src/HOL/SMT2.thy
author wenzelm
Sat, 29 Mar 2014 10:49:32 +0100
changeset 56316 b1cf8ddc2e04
parent 56107 2ec2d06b9424
child 57156 3546a67226ea
permissions -rw-r--r--
propagate deps_changed, to resolve missing files without requiring jEdit events (e.g. buffer load/save); tuned signature;

(*  Title:      HOL/SMT2.thy
    Author:     Sascha Boehme, TU Muenchen
*)

header {* Bindings to Satisfiability Modulo Theories (SMT) solvers based on SMT-LIB 2 *}

theory SMT2
imports Record
keywords "smt2_status" :: diag
begin

ML_file "Tools/SMT2/smt2_util.ML"
ML_file "Tools/SMT2/smt2_failure.ML"
ML_file "Tools/SMT2/smt2_config.ML"


subsection {* Triggers for quantifier instantiation *}

text {*
Some SMT solvers support patterns as a quantifier instantiation
heuristics.  Patterns may either be positive terms (tagged by "pat")
triggering quantifier instantiations -- when the solver finds a
term matching a positive pattern, it instantiates the corresponding
quantifier accordingly -- or negative terms (tagged by "nopat")
inhibiting quantifier instantiations.  A list of patterns
of the same kind is called a multipattern, and all patterns in a
multipattern are considered conjunctively for quantifier instantiation.
A list of multipatterns is called a trigger, and their multipatterns
act disjunctively during quantifier instantiation.  Each multipattern
should mention at least all quantified variables of the preceding
quantifier block.
*}

typedecl pattern

consts
  pat :: "'a \<Rightarrow> pattern"
  nopat :: "'a \<Rightarrow> pattern"

definition trigger :: "pattern list list \<Rightarrow> bool \<Rightarrow> bool" where "trigger _ P = P"


subsection {* Quantifier weights *}

text {*
Weight annotations to quantifiers influence the priority of quantifier
instantiations.  They should be handled with care for solvers, which support
them, because incorrect choices of weights might render a problem unsolvable.
*}

definition weight :: "int \<Rightarrow> bool \<Rightarrow> bool" where "weight _ P = P"

text {*
Weights must be nonnegative.  The value @{text 0} is equivalent to providing
no weight at all.

Weights should only be used at quantifiers and only inside triggers (if the
quantifier has triggers).  Valid usages of weights are as follows:

\begin{itemize}
\item
@{term "\<forall>x. trigger [[pat (P x)]] (weight 2 (P x))"}
\item
@{term "\<forall>x. weight 3 (P x)"}
\end{itemize}
*}


subsection {* Higher-order encoding *}

text {*
Application is made explicit for constants occurring with varying
numbers of arguments.  This is achieved by the introduction of the
following constant.
*}

definition fun_app :: "'a \<Rightarrow> 'a" where "fun_app f = f"

text {*
Some solvers support a theory of arrays which can be used to encode
higher-order functions.  The following set of lemmas specifies the
properties of such (extensional) arrays.
*}

lemmas array_rules = ext fun_upd_apply fun_upd_same fun_upd_other  fun_upd_upd fun_app_def


subsection {* Normalization *}

lemma case_bool_if[abs_def]: "case_bool x y P = (if P then x else y)"
  by simp

lemma nat_int': "\<forall>n. nat (int n) = n" by simp
lemma int_nat_nneg: "\<forall>i. i \<ge> 0 \<longrightarrow> int (nat i) = i" by simp
lemma int_nat_neg: "\<forall>i. i < 0 \<longrightarrow> int (nat i) = 0" by simp

lemma nat_zero_as_int: "0 = nat 0" by (rule transfer_nat_int_numerals(1))
lemma nat_one_as_int: "1 = nat 1" by (rule transfer_nat_int_numerals(2))
lemma nat_numeral_as_int: "numeral = (\<lambda>i. nat (numeral i))" by simp
lemma nat_less_as_int: "op < = (\<lambda>a b. int a < int b)" by simp
lemma nat_leq_as_int: "op \<le> = (\<lambda>a b. int a <= int b)" by simp
lemma Suc_as_int: "Suc = (\<lambda>a. nat (int a + 1))" by (rule ext) simp
lemma nat_plus_as_int: "op + = (\<lambda>a b. nat (int a + int b))" by (rule ext)+ simp
lemma nat_minus_as_int: "op - = (\<lambda>a b. nat (int a - int b))" by (rule ext)+ simp
lemma nat_times_as_int: "op * = (\<lambda>a b. nat (int a * int b))" by (simp add: nat_mult_distrib)
lemma nat_div_as_int: "op div = (\<lambda>a b. nat (int a div int b))" by (simp add: nat_div_distrib)
lemma nat_mod_as_int: "op mod = (\<lambda>a b. nat (int a mod int b))" by (simp add: nat_mod_distrib)

