FreeUltrafilterNat FreeUltrafilterNat_HFinite)
done
(*--------------------------------------------------------------------
Alternative definitions for HInfinite using Free ultrafilter
--------------------------------------------------------------------*)
lemma lemma_Compl_eq: "- {n. (u::real) < abs (xa n)} = {n. abs (xa n) <= u}"
by auto
lemma lemma_Compl_eq2: "- {n. abs (xa n) < (u::real)} = {n. u <= abs (xa n)}"
by auto
lemma lemma_Int_eq1: "{n. abs (xa n) <= (u::real)} Int {n. u <= abs (xa n)}
= {n. abs(xa n) = u}"
apply auto
done
lemma lemma_FreeUltrafilterNat_one: "{n. abs (xa n) = u} <= {n. abs (xa n) < u + (1::real)}"
by auto
(*-------------------------------------
Exclude this type of sets from free
ultrafilter for Infinite numbers!
-------------------------------------*)
lemma FreeUltrafilterNat_const_Finite: "[| xa: Rep_hypreal x;
{n. abs (xa n) = u} \<in> FreeUltrafilterNat
|] ==> x \<in> HFinite"
apply (rule FreeUltrafilterNat_HFinite)
apply (rule_tac x = xa in bexI)
apply (rule_tac x = "u + 1" in exI)
apply (ultra, assumption)
done
lemma HInfinite_FreeUltrafilterNat:
"x \<in> HInfinite ==> \<exists>X \<in> Rep_hypreal x.
\<forall>u. {n. u < abs (X n)} \<in> FreeUltrafilterNat"
apply (frule HInfinite_HFinite_iff [THEN iffD1])
apply (cut_tac x = x in Rep_hypreal_nonempty)
apply (auto simp del: Rep_hypreal_nonempty simp add: HFinite_FreeUltrafilterNat_iff Bex_def)
apply (drule spec)+
apply auto
apply (drule_tac x = u in spec)
apply (drule FreeUltrafilterNat_Compl_mem)+
apply (drule FreeUltrafilterNat_Int, assumption)
apply (simp add: lemma_Compl_eq lemma_Compl_eq2 lemma_Int_eq1)
apply (auto dest: FreeUltrafilterNat_const_Finite simp
add: HInfinite_HFinite_iff [THEN iffD1])
done
(* yet more lemmas! *)
lemma lemma_Int_HI: "{n. abs (Xa n) < u} Int {n. X n = Xa n}
<= {n. abs (X n) < (u::real)}"
apply auto
done
lemma lemma_Int_HIa: "{n. u < abs (X n)} Int {n. abs (X n) < (u::real)} = {}"
by (auto intro: order_less_asym)
lemma FreeUltrafilterNat_HInfinite: "\<exists>X \<in> Rep_hypreal x. \<forall>u.
{n. u < abs (X n)} \<in> FreeUltrafilterNat
==> x \<in> HInfinite"
apply (rule HInfinite_HFinite_iff [THEN iffD2])
apply (safe, drule HFinite_FreeUltrafilterNat, auto)
apply (drule_tac x = u in spec)
apply (drule FreeUltrafilterNat_Rep_hypreal, assumption)
apply (drule_tac Y = "{n. X n = Xa n}" in FreeUltrafilterNat_Int, simp)
apply (drule lemma_Int_HI [THEN [2] FreeUltrafilterNat_subset])
apply (drule_tac Y = "{n. abs (X n) < u}" in FreeUltrafilterNat_Int)
apply (auto simp add: lemma_Int_HIa FreeUltrafilterNat_empty)
done
lemma HInfinite_FreeUltrafilterNat_iff: "(x \<in> HInfinite) = (\<exists>X \<in> Rep_hypreal x.
\<forall>u. {n. u < abs (X n)} \<in> FreeUltrafilterNat)"
apply (blast intro!: HInfinite_FreeUltrafilterNat FreeUltrafilterNat_HInfinite)
done
(*--------------------------------------------------------------------
Alternative definitions for Infinitesimal using Free ultrafilter
--------------------------------------------------------------------*)
lemma Infinitesimal_FreeUltrafilterNat:
"x \<in> Infinitesimal ==> \<exists>X \<in> Rep_hypreal x.
