(* Title: Tools/interpretation_with_defs.ML
Author: Florian Haftmann, TU Muenchen
Interpretation accompanied with mixin definitions. EXPERIMENTAL.
*)
signature INTERPRETATION_WITH_DEFS =
sig
val interpretation: Expression.expression_i ->
(Attrib.binding * ((binding * mixfix) * term)) list -> (Attrib.binding * term) list ->
theory -> Proof.state
val interpretation_cmd: Expression.expression ->
(Attrib.binding * ((binding * mixfix) * string)) list -> (Attrib.binding * string) list ->
theory -> Proof.state
end;
structure Interpretation_With_Defs : INTERPRETATION_WITH_DEFS =
struct
fun note_eqns_register deps witss def_eqns attrss eqns export export' context =
let
fun meta_rewrite context =
map (Local_Defs.meta_rewrite_rule (Context.proof_of context) #> Drule.abs_def) o
maps snd;
in
context
|> Element.generic_note_thmss Thm.lemmaK
(attrss ~~ map (fn eqn => [([Morphism.thm (export' $> export) eqn], [])]) eqns)
|-> (fn facts => `(fn context => meta_rewrite context facts))
|-> (fn eqns => fold (fn ((dep, morph), wits) =>
fn context =>
Locale.add_registration (dep, morph $> Element.satisfy_morphism
(map (Element.morph_witness export') wits))
(Element.eq_morphism (Context.theory_of context) (def_eqns @ eqns) |>
Option.map (rpair true))
export context) (deps ~~ witss))
end;
local
fun gen_interpretation prep_expr prep_decl parse_term parse_prop prep_attr
expression raw_defs raw_eqns theory =
let
val (_, (_, defs_ctxt)) =
prep_decl expression I [] (Proof_Context.init_global theory);
val rhss = map (parse_term defs_ctxt o snd o snd) raw_defs
|> Syntax.check_terms defs_ctxt;
val defs = map2 (fn (binding_thm, (binding_syn, _)) => fn rhs =>
(binding_syn, (binding_thm, rhs))) raw_defs rhss;
val (def_eqns, theory') = theory
|> Named_Target.theory_init
|> fold_map (Local_Theory.define) defs
|>> map (Thm.symmetric o snd o snd)
|> Local_Theory.exit_result_global (map o Morphism.thm);
val ((propss, deps, export), expr_ctxt) = theory'
|> Proof_Context.init_global
|> prep_expr expression;
val eqns = map (parse_prop expr_ctxt o snd) raw_eqns
|> Syntax.check_terms expr_ctxt;
val attrss = map ((apsnd o map) (prep_attr theory) o fst) raw_eqns;
val goal_ctxt = fold Variable.auto_fixes eqns expr_ctxt;
val export' = Variable.export_morphism goal_ctxt expr_ctxt;
fun after_qed witss eqns =
(Proof_Context.background_theory o Context.theory_map)
(note_eqns_register deps witss def_eqns attrss eqns export export');
in Element.witness_proof_eqs after_qed propss eqns goal_ctxt end;
in
fun interpretation x = gen_interpretation Expression.cert_goal_expression
Expression.cert_declaration (K I) (K I) (K I) x;
fun interpretation_cmd x = gen_interpretation Expression.read_goal_expression
Expression.read_declaration Syntax.parse_term Syntax.parse_prop Attrib.intern_src x;
end;
val definesK = "defines";
val _ = Keyword.keyword definesK;
val _ =
Outer_Syntax.command "interpretation"
"prove interpretation of locale expression in theory" Keyword.thy_goal
(Parse.!!! (Parse_Spec.locale_expression true) --
Scan.optional (Parse.$$$ definesK |-- Parse.and_list1 (Parse_Spec.opt_thm_name ":"
-- ((Parse.binding -- Parse.opt_mixfix') --| Parse.$$$ "is" -- Parse.term))) [] --
Scan.optional (Parse.where_ |-- Parse.and_list1 (Parse_Spec.opt_thm_name ":" -- Parse.prop)) []
>> (fn ((expr, defs), equations) => Toplevel.print o
Toplevel.theory_to_proof (interpretation_cmd expr defs equations)));
end;