maintain previous theory identifier to support semantic caching, notably in Isabelle/Naproche;
(* Title: Pure/Isar/toplevel.ML
Author: Markus Wenzel, TU Muenchen
Isabelle/Isar toplevel transactions.
*)
signature TOPLEVEL =
sig
exception UNDEF
type state
val init_toplevel: unit -> state
val theory_toplevel: theory -> state
val get_prev_theory: generic_theory -> serial
val is_toplevel: state -> bool
val is_theory: state -> bool
val is_proof: state -> bool
val is_skipped_proof: state -> bool
val level: state -> int
val previous_theory_of: state -> theory option
val context_of: state -> Proof.context
val generic_theory_of: state -> generic_theory
val theory_of: state -> theory
val proof_of: state -> Proof.state
val proof_position_of: state -> int
val is_end_theory: state -> bool
val end_theory: Position.T -> state -> theory
val presentation_context: state -> Proof.context
val presentation_state: Proof.context -> state
val pretty_context: state -> Pretty.T list
val pretty_state: state -> Pretty.T list
val string_of_state: state -> string
val pretty_abstract: state -> Pretty.T
type transition
val empty: transition
val name_of: transition -> string
val pos_of: transition -> Position.T
val timing_of: transition -> Time.time
val type_error: transition -> string
val name: string -> transition -> transition
val position: Position.T -> transition -> transition
val markers: Input.source list -> transition -> transition
val timing: Time.time -> transition -> transition
val init_theory: (unit -> theory) -> transition -> transition
val is_init: transition -> bool
val modify_init: (unit -> theory) -> transition -> transition
val exit: transition -> transition
val keep: (state -> unit) -> transition -> transition
val keep': (bool -> state -> unit) -> transition -> transition
val keep_proof: (state -> unit) -> transition -> transition
val is_ignored: transition -> bool
val ignored: Position.T -> transition
val malformed: Position.T -> string -> transition
val generic_theory: (generic_theory -> generic_theory) -> transition -> transition
val theory': (bool -> theory -> theory) -> transition -> transition
val theory: (theory -> theory) -> transition -> transition
val begin_main_target: bool -> (theory -> local_theory) -> transition -> transition
val end_main_target: transition -> transition
val begin_nested_target: (Context.generic -> local_theory) -> transition -> transition
val end_nested_target: transition -> transition
val local_theory': (bool * Position.T) option -> (xstring * Position.T) option ->
(bool -> local_theory -> local_theory) -> transition -> transition
val local_theory: (bool * Position.T) option -> (xstring * Position.T) option ->
(local_theory -> local_theory) -> transition -> transition
val present_local_theory: (xstring * Position.T) option -> (state -> unit) ->
transition -> transition
val local_theory_to_proof': (bool * Position.T) option -> (xstring * Position.T) option ->
(bool -> local_theory -> Proof.state) -> transition -> transition
val local_theory_to_proof: (bool * Position.T) option -> (xstring * Position.T) option ->
(local_theory -> Proof.state) -> transition -> transition
val theory_to_proof: (theory -> Proof.state) -> transition -> transition
val end_proof: (bool -> Proof.state -> Proof.context) -> transition -> transition
val forget_proof: transition -> transition
val proofs': (bool -> Proof.state -> Proof.state Seq.result Seq.seq) -> transition -> transition
val proof': (bool -> Proof.state -> Proof.state) -> transition -> transition
val proofs: (Proof.state -> Proof.state Seq.result Seq.seq) -> transition -> transition
val proof: (Proof.state -> Proof.state) -> transition -> transition
val actual_proof: (Proof_Node.T -> Proof_Node.T) -> transition -> transition
val skip_proof: (unit -> unit) -> transition -> transition
val skip_proof_open: transition -> transition
val skip_proof_close: transition -> transition
val exec_id: Document_ID.exec -> transition -> transition
val setmp_thread_position: transition -> ('a -> 'b) -> 'a -> 'b
val transition: bool -> transition -> state -> state * (exn * string) option
val command_errors: bool -> transition -> state -> Runtime.error list * state option
val command_exception: bool -> transition -> state -> state
val reset_theory: state -> state option
val reset_proof: state -> state option
val reset_notepad: state -> state option
val fork_presentation: transition -> transition * transition
type result
val join_results: result -> (state * transition * state) list
val element_result: Keyword.keywords -> transition Thy_Element.element -> state -> result * state
end;
structure Toplevel: TOPLEVEL =
struct
(** toplevel state **)
exception UNDEF = Runtime.UNDEF;