\<forall>u. 0 < u --> {n. abs (X n) < u} \<in> FreeUltrafilterNat"
apply (simp add: Infinitesimal_def)
apply (auto simp add: abs_less_iff minus_less_iff [of x])
apply (rule eq_Abs_hypreal [of x])
apply (auto, rule bexI [OF _ lemma_hyprel_refl], safe)
apply (drule hypreal_of_real_less_iff [THEN iffD2])
apply (drule_tac x = "hypreal_of_real u" in bspec, auto)
apply (auto simp add: hypreal_less hypreal_minus hypreal_of_real_def, ultra)
done
lemma FreeUltrafilterNat_Infinitesimal:
"\<exists>X \<in> Rep_hypreal x.
\<forall>u. 0 < u --> {n. abs (X n) < u} \<in> FreeUltrafilterNat
==> x \<in> Infinitesimal"
apply (simp add: Infinitesimal_def)
apply (rule eq_Abs_hypreal [of x])
apply (auto simp add: abs_less_iff abs_interval_iff minus_less_iff [of x])
apply (auto simp add: SReal_iff)
apply (drule_tac [!] x=y in spec)
apply (auto simp add: hypreal_less hypreal_minus hypreal_of_real_def, ultra+)
done
lemma Infinitesimal_FreeUltrafilterNat_iff: "(x \<in> Infinitesimal) = (\<exists>X \<in> Rep_hypreal x.
\<forall>u. 0 < u --> {n. abs (X n) < u} \<in> FreeUltrafilterNat)"
apply (blast intro!: Infinitesimal_FreeUltrafilterNat FreeUltrafilterNat_Infinitesimal)
done
(*------------------------------------------------------------------------
Infinitesimals as smaller than 1/n for all n::nat (> 0)
------------------------------------------------------------------------*)
lemma lemma_Infinitesimal: "(\<forall>r. 0 < r --> x < r) = (\<forall>n. x < inverse(real (Suc n)))"
apply (auto simp add: real_of_nat_Suc_gt_zero)
apply (blast dest!: reals_Archimedean intro: order_less_trans)
done
lemma lemma_Infinitesimal2: "(\<forall>r \<in> Reals. 0 < r --> x < r) =
(\<forall>n. x < inverse(hypreal_of_nat (Suc n)))"
apply safe
apply (drule_tac x = "inverse (hypreal_of_real (real (Suc n))) " in bspec)
apply (simp (no_asm_use) add: SReal_inverse)
apply (rule real_of_nat_Suc_gt_zero [THEN positive_imp_inverse_positive, THEN hypreal_of_real_less_iff [THEN iffD2], THEN [2] impE])
prefer 2 apply assumption
apply (simp add: real_of_nat_Suc_gt_zero hypreal_of_nat_def)
apply (auto dest!: reals_Archimedean simp add: SReal_iff)
apply (drule hypreal_of_real_less_iff [THEN iffD2])
apply (simp add: real_of_nat_Suc_gt_zero hypreal_of_nat_def)
apply (blast intro: order_less_trans)
done
lemma Infinitesimal_hypreal_of_nat_iff:
"Infinitesimal = {x. \<forall>n. abs x < inverse (hypreal_of_nat (Suc n))}"
apply (simp add: Infinitesimal_def)
apply (auto simp add: lemma_Infinitesimal2)
done
(*-------------------------------------------------------------------------
Proof that omega is an infinite number and
hence that epsilon is an infinitesimal number.