lemma int_Suc: "int (Suc n) = int n + 1" by simp
lemma int_plus: "int (n + m) = int n + int m" by (rule of_nat_add)
lemma int_minus: "int (n - m) = int (nat (int n - int m))" by auto

lemmas Ex1_def_raw = Ex1_def[abs_def]
lemmas Ball_def_raw = Ball_def[abs_def]
lemmas Bex_def_raw = Bex_def[abs_def]
lemmas abs_if_raw = abs_if[abs_def]
lemmas min_def_raw = min_def[abs_def]
lemmas max_def_raw = max_def[abs_def]


subsection {* Integer division and modulo for Z3 *}

text {*
The following Z3-inspired definitions are overspecified for the case where @{text "l = 0"}. This
Schönheitsfehler is corrected in the @{text div_as_z3div} and @{text mod_as_z3mod} theorems.
*}

definition z3div :: "int \<Rightarrow> int \<Rightarrow> int" where
  "z3div k l = (if l \<ge> 0 then k div l else - (k div - l))"

definition z3mod :: "int \<Rightarrow> int \<Rightarrow> int" where
  "z3mod k l = k mod (if l \<ge> 0 then l else - l)"

lemma div_as_z3div:
  "\<forall>k l. k div l = (if l = 0 then 0 else if l > 0 then z3div k l else z3div (- k) (- l))"
  by (simp add: z3div_def)

lemma mod_as_z3mod:
  "\<forall>k l. k mod l = (if l = 0 then k else if l > 0 then z3mod k l else - z3mod (- k) (- l))"
  by (simp add: z3mod_def)


subsection {* Setup *}

ML_file "Tools/SMT2/smt2_builtin.ML"
ML_file "Tools/SMT2/smt2_datatypes.ML"
ML_file "Tools/SMT2/smt2_normalize.ML"
ML_file "Tools/SMT2/smt2_translate.ML"
ML_file "Tools/SMT2/smtlib2.ML"
ML_file "Tools/SMT2/smtlib2_interface.ML"
ML_file "Tools/SMT2/z3_new_model.ML"
ML_file "Tools/SMT2/z3_new_proof.ML"
ML_file "Tools/SMT2/smt2_solver.ML"
ML_file "Tools/SMT2/z3_new_isar.ML"
ML_file "Tools/SMT2/z3_new_interface.ML"
ML_file "Tools/SMT2/z3_new_replay_util.ML"
ML_file "Tools/SMT2/z3_new_replay_literals.ML"
ML_file "Tools/SMT2/z3_new_replay_rules.ML"
ML_file "Tools/SMT2/z3_new_replay_methods.ML"
ML_file "Tools/SMT2/z3_new_replay.ML"
ML_file "Tools/SMT2/smt2_systems.ML"

method_setup smt2 = {*
  Scan.optional Attrib.thms [] >>
    (fn thms => fn ctxt =>
      METHOD (fn facts => HEADGOAL (SMT2_Solver.smt2_tac ctxt (thms @ facts))))
*} "apply an SMT solver to the current goal (based on SMT-LIB 2)"


subsection {* Configuration *}

text {*
The current configuration can be printed by the command
@{text smt2_status}, which shows the values of most options.
*}



subsection {* General configuration options *}

text {*
The option @{text smt2_solver} can be used to change the target SMT
solver.  The possible values can be obtained from the @{text smt2_status}
command.

Due to licensing restrictions, Yices and Z3 are not installed/enabled
by default.  Z3 is free for non-commercial applications and can be enabled
by setting Isabelle system option @{text z3_non_commercial} to @{text yes}.
*}

declare [[ smt2_solver = z3_new ]]

text {*
Since SMT solvers are potentially non-terminating, there is a timeout
(given in seconds) to restrict their runtime.  A value greater than
120 (seconds) is in most cases not advisable.
*}

declare [[ smt2_timeout = 20 ]]

text {*
SMT solvers apply randomized heuristics.  In case a problem is not
solvable by an SMT solver, changing the following option might help.
*}

declare [[ smt2_random_seed = 1 ]]

text {*
In general, the binding to SMT solvers runs as an oracle, i.e, the SMT
solvers are fully trusted without additional checks.  The following
option can cause the SMT solver to run in proof-producing mode, giving
a checkable certificate.  This is currently only implemented for Z3.
*}

declare [[ smt2_oracle = false ]]

text {*
Each SMT solver provides several commandline options to tweak its
behaviour.  They can be passed to the solver by setting the following
options.
*}

