prefer cut_tac, where it is clear that the special variants cut_rules_tac or cut_facts_tac are not required;
(* Title: HOL/Tools/abel_cancel.ML
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
Simplification procedures for abelian groups:
- Cancel complementary terms in sums.
- Cancel like terms on opposite sides of relations.
*)
signature ABEL_CANCEL =
sig
val sum_proc: simpset -> cterm -> thm option
val rel_proc: simpset -> cterm -> thm option
end;
structure Abel_Cancel: ABEL_CANCEL =
struct
(** compute cancellation **)
fun add_atoms pos (Const (@{const_name Groups.plus}, _) $ x $ y) =
add_atoms pos x #> add_atoms pos y
| add_atoms pos (Const (@{const_name Groups.minus}, _) $ x $ y) =
add_atoms pos x #> add_atoms (not pos) y
| add_atoms pos (Const (@{const_name Groups.uminus}, _) $ x) =
add_atoms (not pos) x
| add_atoms pos (Const (@{const_name Groups.zero}, _)) = I
| add_atoms pos x = cons (pos, x);
fun atoms t = add_atoms true t [];
fun zerofy pt ((c as Const (@{const_name Groups.plus}, _)) $ x $ y) =
(case zerofy pt x of NONE =>
(case zerofy pt y of NONE => NONE
| SOME z => SOME (c $ x $ z))
| SOME z => SOME (c $ z $ y))
| zerofy pt ((c as Const (@{const_name Groups.minus}, _)) $ x $ y) =
(case zerofy pt x of NONE =>
(case zerofy (apfst not pt) y of NONE => NONE
| SOME z => SOME (c $ x $ z))
| SOME z => SOME (c $ z $ y))
| zerofy pt ((c as Const (@{const_name Groups.uminus}, _)) $ x) =
(case zerofy (apfst not pt) x of NONE => NONE
| SOME z => SOME (c $ z))
| zerofy (pos, t) u =
if pos andalso (t aconv u)
then SOME (Const (@{const_name Groups.zero}, fastype_of t))
else NONE
exception Cancel;
fun find_common _ [] _ = raise Cancel
| find_common opp ((p, l) :: ls) rs =
let val pr = if opp then not p else p
in if exists (fn (q, r) => pr = q andalso l aconv r) rs then (p, l)
else find_common opp ls rs
end
(* turns t1(t) OP t2(t) into t1(0) OP t2(0) where OP can be +, -, =, etc.
If OP = +, it must be t2(-t) rather than t2(t)
*)
fun cancel (c $ lhs $ rhs) =
let
val opp = case c of Const(@{const_name Groups.plus}, _) => true | _ => false;
val (pos, l) = find_common opp (atoms lhs) (atoms rhs);
val posr = if opp then not pos else pos;
in c $ the (zerofy (pos, l) lhs) $ the (zerofy (posr, l) rhs) end;
(** prove cancellation **)
fun agrp_ord (Const (a, _)) = find_index (fn a' => a = a')
[@{const_name Groups.zero}, @{const_name Groups.plus},
@{const_name Groups.uminus}, @{const_name Groups.minus}]
| agrp_ord _ = ~1;
fun less_agrp (a, b) = (Term_Ord.term_lpo agrp_ord (a, b) = LESS);
fun solve (_ $ (Const (@{const_name Groups.plus}, _) $ _ $ _) $ _) =
SOME @{thm add_assoc [THEN eq_reflection]}
| solve (_ $ x $ (Const (@{const_name Groups.plus}, _) $ y $ _)) =
if less_agrp (y, x) then
SOME @{thm add_left_commute [THEN eq_reflection]}
else NONE
| solve (_ $ x $ y) =
if less_agrp (y, x) then
SOME @{thm add_commute [THEN eq_reflection]} else
NONE
| solve _ = NONE;
val simproc = Simplifier.simproc_global @{theory}
"add_ac_proc" ["x + y::'a::ab_semigroup_add"] ((K o K) solve);
val cancel_ss = (HOL_basic_ss |> Simplifier.set_termless less_agrp)
addsimprocs [simproc] addsimps
[@{thm add_0_left}, @{thm add_0_right}, @{thm diff_minus},
@{thm minus_add_distrib}, @{thm minus_minus}, @{thm minus_zero},
@{thm right_minus}, @{thm left_minus}, @{thm add_minus_cancel},
@{thm minus_add_cancel}];
fun cancel_simp_tac ss = simp_tac (Simplifier.inherit_context ss cancel_ss);
(** simprocs **)
(* cancel complementary terms in arbitrary sums *)
fun sum_proc ss ct =
let
val t = Thm.term_of ct;
val prop = Logic.mk_equals (t, cancel t);
val thm = Goal.prove (Simplifier.the_context ss) [] [] prop
(fn _ => cancel_simp_tac ss 1)
in SOME thm end handle Cancel => NONE;
(* cancel like terms on the opposite sides of relations:
(x + y - z < -z + x) = (y < 0)
Works for (=) and (<=) as well as (<), if the necessary rules are supplied.
Reduces the problem to subtraction. *)
fun rel_proc ss ct =
let
val t = Thm.term_of ct;
val prop = Logic.mk_equals (t, cancel t);
val thm = Goal.prove (Simplifier.the_context ss) [] [] prop
(fn _ => rtac @{thm eq_reflection} 1 THEN
resolve_tac [@{thm diff_eq_diff_less}, @{thm diff_eq_diff_less_eq}, @{thm diff_eq_diff_eq}] 1 THEN
cancel_simp_tac ss 1)
in SOME thm end handle Cancel => NONE;
end;