-------------------------------------------------------------------------*)
lemma Suc_Un_eq: "{n. n < Suc m} = {n. n < m} Un {n. n = m}"
by (auto simp add: less_Suc_eq)
(*-------------------------------------------
Prove that any segment is finite and
hence cannot belong to FreeUltrafilterNat
-------------------------------------------*)
lemma finite_nat_segment: "finite {n::nat. n < m}"
apply (induct_tac "m")
apply (auto simp add: Suc_Un_eq)
done
lemma finite_real_of_nat_segment: "finite {n::nat. real n < real (m::nat)}"
by (auto intro: finite_nat_segment)
lemma finite_real_of_nat_less_real: "finite {n::nat. real n < u}"
apply (cut_tac x = u in reals_Archimedean2, safe)
apply (rule finite_real_of_nat_segment [THEN [2] finite_subset])
apply (auto dest: order_less_trans)
done
lemma lemma_real_le_Un_eq: "{n. f n <= u} = {n. f n < u} Un {n. u = (f n :: real)}"
by (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le)
lemma finite_real_of_nat_le_real: "finite {n::nat. real n <= u}"
by (auto simp add: lemma_real_le_Un_eq lemma_finite_omega_set finite_real_of_nat_less_real)
lemma finite_rabs_real_of_nat_le_real: "finite {n::nat. abs(real n) <= u}"
apply (simp (no_asm) add: real_of_nat_Suc_gt_zero finite_real_of_nat_le_real)
done
lemma rabs_real_of_nat_le_real_FreeUltrafilterNat: "{n. abs(real n) <= u} \<notin> FreeUltrafilterNat"
by (blast intro!: FreeUltrafilterNat_finite finite_rabs_real_of_nat_le_real)
lemma FreeUltrafilterNat_nat_gt_real: "{n. u < real n} \<in> FreeUltrafilterNat"
apply (rule ccontr, drule FreeUltrafilterNat_Compl_mem)
apply (subgoal_tac "- {n::nat. u < real n} = {n. real n <= u}")
prefer 2 apply force
apply (simp add: finite_real_of_nat_le_real [THEN FreeUltrafilterNat_finite])
done
(*--------------------------------------------------------------
The complement of {n. abs(real n) <= u} =
{n. u < abs (real n)} is in FreeUltrafilterNat
by property of (free) ultrafilters
--------------------------------------------------------------*)
lemma Compl_real_le_eq: "- {n::nat. real n <= u} = {n. u < real n}"
by (auto dest!: order_le_less_trans simp add: linorder_not_le)
(*-----------------------------------------------
Omega is a member of HInfinite
-----------------------------------------------*)
lemma hypreal_omega: "hyprel``{%n::nat. real (Suc n)} \<in> hypreal"
by auto
lemma FreeUltrafilterNat_omega: "{n. u < real n} \<in> FreeUltrafilterNat"
apply (cut_tac u = u in rabs_real_of_nat_le_real_FreeUltrafilterNat)
apply (auto dest: FreeUltrafilterNat_Compl_mem simp add: Compl_real_le_eq)
done
lemma HInfinite_omega: "omega: HInfinite"
apply (simp add: omega_def)
apply (auto intro!: FreeUltrafilterNat_HInfinite)
apply (rule bexI)
apply (rule_tac [2] lemma_hyprel_refl, auto)
apply (simp (no_asm) add: real_of_nat_Suc diff_less_eq [symmetric] FreeUltrafilterNat_omega)
done
declare HInfinite_omega [simp]
(*-----------------------------------------------
Epsilon is a member of Infinitesimal
-----------------------------------------------*)
lemma Infinitesimal_epsilon: "epsilon \<in> Infinitesimal"
by (auto intro!: HInfinite_inverse_Infinitesimal HInfinite_omega simp add: hypreal_epsilon_inverse_omega)
declare Infinitesimal_epsilon [simp]
lemma HFinite_epsilon: "epsilon \<in> HFinite"
by (auto intro: Infinitesimal_subset_HFinite [THEN subsetD])
declare HFinite_epsilon [simp]
lemma epsilon_approx_zero: "epsilon @= 0"
apply (simp (no_asm) add: mem_infmal_iff [symmetric])
done
declare epsilon_approx_zero [simp]
(*------------------------------------------------------------------------
Needed for proof that we define a hyperreal [<X(n)] @= hypreal_of_real a given
that \<forall>n. |X n - a| < 1/n. Used in proof of NSLIM => LIM.
