propagate deps_changed, to resolve missing files without requiring jEdit events (e.g. buffer load/save);
tuned signature;
(* Title: HOL/BNF_Examples/Koenig.thy
Author: Dmitriy Traytel, TU Muenchen
Author: Andrei Popescu, TU Muenchen
Copyright 2012
Koenig's lemma.
*)
header {* Koenig's lemma *}
theory Koenig
imports TreeFI Stream
begin
(* infinite trees: *)
coinductive infiniteTr where
"\<lbrakk>tr' \<in> set_listF (sub tr); infiniteTr tr'\<rbrakk> \<Longrightarrow> infiniteTr tr"
lemma infiniteTr_strong_coind[consumes 1, case_names sub]:
assumes *: "phi tr" and
**: "\<And> tr. phi tr \<Longrightarrow> \<exists> tr' \<in> set_listF (sub tr). phi tr' \<or> infiniteTr tr'"
shows "infiniteTr tr"
using assms by (elim infiniteTr.coinduct) blast
lemma infiniteTr_coind[consumes 1, case_names sub, induct pred: infiniteTr]:
assumes *: "phi tr" and
**: "\<And> tr. phi tr \<Longrightarrow> \<exists> tr' \<in> set_listF (sub tr). phi tr'"
shows "infiniteTr tr"
using assms by (elim infiniteTr.coinduct) blast
lemma infiniteTr_sub[simp]:
"infiniteTr tr \<Longrightarrow> (\<exists> tr' \<in> set_listF (sub tr). infiniteTr tr')"
by (erule infiniteTr.cases) blast
primcorec konigPath where
"shd (konigPath t) = lab t"
| "stl (konigPath t) = konigPath (SOME tr. tr \<in> set_listF (sub t) \<and> infiniteTr tr)"
(* proper paths in trees: *)
coinductive properPath where
"\<lbrakk>shd as = lab tr; tr' \<in> set_listF (sub tr); properPath (stl as) tr'\<rbrakk> \<Longrightarrow>
properPath as tr"
lemma properPath_strong_coind[consumes 1, case_names shd_lab sub]:
assumes *: "phi as tr" and
**: "\<And> as tr. phi as tr \<Longrightarrow> shd as = lab tr" and
***: "\<And> as tr.
phi as tr \<Longrightarrow>
\<exists> tr' \<in> set_listF (sub tr). phi (stl as) tr' \<or> properPath (stl as) tr'"
shows "properPath as tr"
using assms by (elim properPath.coinduct) blast
lemma properPath_coind[consumes 1, case_names shd_lab sub, induct pred: properPath]:
assumes *: "phi as tr" and
**: "\<And> as tr. phi as tr \<Longrightarrow> shd as = lab tr" and
***: "\<And> as tr.
phi as tr \<Longrightarrow>
\<exists> tr' \<in> set_listF (sub tr). phi (stl as) tr'"
shows "properPath as tr"
using properPath_strong_coind[of phi, OF * **] *** by blast
lemma properPath_shd_lab:
"properPath as tr \<Longrightarrow> shd as = lab tr"
by (erule properPath.cases) blast
lemma properPath_sub:
"properPath as tr \<Longrightarrow>
\<exists> tr' \<in> set_listF (sub tr). phi (stl as) tr' \<or> properPath (stl as) tr'"
by (erule properPath.cases) blast
(* prove the following by coinduction *)
theorem Konig:
assumes "infiniteTr tr"
shows "properPath (konigPath tr) tr"
proof-
{fix as
assume "infiniteTr tr \<and> as = konigPath tr" hence "properPath as tr"
proof (coinduction arbitrary: tr as rule: properPath_coind)
case (sub tr as)
let ?t = "SOME t'. t' \<in> set_listF (sub tr) \<and> infiniteTr t'"
from sub have "\<exists>t' \<in> set_listF (sub tr). infiniteTr t'" by simp
then have "\<exists>t'. t' \<in> set_listF (sub tr) \<and> infiniteTr t'" by blast
then have "?t \<in> set_listF (sub tr) \<and> infiniteTr ?t" by (rule someI_ex)
moreover have "stl (konigPath tr) = konigPath ?t" by simp
ultimately show ?case using sub by blast
qed simp
}
thus ?thesis using assms by blast
qed
(* some more stream theorems *)
primcorec plus :: "nat stream \<Rightarrow> nat stream \<Rightarrow> nat stream" (infixr "\<oplus>" 66) where
"shd (plus xs ys) = shd xs + shd ys"
| "stl (plus xs ys) = plus (stl xs) (stl ys)"
definition scalar :: "nat \<Rightarrow> nat stream \<Rightarrow> nat stream" (infixr "\<cdot>" 68) where
[simp]: "scalar n = smap (\<lambda>x. n * x)"
primcorec ones :: "nat stream" where "ones = 1 ## ones"
primcorec twos :: "nat stream" where "twos = 2 ## twos"
definition ns :: "nat \<Rightarrow> nat stream" where [simp]: "ns n = scalar n ones"
lemma "ones \<oplus> ones = twos"
by coinduction simp
lemma "n \<cdot> twos = ns (2 * n)"
by coinduction simp
lemma prod_scalar: "(n * m) \<cdot> xs = n \<cdot> m \<cdot> xs"
by (coinduction arbitrary: xs) auto
lemma scalar_plus: "n \<cdot> (xs \<oplus> ys) = n \<cdot> xs \<oplus> n \<cdot> ys"
by (coinduction arbitrary: xs ys) (auto simp: add_mult_distrib2)
lemma plus_comm: "xs \<oplus> ys = ys \<oplus> xs"
by (coinduction arbitrary: xs ys) auto
lemma plus_assoc: "(xs \<oplus> ys) \<oplus> zs = xs \<oplus> ys \<oplus> zs"
by (coinduction arbitrary: xs ys zs) auto
end