/* Title: Tools/Graphview/layout.scala
Author: Markus Kaiser, TU Muenchen
Author: Makarius
DAG layout according to:
Georg Sander, "Graph Layout through the VCG Tool", in: Graph Drawing,
DIMACS International Workshop (GD'94), Springer LNCS 894, 1995.
https://doi.org/10.1007/3-540-58950-3_371
ftp://ftp.cs.uni-sb.de/pub/graphics/vcg/doc/tr-A03-94.ps.gz
*/
package isabelle.graphview
import isabelle._
object Layout
{
/* graph structure */
object Vertex
{
object Ordering extends scala.math.Ordering[Vertex]
{
def compare(v1: Vertex, v2: Vertex): Int =
(v1, v2) match {
case (Node(a), Node(b)) => Graph_Display.Node.Ordering.compare(a, b)
case (Dummy(a1, a2, i), Dummy(b1, b2, j)) =>
Graph_Display.Node.Ordering.compare(a1, b1) match {
case 0 =>
Graph_Display.Node.Ordering.compare(a2, b2) match {
case 0 => i compare j
case ord => ord
}
case ord => ord
}
case (Node(a), Dummy(b, _, _)) =>
Graph_Display.Node.Ordering.compare(a, b) match {
case 0 => -1
case ord => ord
}
case (Dummy(a, _, _), Node(b)) =>
Graph_Display.Node.Ordering.compare(a, b) match {
case 0 => 1
case ord => ord
}
}
}
}
sealed abstract class Vertex
case class Node(node: Graph_Display.Node) extends Vertex
case class Dummy(node1: Graph_Display.Node, node2: Graph_Display.Node, index: Int) extends Vertex
sealed case class Info(
x: Double, y: Double, width2: Double, height2: Double, lines: List[String])
{
def left: Double = x - width2
def right: Double = x + width2
def width: Double = 2 * width2
def height: Double = 2 * height2
}
type Graph = isabelle.Graph[Vertex, Info]
def make_graph(entries: List[((Vertex, Info), List[Vertex])]): Graph =
isabelle.Graph.make(entries)(Vertex.Ordering)
val empty_graph: Graph = make_graph(Nil)
/* vertex x coordinate */
private def vertex_left(graph: Graph, v: Vertex) = graph.get_node(v).left
private def vertex_right(graph: Graph, v: Vertex) = graph.get_node(v).right
private def move_vertex(graph: Graph, v: Vertex, dx: Double): Graph =
if (dx == 0.0) graph else graph.map_node(v, info => info.copy(x = info.x + dx))
/* layout */
val empty: Layout = new Layout(Metrics.default, Graph_Display.empty_graph, empty_graph)
private type Levels = Map[Vertex, Int]
private val empty_levels: Levels = Map.empty
def make(options: Options, metrics: Metrics,
node_text: (Graph_Display.Node, XML.Body) => String,
input_graph: Graph_Display.Graph): Layout =
{
if (input_graph.is_empty) empty
else {
/* initial graph */
val initial_graph =
make_graph(
input_graph.iterator.map(
{ case (a, (content, (_, bs))) =>
val lines = split_lines(node_text(a, content))
val w2 = metrics.node_width2(lines)
val h2 = metrics.node_height2(lines.length)
((Node(a), Info(0.0, 0.0, w2, h2, lines)), bs.toList.map(Node(_)))
}).toList)
val initial_levels: Levels =
(empty_levels /: initial_graph.topological_order) {
case (levels, vertex) =>
val level =
1 + (-1 /: initial_graph.imm_preds(vertex)) { case (m, v) => m max levels(v) }
levels + (vertex -> level)
}
/* graph with dummies */
val dummy_info = Info(0.0, 0.0, metrics.dummy_size2, metrics.dummy_size2, Nil)
val (dummy_graph, dummy_levels) =
((initial_graph, initial_levels) /: input_graph.edges_iterator) {
case ((graph, levels), (node1, node2)) =>
val v1 = Node(node1); val l1 = levels(v1)
val v2 = Node(node2); val l2 = levels(v2)
if (l2 - l1 <= 1) (graph, levels)
else {
val dummies_levels =
(for { (l, i) <- ((l1 + 1) until l2).iterator.zipWithIndex }
yield (Dummy(node1, node2, i), l)).toList
val dummies = dummies_levels.map(_._1)
val levels1 = (levels /: dummies_levels)(_ + _)
val graph1 =
((graph /: dummies)(_.new_node(_, dummy_info)).del_edge(v1, v2) /:
(v1 :: dummies ::: List(v2)).sliding(2)) {
case (g, List(a, b)) => g.add_edge(a, b) }
(graph1, levels1)
}
}
/* minimize edge crossings and initial coordinates */
val levels = minimize_crossings(options, dummy_graph, level_list(dummy_levels))
val levels_graph: Graph =
(((dummy_graph, 0.0) /: levels) {
case ((graph, y), level) =>