-----------------------------------------------------------------------*)
lemma real_of_nat_less_inverse_iff: "0 < u ==>
(u < inverse (real(Suc n))) = (real(Suc n) < inverse u)"
apply (simp add: inverse_eq_divide)
apply (subst pos_less_divide_eq, assumption)
apply (subst pos_less_divide_eq)
apply (simp add: real_of_nat_Suc_gt_zero)
apply (simp add: real_mult_commute)
done
lemma finite_inverse_real_of_posnat_gt_real: "0 < u ==> finite {n. u < inverse(real(Suc n))}"
apply (simp (no_asm_simp) add: real_of_nat_less_inverse_iff)
apply (simp (no_asm_simp) add: real_of_nat_Suc less_diff_eq [symmetric])
apply (rule finite_real_of_nat_less_real)
done
lemma lemma_real_le_Un_eq2: "{n. u <= inverse(real(Suc n))} =
{n. u < inverse(real(Suc n))} Un {n. u = inverse(real(Suc n))}"
apply (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le)
done
lemma real_of_nat_inverse_le_iff: "(inverse (real(Suc n)) <= r) = (1 <= r * real(Suc n))"
apply (simp (no_asm) add: linorder_not_less [symmetric])
apply (simp (no_asm) add: inverse_eq_divide)
apply (subst pos_less_divide_eq)
apply (simp (no_asm) add: real_of_nat_Suc_gt_zero)
apply (simp (no_asm) add: real_mult_commute)
done
lemma real_of_nat_inverse_eq_iff: "(u = inverse (real(Suc n))) = (real(Suc n) = inverse u)"
by (auto simp add: inverse_inverse_eq real_of_nat_Suc_gt_zero real_not_refl2 [THEN not_sym])
lemma lemma_finite_omega_set2: "finite {n::nat. u = inverse(real(Suc n))}"
apply (simp (no_asm_simp) add: real_of_nat_inverse_eq_iff)
apply (cut_tac x = "inverse u - 1" in lemma_finite_omega_set)
apply (simp add: real_of_nat_Suc diff_eq_eq [symmetric] eq_commute)
done
lemma finite_inverse_real_of_posnat_ge_real: "0 < u ==> finite {n. u <= inverse(real(Suc n))}"
by (auto simp add: lemma_real_le_Un_eq2 lemma_finite_omega_set2 finite_inverse_real_of_posnat_gt_real)
lemma inverse_real_of_posnat_ge_real_FreeUltrafilterNat: "0 < u ==>
{n. u <= inverse(real(Suc n))} \<notin> FreeUltrafilterNat"
apply (blast intro!: FreeUltrafilterNat_finite finite_inverse_real_of_posnat_ge_real)
done
(*--------------------------------------------------------------
The complement of {n. u <= inverse(real(Suc n))} =
{n. inverse(real(Suc n)) < u} is in FreeUltrafilterNat
by property of (free) ultrafilters
--------------------------------------------------------------*)
lemma Compl_le_inverse_eq: "- {n. u <= inverse(real(Suc n))} =
{n. inverse(real(Suc n)) < u}"
apply (auto dest!: order_le_less_trans simp add: linorder_not_le)
done
lemma FreeUltrafilterNat_inverse_real_of_posnat: "0 < u ==>
{n. inverse(real(Suc n)) < u} \<in> FreeUltrafilterNat"
apply (cut_tac u = u in inverse_real_of_posnat_ge_real_FreeUltrafilterNat)
apply (auto dest: FreeUltrafilterNat_Compl_mem simp add: Compl_le_inverse_eq)
done
(*--------------------------------------------------------------
Example where we get a hyperreal from a real sequence
for which a particular property holds. The theorem is
used in proofs about equivalence of nonstandard and
standard neighbourhoods. Also used for equivalence of
nonstandard ans standard definitions of pointwise
limit (the theorem was previously in REALTOPOS.thy).
-------------------------------------------------------------*)
(*-----------------------------------------------------
|X(n) - x| < 1/n ==> [<X n>] - hypreal_of_real x| \<in> Infinitesimal
-----------------------------------------------------*)
lemma real_seq_to_hypreal_Infinitesimal: "\<forall>n. abs(X n + -x) < inverse(real(Suc n))
