(* Title: FOL/fologic.ML
Author: Lawrence C Paulson
Abstract syntax operations for FOL.
*)
signature FOLOGIC =
sig
val oT: typ
val mk_Trueprop: term -> term
val dest_Trueprop: term -> term
val not: term
val conj: term
val disj: term
val imp: term
val iff: term
val mk_conj: term * term -> term
val mk_disj: term * term -> term
val mk_imp: term * term -> term
val dest_imp: term -> term * term
val dest_conj: term -> term list
val mk_iff: term * term -> term
val dest_iff: term -> term * term
val all_const: typ -> term
val mk_all: term * term -> term
val exists_const: typ -> term
val mk_exists: term * term -> term
val eq_const: typ -> term
val mk_eq: term * term -> term
val dest_eq: term -> term * term
val mk_binop: string -> term * term -> term
val mk_binrel: string -> term * term -> term
val dest_bin: string -> typ -> term -> term * term
end;
structure FOLogic: FOLOGIC =
struct
val oT = Type(\<^type_name>\<open>o\<close>,[]);
val Trueprop = Const(\<^const_name>\<open>Trueprop\<close>, oT-->propT);
fun mk_Trueprop P = Trueprop $ P;
fun dest_Trueprop (Const (\<^const_name>\<open>Trueprop\<close>, _) $ P) = P
| dest_Trueprop t = raise TERM ("dest_Trueprop", [t]);
(* Logical constants *)
val not = Const (\<^const_name>\<open>Not\<close>, oT --> oT);
val conj = Const(\<^const_name>\<open>conj\<close>, [oT,oT]--->oT);
val disj = Const(\<^const_name>\<open>disj\<close>, [oT,oT]--->oT);
val imp = Const(\<^const_name>\<open>imp\<close>, [oT,oT]--->oT)
val iff = Const(\<^const_name>\<open>iff\<close>, [oT,oT]--->oT);
fun mk_conj (t1, t2) = conj $ t1 $ t2
and mk_disj (t1, t2) = disj $ t1 $ t2
and mk_imp (t1, t2) = imp $ t1 $ t2
and mk_iff (t1, t2) = iff $ t1 $ t2;
fun dest_imp (Const(\<^const_name>\<open>imp\<close>,_) $ A $ B) = (A, B)
| dest_imp t = raise TERM ("dest_imp", [t]);
fun dest_conj (Const (\<^const_name>\<open>conj\<close>, _) $ t $ t') = t :: dest_conj t'
| dest_conj t = [t];
fun dest_iff (Const(\<^const_name>\<open>iff\<close>,_) $ A $ B) = (A, B)
| dest_iff t = raise TERM ("dest_iff", [t]);
fun eq_const T = Const (\<^const_name>\<open>eq\<close>, [T, T] ---> oT);
fun mk_eq (t, u) = eq_const (fastype_of t) $ t $ u;
fun dest_eq (Const (\<^const_name>\<open>eq\<close>, _) $ lhs $ rhs) = (lhs, rhs)
| dest_eq t = raise TERM ("dest_eq", [t])
fun all_const T = Const (\<^const_name>\<open>All\<close>, [T --> oT] ---> oT);
fun mk_all (Free (x, T), P) = all_const T $ absfree (x, T) P;
fun exists_const T = Const (\<^const_name>\<open>Ex\<close>, [T --> oT] ---> oT);
fun mk_exists (Free (x, T), P) = exists_const T $ absfree (x, T) P;
(* binary oprations and relations *)
fun mk_binop c (t, u) =
let val T = fastype_of t in
Const (c, [T, T] ---> T) $ t $ u
end;
fun mk_binrel c (t, u) =
let val T = fastype_of t in
Const (c, [T, T] ---> oT) $ t $ u
end;
fun dest_bin c T (tm as Const (c', Type ("fun", [T', _])) $ t $ u) =
if c = c' andalso T = T' then (t, u)
else raise TERM ("dest_bin " ^ c, [tm])
| dest_bin c _ tm = raise TERM ("dest_bin " ^ c, [tm]);
end;