val num_lines = (0 /: level) { case (n, v) => n max graph.get_node(v).lines.length }
val num_edges = (0 /: level) { case (n, v) => n + graph.imm_succs(v).size }
val y1 = y + metrics.node_height2(num_lines)
val graph1 =
(((graph, 0.0) /: level) { case ((g, x), v) =>
val info = g.get_node(v)
val g1 = g.map_node(v, _ => info.copy(x = x + info.width2, y = y1))
val x1 = x + info.width + metrics.gap
(g1, x1)
})._1
val y2 = y1 + metrics.level_height2(num_lines, num_edges)
(graph1, y2)
})._1
/* pendulum/rubberband layout */
val output_graph =
rubberband(options, metrics, levels,
pendulum(options, metrics, levels, levels_graph))
new Layout(metrics, input_graph, output_graph)
}
}
/** edge crossings **/
private type Level = List[Vertex]
private def minimize_crossings(
options: Options, graph: Graph, levels: List[Level]): List[Level] =
{
def resort(parent: Level, child: Level, top_down: Boolean): Level =
child.map(v => {
val ps = if (top_down) graph.imm_preds(v) else graph.imm_succs(v)
val weight =
(0.0 /: ps) { (w, p) => w + (0 max parent.indexOf(p)) } / (ps.size max 1)
(v, weight)
}).sortBy(_._2).map(_._1)
((levels, count_crossings(graph, levels)) /:
(1 to (2 * options.int("graphview_iterations_minimize_crossings")))) {
case ((old_levels, old_crossings), iteration) =>
val top_down = (iteration % 2 == 1)
val new_levels =
if (top_down)
(List(old_levels.head) /: old_levels.tail)((tops, bot) =>
resort(tops.head, bot, top_down) :: tops).reverse
else {
val rev_old_levels = old_levels.reverse
(List(rev_old_levels.head) /: rev_old_levels.tail)((bots, top) =>
resort(bots.head, top, top_down) :: bots)
}
val new_crossings = count_crossings(graph, new_levels)
if (new_crossings < old_crossings)
(new_levels, new_crossings)
else
(old_levels, old_crossings)
}._1
}
private def level_list(levels: Levels): List[Level] =
{
val max_lev = (-1 /: levels) { case (m, (_, l)) => m max l }
val buckets = new Array[Level](max_lev + 1)
for (l <- 0 to max_lev) { buckets(l) = Nil }
for ((v, l) <- levels) { buckets(l) = v :: buckets(l) }
buckets.iterator.map(_.sorted(Vertex.Ordering)).toList
}
private def count_crossings(graph: Graph, levels: List[Level]): Int =
levels.iterator.sliding(2).map {
case List(top, bot) =>
top.iterator.zipWithIndex.map {
case (outer_parent, outer_parent_index) =>
graph.imm_succs(outer_parent).iterator.map(bot.indexOf(_)).map(outer_child =>
(0 until outer_parent_index).iterator.map(inner_parent =>
graph.imm_succs(top(inner_parent)).iterator.map(bot.indexOf(_)).
filter(inner_child => outer_child < inner_child).size).sum).sum
}.sum
case _ => 0
}.sum
/** pendulum method **/
/*This is an auxiliary class which is used by the layout algorithm when
calculating coordinates with the "pendulum method". A "region" is a
group of vertices which "stick together".*/
private class Region(val content: List[Vertex])
{
def distance(metrics: Metrics, graph: Graph, that: Region): Double =
vertex_left(graph, that.content.head) -
vertex_right(graph, this.content.last) -
metrics.gap
def deflection(graph: Graph, top_down: Boolean): Double =
((for (a <- content.iterator) yield {
val x = graph.get_node(a).x
val bs = if (top_down) graph.imm_preds(a) else graph.imm_succs(a)
bs.iterator.map(graph.get_node(_).x - x).sum / (bs.size max 1)
}).sum / content.length).round.toDouble
def move(graph: Graph, dx: Double): Graph =
if (dx == 0.0) graph else (graph /: content)(move_vertex(_, _, dx))
def combine(that: Region): Region = new Region(content ::: that.content)
}
private def pendulum(
options: Options, metrics: Metrics, levels: List[Level], levels_graph: Graph): Graph =
{
def combine_regions(graph: Graph, top_down: Boolean, level: List[Region]): List[Region] =
level match {
case r1 :: rest =>
val rest1 = combine_regions(graph, top_down, rest)
rest1 match {
case r2 :: rest2 =>
val d1 = r1.deflection(graph, top_down)
val d2 = r2.deflection(graph, top_down)
if (// Do regions touch?
r1.distance(metrics, graph, r2) <= 0.0 &&
// Do they influence each other?