==> Abs_hypreal(hyprel``{X}) + -hypreal_of_real x \<in> Infinitesimal"
apply (auto intro!: bexI dest: FreeUltrafilterNat_inverse_real_of_posnat FreeUltrafilterNat_all FreeUltrafilterNat_Int intro: order_less_trans FreeUltrafilterNat_subset simp add: hypreal_minus hypreal_of_real_def hypreal_add Infinitesimal_FreeUltrafilterNat_iff hypreal_inverse)
done
lemma real_seq_to_hypreal_approx: "\<forall>n. abs(X n + -x) < inverse(real(Suc n))
==> Abs_hypreal(hyprel``{X}) @= hypreal_of_real x"
apply (subst approx_minus_iff)
apply (rule mem_infmal_iff [THEN subst])
apply (erule real_seq_to_hypreal_Infinitesimal)
done
lemma real_seq_to_hypreal_approx2: "\<forall>n. abs(x + -X n) < inverse(real(Suc n))
==> Abs_hypreal(hyprel``{X}) @= hypreal_of_real x"
apply (simp add: abs_minus_add_cancel real_seq_to_hypreal_approx)
done
lemma real_seq_to_hypreal_Infinitesimal2: "\<forall>n. abs(X n + -Y n) < inverse(real(Suc n))
==> Abs_hypreal(hyprel``{X}) +
-Abs_hypreal(hyprel``{Y}) \<in> Infinitesimal"
by (auto intro!: bexI
dest: FreeUltrafilterNat_inverse_real_of_posnat
FreeUltrafilterNat_all FreeUltrafilterNat_Int
intro: order_less_trans FreeUltrafilterNat_subset
simp add: Infinitesimal_FreeUltrafilterNat_iff hypreal_minus
hypreal_add hypreal_inverse)
ML
{*
val Infinitesimal_def = thm"Infinitesimal_def";
val HFinite_def = thm"HFinite_def";
val HInfinite_def = thm"HInfinite_def";
val st_def = thm"st_def";
val monad_def = thm"monad_def";
val galaxy_def = thm"galaxy_def";
val approx_def = thm"approx_def";
val SReal_def = thm"SReal_def";
val Infinitesimal_approx_minus = thm "Infinitesimal_approx_minus";
val approx_monad_iff = thm "approx_monad_iff";
val Infinitesimal_approx = thm "Infinitesimal_approx";
val approx_add = thm "approx_add";
val approx_minus = thm "approx_minus";
val approx_minus2 = thm "approx_minus2";
val approx_minus_cancel = thm "approx_minus_cancel";
val approx_add_minus = thm "approx_add_minus";
val approx_mult1 = thm "approx_mult1";
val approx_mult2 = thm "approx_mult2";
val approx_mult_subst = thm "approx_mult_subst";
val approx_mult_subst2 = thm "approx_mult_subst2";
val approx_mult_subst_SReal = thm "approx_mult_subst_SReal";
val approx_eq_imp = thm "approx_eq_imp";
val Infinitesimal_minus_approx = thm "Infinitesimal_minus_approx";
val bex_Infinitesimal_iff = thm "bex_Infinitesimal_iff";
val bex_Infinitesimal_iff2 = thm "bex_Infinitesimal_iff2";
val Infinitesimal_add_approx = thm "Infinitesimal_add_approx";
val Infinitesimal_add_approx_self = thm "Infinitesimal_add_approx_self";
val Infinitesimal_add_approx_self2 = thm "Infinitesimal_add_approx_self2";
val Infinitesimal_add_minus_approx_self = thm "Infinitesimal_add_minus_approx_self";
val Infinitesimal_add_cancel = thm "Infinitesimal_add_cancel";
val Infinitesimal_add_right_cancel = thm "Infinitesimal_add_right_cancel";
val approx_add_left_cancel = thm "approx_add_left_cancel";
val approx_add_right_cancel = thm "approx_add_right_cancel";
val approx_add_mono1 = thm "approx_add_mono1";
val approx_add_mono2 = thm "approx_add_mono2";
val approx_add_left_iff = thm "approx_add_left_iff";
val approx_add_right_iff = thm "approx_add_right_iff";
val approx_HFinite = thm "approx_HFinite";
val approx_hypreal_of_real_HFinite = thm "approx_hypreal_of_real_HFinite";
val approx_mult_HFinite = thm "approx_mult_HFinite";
val approx_mult_hypreal_of_real = thm "approx_mult_hypreal_of_real";
val approx_SReal_mult_cancel_zero = thm "approx_SReal_mult_cancel_zero";