(* datatype node *)
datatype node =
Toplevel
(*toplevel outside of theory body*) |
Theory of generic_theory
(*global or local theory*) |
Proof of Proof_Node.T * ((Proof.context -> generic_theory) * generic_theory)
(*proof node, finish, original theory*) |
Skipped_Proof of int * (generic_theory * generic_theory);
(*proof depth, resulting theory, original theory*)
val theory_node = fn Theory gthy => SOME gthy | _ => NONE;
val proof_node = fn Proof (prf, _) => SOME prf | _ => NONE;
val skipped_proof_node = fn Skipped_Proof _ => true | _ => false;
fun cases_node f _ _ Toplevel = f ()
| cases_node _ g _ (Theory gthy) = g gthy
| cases_node _ _ h (Proof (prf, _)) = h (Proof_Node.current prf)
| cases_node _ g _ (Skipped_Proof (_, (gthy, _))) = g gthy;
fun cases_proper_node g h = cases_node (fn () => raise UNDEF) g h;
val get_theory = cases_node (K NONE) (SOME o Context.theory_of) (SOME o Proof.theory_of);
(* datatype state *)
type node_presentation = node * Proof.context;
fun init_presentation () =
Proof_Context.init_global (Theory.get_pure_bootstrap ());
fun node_presentation node =
(node, cases_node init_presentation Context.proof_of Proof.context_of node);
datatype state =
State of node_presentation * theory option;
(*current node with presentation context, previous theory*)
fun node_of (State ((node, _), _)) = node;
fun previous_theory_of (State (_, prev_thy)) = prev_thy;
fun init_toplevel () = State (node_presentation Toplevel, NONE);
fun theory_toplevel thy = State (node_presentation (Theory (Context.Theory thy)), NONE);
val prev_theory = Config.declare_int ("prev_theory", Position.none) (K 0);
fun get_prev_theory gthy = Config.get_global (Context.theory_of gthy) prev_theory;
fun set_prev_theory (State (_, SOME prev_thy)) (Theory gthy) =
let
val put = Config.put_global prev_theory (Context.theory_identifier prev_thy);
val gthy' = gthy |> Context.mapping put (Local_Theory.raw_theory put);
in Theory gthy' end
| set_prev_theory _ node = node;
fun level state =
(case node_of state of
Toplevel => 0
| Theory _ => 0
| Proof (prf, _) => Proof.level (Proof_Node.current prf)
| Skipped_Proof (d, _) => d + 1); (*different notion of proof depth!*)
fun str_of_state state =
(case node_of state of
Toplevel =>
(case previous_theory_of state of
NONE => "at top level"
| SOME thy => "at top level, result theory " ^ quote (Context.theory_name thy))
| Theory (Context.Theory _) => "in theory mode"
| Theory (Context.Proof _) => "in local theory mode"
| Proof _ => "in proof mode"
| Skipped_Proof _ => "in skipped proof mode");
(* current node *)
fun is_toplevel state = (case node_of state of Toplevel => true | _ => false);
fun is_theory state =
not (is_toplevel state) andalso is_some (theory_node (node_of state));
fun is_proof state =
not (is_toplevel state) andalso is_some (proof_node (node_of state));
fun is_skipped_proof state =
not (is_toplevel state) andalso skipped_proof_node (node_of state);
fun proper_node_of state = if is_toplevel state then raise UNDEF else node_of state;
fun proper_node_case f g state = cases_proper_node f g (proper_node_of state);
val context_of = proper_node_case Context.proof_of Proof.context_of;
val generic_theory_of = proper_node_case I (Context.Proof o Proof.context_of);
val theory_of = proper_node_case Context.theory_of Proof.theory_of;
val proof_of = proper_node_case (fn _ => error "No proof state") I;
fun proof_position_of state =
(case proper_node_of state of
Proof (prf, _) => Proof_Node.position prf
| _ => ~1);
fun is_end_theory (State ((Toplevel, _), SOME _)) = true
| is_end_theory _ = false;
fun end_theory _ (State ((Toplevel, _), SOME thy)) = thy
| end_theory pos _ = error ("Malformed theory" ^ Position.here pos);
(* presentation context *)
structure Presentation_State = Proof_Data
(
type T = state option;
fun init _ = NONE;
);
fun presentation_context0 (State ((_, pr_ctxt), _)) = pr_ctxt;
fun presentation_context (state as State (current, _)) =
presentation_context0 state
|> Presentation_State.put (SOME (State (current, NONE)));
fun presentation_state ctxt =
(case Presentation_State.get ctxt of
NONE => State (node_presentation (Theory (Context.Proof ctxt)), NONE)
| SOME state => state);
(* print state *)
fun pretty_context state =
if is_toplevel state then []
else
let
val gthy =
(case node_of state of
Toplevel => raise Match
| Theory gthy => gthy
| Proof (_, (_, gthy)) => gthy
| Skipped_Proof (_, (_, gthy)) => gthy);
val lthy = Context.cases Named_Target.theory_init I gthy;
in Local_Theory.pretty lthy end;
fun pretty_state state =
(case node_of state of
Toplevel => []
| Theory _ => []
| Proof (prf, _) => Proof.pretty_state (Proof_Node.current prf)