(d1 <= 0.0 && d2 < d1 || d2 > 0.0 && d1 > d2 || d1 > 0.0 && d2 < 0.0))
r1.combine(r2) :: rest2
else r1 :: rest1
case _ => r1 :: rest1
}
case _ => level
}
def deflect(level: List[Region], top_down: Boolean, graph: Graph): (Graph, Boolean) =
{
((graph, false) /: (0 until level.length)) {
case ((graph, moved), i) =>
val r = level(i)
val d = r.deflection(graph, top_down)
val dx =
if (d < 0.0 && i > 0)
- (level(i - 1).distance(metrics, graph, r) min (- d))
else if (d >= 0.0 && i < level.length - 1)
r.distance(metrics, graph, level(i + 1)) min d
else d
(r.move(graph, dx), moved || d != 0.0)
}
}
val initial_regions = levels.map(level => level.map(l => new Region(List(l))))
((levels_graph, initial_regions, true) /:
(1 to (2 * options.int("graphview_iterations_pendulum")))) {
case ((graph, regions, moved), iteration) =>
val top_down = (iteration % 2 == 1)
if (moved) {
val (graph1, regions1, moved1) =
((graph, List.empty[List[Region]], false) /:
(if (top_down) regions else regions.reverse)) { case ((graph, tops, moved), bot) =>
val bot1 = combine_regions(graph, top_down, bot)
val (graph1, moved1) = deflect(bot1, top_down, graph)
(graph1, bot1 :: tops, moved || moved1)
}
(graph1, regions1.reverse, moved1)
}
else (graph, regions, moved)
}._1
}
/** rubberband method **/
private def force_weight(graph: Graph, v: Vertex): Double =
{
val preds = graph.imm_preds(v)
val succs = graph.imm_succs(v)
val n = preds.size + succs.size
if (n == 0) 0.0
else {
val x = graph.get_node(v).x
((preds.iterator ++ succs.iterator).map(w => graph.get_node(w).x - x)).sum / n
}
}
private def rubberband(
options: Options, metrics: Metrics, levels: List[Level], graph: Graph): Graph =
{
val gap = metrics.gap
(graph /: (1 to (2 * options.int("graphview_iterations_rubberband")))) { case (graph, _) =>
(graph /: levels) { case (graph, level) =>
val m = level.length - 1
(graph /: level.iterator.zipWithIndex) {
case (g, (v, i)) =>
val d = force_weight(g, v)
if (d < 0.0 && (i == 0 || vertex_right(g, level(i - 1)) + gap < vertex_left(g, v) + d) ||
d > 0.0 && (i == m || vertex_left(g, level(i + 1)) - gap > vertex_right(g, v) + d))
move_vertex(g, v, d.round.toDouble)
else g
}
}
}
}
}
final class Layout private(
val metrics: Metrics,
val input_graph: Graph_Display.Graph,
val output_graph: Layout.Graph)
{
/* vertex coordinates */
def translate_vertex(v: Layout.Vertex, dx: Double, dy: Double): Layout =
{
if ((dx == 0.0 && dy == 0.0) || !output_graph.defined(v)) this
else {
val output_graph1 =
output_graph.map_node(v, info => info.copy(x = info.x + dx, y = info.y + dy))
new Layout(metrics, input_graph, output_graph1)
}
}
/* regular nodes */
def get_node(node: Graph_Display.Node): Layout.Info =
output_graph.get_node(Layout.Node(node))
def nodes_iterator: Iterator[Layout.Info] =
for ((_: Layout.Node, (info, _)) <- output_graph.iterator) yield info
/* dummies */
def dummies_iterator: Iterator[Layout.Info] =
for ((_: Layout.Dummy, (info, _)) <- output_graph.iterator) yield info
def dummies_iterator(edge: Graph_Display.Edge): Iterator[Layout.Info] =
new Iterator[Layout.Info] {
private var index = 0
def hasNext: Boolean = output_graph.defined(Layout.Dummy(edge._1, edge._2, index))
def next: Layout.Info =
{
val info = output_graph.get_node(Layout.Dummy(edge._1, edge._2, index))
index += 1
info
}
}
}