val approx_mult_SReal1 = thm "approx_mult_SReal1";
val approx_mult_SReal2 = thm "approx_mult_SReal2";
val approx_mult_SReal_zero_cancel_iff = thm "approx_mult_SReal_zero_cancel_iff";
val approx_SReal_mult_cancel = thm "approx_SReal_mult_cancel";
val approx_SReal_mult_cancel_iff1 = thm "approx_SReal_mult_cancel_iff1";
val approx_le_bound = thm "approx_le_bound";
val Infinitesimal_less_SReal = thm "Infinitesimal_less_SReal";
val Infinitesimal_less_SReal2 = thm "Infinitesimal_less_SReal2";
val SReal_not_Infinitesimal = thm "SReal_not_Infinitesimal";
val SReal_minus_not_Infinitesimal = thm "SReal_minus_not_Infinitesimal";
val SReal_Int_Infinitesimal_zero = thm "SReal_Int_Infinitesimal_zero";
val SReal_Infinitesimal_zero = thm "SReal_Infinitesimal_zero";
val SReal_HFinite_diff_Infinitesimal = thm "SReal_HFinite_diff_Infinitesimal";
val hypreal_of_real_HFinite_diff_Infinitesimal = thm "hypreal_of_real_HFinite_diff_Infinitesimal";
val hypreal_of_real_Infinitesimal_iff_0 = thm "hypreal_of_real_Infinitesimal_iff_0";
val number_of_not_Infinitesimal = thm "number_of_not_Infinitesimal";
val one_not_Infinitesimal = thm "one_not_Infinitesimal";
val approx_SReal_not_zero = thm "approx_SReal_not_zero";
val HFinite_diff_Infinitesimal_approx = thm "HFinite_diff_Infinitesimal_approx";
val Infinitesimal_ratio = thm "Infinitesimal_ratio";
val SReal_approx_iff = thm "SReal_approx_iff";
val number_of_approx_iff = thm "number_of_approx_iff";
val hypreal_of_real_approx_iff = thm "hypreal_of_real_approx_iff";
val hypreal_of_real_approx_number_of_iff = thm "hypreal_of_real_approx_number_of_iff";
val approx_unique_real = thm "approx_unique_real";
val hypreal_isLub_unique = thm "hypreal_isLub_unique";
val hypreal_setle_less_trans = thm "hypreal_setle_less_trans";
val hypreal_gt_isUb = thm "hypreal_gt_isUb";
val st_part_Ex = thm "st_part_Ex";
val st_part_Ex1 = thm "st_part_Ex1";
val HFinite_Int_HInfinite_empty = thm "HFinite_Int_HInfinite_empty";
val HFinite_not_HInfinite = thm "HFinite_not_HInfinite";
val not_HFinite_HInfinite = thm "not_HFinite_HInfinite";
val HInfinite_HFinite_disj = thm "HInfinite_HFinite_disj";
val HInfinite_HFinite_iff = thm "HInfinite_HFinite_iff";
val HFinite_HInfinite_iff = thm "HFinite_HInfinite_iff";
val HInfinite_diff_HFinite_Infinitesimal_disj = thm "HInfinite_diff_HFinite_Infinitesimal_disj";
val HFinite_inverse = thm "HFinite_inverse";
val HFinite_inverse2 = thm "HFinite_inverse2";
val Infinitesimal_inverse_HFinite = thm "Infinitesimal_inverse_HFinite";
val HFinite_not_Infinitesimal_inverse = thm "HFinite_not_Infinitesimal_inverse";
val approx_inverse = thm "approx_inverse";
val hypreal_of_real_approx_inverse = thm "hypreal_of_real_approx_inverse";
val inverse_add_Infinitesimal_approx = thm "inverse_add_Infinitesimal_approx";
val inverse_add_Infinitesimal_approx2 = thm "inverse_add_Infinitesimal_approx2";
val inverse_add_Infinitesimal_approx_Infinitesimal = thm "inverse_add_Infinitesimal_approx_Infinitesimal";
val Infinitesimal_square_iff = thm "Infinitesimal_square_iff";
val HFinite_square_iff = thm "HFinite_square_iff";
val HInfinite_square_iff = thm "HInfinite_square_iff";
val approx_HFinite_mult_cancel = thm "approx_HFinite_mult_cancel";
val approx_HFinite_mult_cancel_iff1 = thm "approx_HFinite_mult_cancel_iff1";
val approx_hrabs_disj = thm "approx_hrabs_disj";
val monad_hrabs_Un_subset = thm "monad_hrabs_Un_subset";
val Infinitesimal_monad_eq = thm "Infinitesimal_monad_eq";