(* declare [[ cvc3_options = "" ]] TODO *)
(* declare [[ yices_options = "" ]] TODO *)
(* declare [[ z3_options = "" ]] TODO *)

text {*
The SMT method provides an inference mechanism to detect simple triggers
in quantified formulas, which might increase the number of problems
solvable by SMT solvers (note: triggers guide quantifier instantiations
in the SMT solver).  To turn it on, set the following option.
*}

declare [[ smt2_infer_triggers = false ]]

text {*
Enable the following option to use built-in support for div/mod, datatypes,
and records in Z3.  Currently, this is implemented only in oracle mode.
*}

declare [[ z3_new_extensions = false ]]

text {*
The SMT method monomorphizes the given facts, that is, it tries to
instantiate all schematic type variables with fixed types occurring
in the problem.  This is a (possibly nonterminating) fixed-point
construction whose cycles are limited by the following option.
*}

declare [[ monomorph_max_rounds = 5 ]]

text {*
In addition, the number of generated monomorphic instances is limited
by the following option.
*}

declare [[ monomorph_max_new_instances = 500 ]]



subsection {* Certificates *}

text {*
By setting the option @{text smt2_certificates} to the name of a file,
all following applications of an SMT solver a cached in that file.
Any further application of the same SMT solver (using the very same
configuration) re-uses the cached certificate instead of invoking the
solver.  An empty string disables caching certificates.

The filename should be given as an explicit path.  It is good
practice to use the name of the current theory (with ending
@{text ".certs"} instead of @{text ".thy"}) as the certificates file.
Certificate files should be used at most once in a certain theory context,
to avoid race conditions with other concurrent accesses.
*}

declare [[ smt2_certificates = "" ]]

text {*
The option @{text smt2_read_only_certificates} controls whether only
stored certificates are should be used or invocation of an SMT solver
is allowed.  When set to @{text true}, no SMT solver will ever be
invoked and only the existing certificates found in the configured
cache are used;  when set to @{text false} and there is no cached
certificate for some proposition, then the configured SMT solver is
invoked.
*}

declare [[ smt2_read_only_certificates = false ]]



subsection {* Tracing *}

text {*
The SMT method, when applied, traces important information.  To
make it entirely silent, set the following option to @{text false}.
*}

declare [[ smt2_verbose = true ]]

text {*
For tracing the generated problem file given to the SMT solver as
well as the returned result of the solver, the option
@{text smt2_trace} should be set to @{text true}.
*}

declare [[ smt2_trace = false ]]

text {*
From the set of assumptions given to the SMT solver, those assumptions
used in the proof are traced when the following option is set to
@{term true}.  This only works for Z3 when it runs in non-oracle mode
(see options @{text smt2_solver} and @{text smt2_oracle} above).
*}

declare [[ smt2_trace_used_facts = false ]]


subsection {* Schematic rules for Z3 proof reconstruction *}

text {*
Several prof rules of Z3 are not very well documented.  There are two
lemma groups which can turn failing Z3 proof reconstruction attempts
into succeeding ones: the facts in @{text z3_rule} are tried prior to
any implemented reconstruction procedure for all uncertain Z3 proof
rules;  the facts in @{text z3_simp} are only fed to invocations of
the simplifier when reconstructing theory-specific proof steps.
*}

lemmas [z3_new_rule] =
  refl eq_commute conj_commute disj_commute simp_thms nnf_simps
  ring_distribs field_simps times_divide_eq_right times_divide_eq_left
  if_True if_False not_not

lemma [z3_new_rule]:
  "(P \<and> Q) = (\<not>(\<not>P \<or> \<not>Q))"
  "(P \<and> Q) = (\<not>(\<not>Q \<or> \<not>P))"
  "(\<not>P \<and> Q) = (\<not>(P \<or> \<not>Q))"
  "(\<not>P \<and> Q) = (\<not>(\<not>Q \<or> P))"
  "(P \<and> \<not>Q) = (\<not>(\<not>P \<or> Q))"
  "(P \<and> \<not>Q) = (\<not>(Q \<or> \<not>P))"
  "(\<not>P \<and> \<not>Q) = (\<not>(P \<or> Q))"
  "(\<not>P \<and> \<not>Q) = (\<not>(Q \<or> P))"
  by auto

lemma [z3_new_rule]:
  "(P \<longrightarrow> Q) = (Q \<or> \<not>P)"
  "(\<not>P \<longrightarrow> Q) = (P \<or> Q)"
  "(\<not>P \<longrightarrow> Q) = (Q \<or> P)"
  "(True \<longrightarrow> P) = P"
  "(P \<longrightarrow> True) = True"
  "(False \<longrightarrow> P) = True"
  "(P \<longrightarrow> P) = True"
  by auto

