Proof reconstruction now only takes names of theorems as input.
(* Title: HOL/Library/Char_ord.thy
ID: $Id$
Author: Norbert Voelker
*)
header {* Order on characters *}
theory Char_ord
imports Product_ord
begin
text {* Conversions between nibbles and integers in [0..15]. *}
consts
nibble_to_int:: "nibble \<Rightarrow> int"
int_to_nibble:: "int \<Rightarrow> nibble"
primrec
"nibble_to_int Nibble0 = 0"
"nibble_to_int Nibble1 = 1"
"nibble_to_int Nibble2 = 2"
"nibble_to_int Nibble3 = 3"
"nibble_to_int Nibble4 = 4"
"nibble_to_int Nibble5 = 5"
"nibble_to_int Nibble6 = 6"
"nibble_to_int Nibble7 = 7"
"nibble_to_int Nibble8 = 8"
"nibble_to_int Nibble9 = 9"
"nibble_to_int NibbleA = 10"
"nibble_to_int NibbleB = 11"
"nibble_to_int NibbleC = 12"
"nibble_to_int NibbleD = 13"
"nibble_to_int NibbleE = 14"
"nibble_to_int NibbleF = 15"
defs
int_to_nibble_def:
"int_to_nibble x \<equiv> (let y = x mod 16 in
if y = 0 then Nibble0 else
if y = 1 then Nibble1 else
if y = 2 then Nibble2 else
if y = 3 then Nibble3 else
if y = 4 then Nibble4 else
if y = 5 then Nibble5 else
if y = 6 then Nibble6 else
if y = 7 then Nibble7 else
if y = 8 then Nibble8 else
if y = 9 then Nibble9 else
if y = 10 then NibbleA else
if y = 11 then NibbleB else
if y = 12 then NibbleC else
if y = 13 then NibbleD else
if y = 14 then NibbleE else
NibbleF)"
lemma int_to_nibble_nibble_to_int: "int_to_nibble(nibble_to_int x) = x"
by (cases x) (auto simp: int_to_nibble_def Let_def)
lemma inj_nibble_to_int: "inj nibble_to_int"
by (rule inj_on_inverseI) (rule int_to_nibble_nibble_to_int)
lemmas nibble_to_int_eq = inj_nibble_to_int [THEN inj_eq]
lemma nibble_to_int_ge_0: "0 \<le> nibble_to_int x"
by (cases x) auto
lemma nibble_to_int_less_16: "nibble_to_int x < 16"
by (cases x) auto
text {* Conversion between chars and int pairs. *}
consts
char_to_int_pair :: "char \<Rightarrow> int \<times> int"
primrec
"char_to_int_pair (Char a b) = (nibble_to_int a, nibble_to_int b)"
lemma inj_char_to_int_pair: "inj char_to_int_pair"
apply (rule inj_onI)
apply (case_tac x, case_tac y)
apply (auto simp: nibble_to_int_eq)
done
lemmas char_to_int_pair_eq = inj_char_to_int_pair [THEN inj_eq]
text {* Instantiation of order classes *}
instance char :: ord ..
defs (overloaded)
char_le_def: "c \<le> d \<equiv> (char_to_int_pair c \<le> char_to_int_pair d)"
char_less_def: "c < d \<equiv> (char_to_int_pair c < char_to_int_pair d)"
lemmas char_ord_defs = char_less_def char_le_def
instance char :: order
apply intro_classes
apply (unfold char_ord_defs)
apply (auto simp: char_to_int_pair_eq order_less_le)
done
instance char::linorder
apply intro_classes
apply (unfold char_le_def)
apply auto
done
end