val mem_monad_iff = thm "mem_monad_iff";
val Infinitesimal_monad_zero_iff = thm "Infinitesimal_monad_zero_iff";
val monad_zero_minus_iff = thm "monad_zero_minus_iff";
val monad_zero_hrabs_iff = thm "monad_zero_hrabs_iff";
val mem_monad_self = thm "mem_monad_self";
val approx_subset_monad = thm "approx_subset_monad";
val approx_subset_monad2 = thm "approx_subset_monad2";
val mem_monad_approx = thm "mem_monad_approx";
val approx_mem_monad = thm "approx_mem_monad";
val approx_mem_monad2 = thm "approx_mem_monad2";
val approx_mem_monad_zero = thm "approx_mem_monad_zero";
val Infinitesimal_approx_hrabs = thm "Infinitesimal_approx_hrabs";
val less_Infinitesimal_less = thm "less_Infinitesimal_less";
val Ball_mem_monad_gt_zero = thm "Ball_mem_monad_gt_zero";
val Ball_mem_monad_less_zero = thm "Ball_mem_monad_less_zero";
val approx_hrabs1 = thm "approx_hrabs1";
val approx_hrabs2 = thm "approx_hrabs2";
val approx_hrabs = thm "approx_hrabs";
val approx_hrabs_zero_cancel = thm "approx_hrabs_zero_cancel";
val approx_hrabs_add_Infinitesimal = thm "approx_hrabs_add_Infinitesimal";
val approx_hrabs_add_minus_Infinitesimal = thm "approx_hrabs_add_minus_Infinitesimal";
val hrabs_add_Infinitesimal_cancel = thm "hrabs_add_Infinitesimal_cancel";
val hrabs_add_minus_Infinitesimal_cancel = thm "hrabs_add_minus_Infinitesimal_cancel";
val hypreal_less_minus_iff = thm "hypreal_less_minus_iff";
val Infinitesimal_add_hypreal_of_real_less = thm "Infinitesimal_add_hypreal_of_real_less";
val Infinitesimal_add_hrabs_hypreal_of_real_less = thm "Infinitesimal_add_hrabs_hypreal_of_real_less";
val Infinitesimal_add_hrabs_hypreal_of_real_less2 = thm "Infinitesimal_add_hrabs_hypreal_of_real_less2";
val hypreal_of_real_le_add_Infininitesimal_cancel2 = thm"hypreal_of_real_le_add_Infininitesimal_cancel2";
val hypreal_of_real_less_Infinitesimal_le_zero = thm "hypreal_of_real_less_Infinitesimal_le_zero";
val Infinitesimal_add_not_zero = thm "Infinitesimal_add_not_zero";
val Infinitesimal_square_cancel = thm "Infinitesimal_square_cancel";
val HFinite_square_cancel = thm "HFinite_square_cancel";
val Infinitesimal_square_cancel2 = thm "Infinitesimal_square_cancel2";
val HFinite_square_cancel2 = thm "HFinite_square_cancel2";
val Infinitesimal_sum_square_cancel = thm "Infinitesimal_sum_square_cancel";
val HFinite_sum_square_cancel = thm "HFinite_sum_square_cancel";
val Infinitesimal_sum_square_cancel2 = thm "Infinitesimal_sum_square_cancel2";
val HFinite_sum_square_cancel2 = thm "HFinite_sum_square_cancel2";
val Infinitesimal_sum_square_cancel3 = thm "Infinitesimal_sum_square_cancel3";
val HFinite_sum_square_cancel3 = thm "HFinite_sum_square_cancel3";
val monad_hrabs_less = thm "monad_hrabs_less";
val mem_monad_SReal_HFinite = thm "mem_monad_SReal_HFinite";
val st_approx_self = thm "st_approx_self";
val st_SReal = thm "st_SReal";
val st_HFinite = thm "st_HFinite";
val st_SReal_eq = thm "st_SReal_eq";
val st_hypreal_of_real = thm "st_hypreal_of_real";
val st_eq_approx = thm "st_eq_approx";
val approx_st_eq = thm "approx_st_eq";
val st_eq_approx_iff = thm "st_eq_approx_iff";
val st_Infinitesimal_add_SReal = thm "st_Infinitesimal_add_SReal";
val st_Infinitesimal_add_SReal2 = thm "st_Infinitesimal_add_SReal2";
val HFinite_st_Infinitesimal_add = thm "HFinite_st_Infinitesimal_add";
val st_add = thm "st_add";
val st_number_of = thm "st_number_of";
val st_minus = thm "st_minus";
val st_diff = thm "st_diff";
val st_mult = thm "st_mult";