lemma [z3_new_rule]:
  "((P = Q) \<longrightarrow> R) = (R | (Q = (\<not>P)))"
  by auto

lemma [z3_new_rule]:
  "(\<not>True) = False"
  "(\<not>False) = True"
  "(x = x) = True"
  "(P = True) = P"
  "(True = P) = P"
  "(P = False) = (\<not>P)"
  "(False = P) = (\<not>P)"
  "((\<not>P) = P) = False"
  "(P = (\<not>P)) = False"
  "((\<not>P) = (\<not>Q)) = (P = Q)"
  "\<not>(P = (\<not>Q)) = (P = Q)"
  "\<not>((\<not>P) = Q) = (P = Q)"
  "(P \<noteq> Q) = (Q = (\<not>P))"
  "(P = Q) = ((\<not>P \<or> Q) \<and> (P \<or> \<not>Q))"
  "(P \<noteq> Q) = ((\<not>P \<or> \<not>Q) \<and> (P \<or> Q))"
  by auto

lemma [z3_new_rule]:
  "(if P then P else \<not>P) = True"
  "(if \<not>P then \<not>P else P) = True"
  "(if P then True else False) = P"
  "(if P then False else True) = (\<not>P)"
  "(if P then Q else True) = ((\<not>P) \<or> Q)"
  "(if P then Q else True) = (Q \<or> (\<not>P))"
  "(if P then Q else \<not>Q) = (P = Q)"
  "(if P then Q else \<not>Q) = (Q = P)"
  "(if P then \<not>Q else Q) = (P = (\<not>Q))"
  "(if P then \<not>Q else Q) = ((\<not>Q) = P)"
  "(if \<not>P then x else y) = (if P then y else x)"
  "(if P then (if Q then x else y) else x) = (if P \<and> (\<not>Q) then y else x)"
  "(if P then (if Q then x else y) else x) = (if (\<not>Q) \<and> P then y else x)"
  "(if P then (if Q then x else y) else y) = (if P \<and> Q then x else y)"
  "(if P then (if Q then x else y) else y) = (if Q \<and> P then x else y)"
  "(if P then x else if P then y else z) = (if P then x else z)"
  "(if P then x else if Q then x else y) = (if P \<or> Q then x else y)"
  "(if P then x else if Q then x else y) = (if Q \<or> P then x else y)"
  "(if P then x = y else x = z) = (x = (if P then y else z))"
  "(if P then x = y else y = z) = (y = (if P then x else z))"
  "(if P then x = y else z = y) = (y = (if P then x else z))"
  by auto

lemma [z3_new_rule]:
  "0 + (x::int) = x"
  "x + 0 = x"
  "x + x = 2 * x"
  "0 * x = 0"
  "1 * x = x"
  "x + y = y + x"
  by auto

lemma [z3_new_rule]:  (* for def-axiom *)
  "P = Q \<or> P \<or> Q"
  "P = Q \<or> \<not>P \<or> \<not>Q"
  "(\<not>P) = Q \<or> \<not>P \<or> Q"
  "(\<not>P) = Q \<or> P \<or> \<not>Q"
  "P = (\<not>Q) \<or> \<not>P \<or> Q"
  "P = (\<not>Q) \<or> P \<or> \<not>Q"
  "P \<noteq> Q \<or> P \<or> \<not>Q"
  "P \<noteq> Q \<or> \<not>P \<or> Q"
  "P \<noteq> (\<not>Q) \<or> P \<or> Q"
  "(\<not>P) \<noteq> Q \<or> P \<or> Q"
  "P \<or> Q \<or> P \<noteq> (\<not>Q)"
  "P \<or> Q \<or> (\<not>P) \<noteq> Q"
  "P \<or> \<not>Q \<or> P \<noteq> Q"
  "\<not>P \<or> Q \<or> P \<noteq> Q"
  "P \<or> y = (if P then x else y)"
  "P \<or> (if P then x else y) = y"
  "\<not>P \<or> x = (if P then x else y)"
  "\<not>P \<or> (if P then x else y) = x"
  "P \<or> R \<or> \<not>(if P then Q else R)"
  "\<not>P \<or> Q \<or> \<not>(if P then Q else R)"
  "\<not>(if P then Q else R) \<or> \<not>P \<or> Q"
  "\<not>(if P then Q else R) \<or> P \<or> R"
  "(if P then Q else R) \<or> \<not>P \<or> \<not>Q"
  "(if P then Q else R) \<or> P \<or> \<not>R"
  "(if P then \<not>Q else R) \<or> \<not>P \<or> Q"
  "(if P then Q else \<not>R) \<or> P \<or> R"
  by auto

hide_type (open) pattern
hide_const fun_app z3div z3mod
hide_const (open) trigger pat nopat weight

end