val st_Infinitesimal = thm "st_Infinitesimal";
val st_not_Infinitesimal = thm "st_not_Infinitesimal";
val st_inverse = thm "st_inverse";
val st_divide = thm "st_divide";
val st_idempotent = thm "st_idempotent";
val Infinitesimal_add_st_less = thm "Infinitesimal_add_st_less";
val Infinitesimal_add_st_le_cancel = thm "Infinitesimal_add_st_le_cancel";
val st_le = thm "st_le";
val st_zero_le = thm "st_zero_le";
val st_zero_ge = thm "st_zero_ge";
val st_hrabs = thm "st_hrabs";
val FreeUltrafilterNat_HFinite = thm "FreeUltrafilterNat_HFinite";
val HFinite_FreeUltrafilterNat_iff = thm "HFinite_FreeUltrafilterNat_iff";
val FreeUltrafilterNat_const_Finite = thm "FreeUltrafilterNat_const_Finite";
val FreeUltrafilterNat_HInfinite = thm "FreeUltrafilterNat_HInfinite";
val HInfinite_FreeUltrafilterNat_iff = thm "HInfinite_FreeUltrafilterNat_iff";
val Infinitesimal_FreeUltrafilterNat = thm "Infinitesimal_FreeUltrafilterNat";
val FreeUltrafilterNat_Infinitesimal = thm "FreeUltrafilterNat_Infinitesimal";
val Infinitesimal_FreeUltrafilterNat_iff = thm "Infinitesimal_FreeUltrafilterNat_iff";
val Infinitesimal_hypreal_of_nat_iff = thm "Infinitesimal_hypreal_of_nat_iff";
val Suc_Un_eq = thm "Suc_Un_eq";
val finite_nat_segment = thm "finite_nat_segment";
val finite_real_of_nat_segment = thm "finite_real_of_nat_segment";
val finite_real_of_nat_less_real = thm "finite_real_of_nat_less_real";
val finite_real_of_nat_le_real = thm "finite_real_of_nat_le_real";
val finite_rabs_real_of_nat_le_real = thm "finite_rabs_real_of_nat_le_real";
val rabs_real_of_nat_le_real_FreeUltrafilterNat = thm "rabs_real_of_nat_le_real_FreeUltrafilterNat";
val FreeUltrafilterNat_nat_gt_real = thm "FreeUltrafilterNat_nat_gt_real";
val hypreal_omega = thm "hypreal_omega";
val FreeUltrafilterNat_omega = thm "FreeUltrafilterNat_omega";
val HInfinite_omega = thm "HInfinite_omega";
val Infinitesimal_epsilon = thm "Infinitesimal_epsilon";
val HFinite_epsilon = thm "HFinite_epsilon";
val epsilon_approx_zero = thm "epsilon_approx_zero";
val real_of_nat_less_inverse_iff = thm "real_of_nat_less_inverse_iff";
val finite_inverse_real_of_posnat_gt_real = thm "finite_inverse_real_of_posnat_gt_real";
val real_of_nat_inverse_le_iff = thm "real_of_nat_inverse_le_iff";
val real_of_nat_inverse_eq_iff = thm "real_of_nat_inverse_eq_iff";
val finite_inverse_real_of_posnat_ge_real = thm "finite_inverse_real_of_posnat_ge_real";
val inverse_real_of_posnat_ge_real_FreeUltrafilterNat = thm "inverse_real_of_posnat_ge_real_FreeUltrafilterNat";
val FreeUltrafilterNat_inverse_real_of_posnat = thm "FreeUltrafilterNat_inverse_real_of_posnat";
val real_seq_to_hypreal_Infinitesimal = thm "real_seq_to_hypreal_Infinitesimal";
val real_seq_to_hypreal_approx = thm "real_seq_to_hypreal_approx";
val real_seq_to_hypreal_approx2 = thm "real_seq_to_hypreal_approx2";
val real_seq_to_hypreal_Infinitesimal2 = thm "real_seq_to_hypreal_Infinitesimal2";
val HInfinite_HFinite_add = thm "HInfinite_HFinite_add";
val HInfinite_ge_HInfinite = thm "HInfinite_ge_HInfinite";
val Infinitesimal_inverse_HInfinite = thm "Infinitesimal_inverse_HInfinite";
val HInfinite_HFinite_not_Infinitesimal_mult = thm "HInfinite_HFinite_not_Infinitesimal_mult";
val HInfinite_HFinite_not_Infinitesimal_mult2 = thm "HInfinite_HFinite_not_Infinitesimal_mult2";
val HInfinite_gt_SReal = thm "HInfinite_gt_SReal";
val HInfinite_gt_zero_gt_one = thm "HInfinite_gt_zero_gt_one";
val not_HInfinite_one = thm "not_HInfinite_one";
*}
end