| Skipped_Proof (d, _) => [Pretty.str ("skipped proof: depth " ^ string_of_int d)]);
val string_of_state = pretty_state #> Pretty.chunks #> Pretty.string_of;
fun pretty_abstract state = Pretty.str ("<Isar " ^ str_of_state state ^ ">");
val _ = ML_system_pp (fn _ => fn _ => Pretty.to_polyml o pretty_abstract);
(** toplevel transitions **)
(* primitive transitions *)
datatype trans =
(*init theory*)
Init of unit -> theory |
(*formal exit of theory*)
Exit |
(*peek at state*)
Keep of bool -> state -> unit |
(*node transaction and presentation*)
Transaction of (bool -> node -> node_presentation) * (state -> unit);
local
exception FAILURE of state * exn;
fun apply f g node =
let
val node_pr = node_presentation node;
val context = cases_proper_node I (Context.Proof o Proof.context_of) node;
fun state_error e node_pr' = (State (node_pr', get_theory node), e);
val (result, err) =
node
|> Runtime.controlled_execution (SOME context) f
|> state_error NONE
handle exn => state_error (SOME exn) node_pr;
in
(case err of
NONE => tap g result
| SOME exn => raise FAILURE (result, exn))
end;
fun apply_tr int trans state =
(case (trans, node_of state) of
(Init f, Toplevel) =>
Runtime.controlled_execution NONE (fn () =>
State (node_presentation (Theory (Context.Theory (f ()))), NONE)) ()
| (Exit, node as Theory (Context.Theory thy)) =>
let
val State ((node', pr_ctxt), _) =
node |> apply
(fn _ =>
node_presentation
(Theory (Context.Theory (tap Thm.expose_theory (Theory.end_theory thy)))))
(K ());
in State ((Toplevel, pr_ctxt), get_theory node') end
| (Keep f, node) =>
Runtime.controlled_execution (try generic_theory_of state)
(fn () => (f int state; State (node_presentation node, previous_theory_of state))) ()
| (Transaction _, Toplevel) => raise UNDEF
| (Transaction (f, g), node) => apply (fn x => f int x) g (set_prev_theory state node)
| _ => raise UNDEF);
fun apply_union _ [] state = raise FAILURE (state, UNDEF)
| apply_union int (tr :: trs) state =
apply_union int trs state
handle Runtime.UNDEF => apply_tr int tr state
| FAILURE (alt_state, UNDEF) => apply_tr int tr alt_state
| exn as FAILURE _ => raise exn
| exn => raise FAILURE (state, exn);
fun apply_markers name markers (state as State ((node, pr_ctxt), prev_thy)) =
let
val state' =
Runtime.controlled_execution (try generic_theory_of state)
(fn () => State ((node, fold (Document_Marker.evaluate name) markers pr_ctxt), prev_thy)) ();
in (state', NONE) end
handle exn => (state, SOME exn);
in
fun apply_trans int name markers trans state =
(apply_union int trans state |> apply_markers name markers)
handle FAILURE (alt_state, exn) => (alt_state, SOME exn) | exn => (state, SOME exn);
end;
(* datatype transition *)
datatype transition = Transition of
{name: string, (*command name*)
pos: Position.T, (*source position*)
markers: Input.source list, (*semantic document markers*)
timing: Time.time, (*prescient timing information*)
trans: trans list}; (*primitive transitions (union)*)
fun make_transition (name, pos, markers, timing, trans) =
Transition {name = name, pos = pos, markers = markers, timing = timing, trans = trans};
fun map_transition f (Transition {name, pos, markers, timing, trans}) =
make_transition (f (name, pos, markers, timing, trans));
val empty = make_transition ("", Position.none, [], Time.zeroTime, []);
(* diagnostics *)
fun name_of (Transition {name, ...}) = name;
fun pos_of (Transition {pos, ...}) = pos;
fun timing_of (Transition {timing, ...}) = timing;
fun command_msg msg tr =
msg ^ "command " ^ quote (Markup.markup Markup.keyword1 (name_of tr)) ^
Position.here (pos_of tr);
fun at_command tr = command_msg "At " tr;
fun type_error tr = command_msg "Bad context for " tr;
(* modify transitions *)
fun name name = map_transition (fn (_, pos, markers, timing, trans) =>
(name, pos, markers, timing, trans));
fun position pos = map_transition (fn (name, _, markers, timing, trans) =>
(name, pos, markers, timing, trans));
fun markers markers = map_transition (fn (name, pos, _, timing, trans) =>
(name, pos, markers, timing, trans));
fun timing timing = map_transition (fn (name, pos, markers, _, trans) =>
(name, pos, markers, timing, trans));
fun add_trans tr = map_transition (fn (name, pos, markers, timing, trans) =>
(name, pos, markers, timing, tr :: trans));
val reset_trans = map_transition (fn (name, pos, markers, timing, _) =>
(name, pos, markers, timing, []));
(* basic transitions *)
fun init_theory f = add_trans (Init f);
fun is_init (Transition {trans = [Init _], ...}) = true
| is_init _ = false;
fun modify_init f tr = if is_init tr then init_theory f (reset_trans tr) else tr;
val exit = add_trans Exit;
val keep' = add_trans o Keep;
fun present_transaction f g = add_trans (Transaction (f, g));
fun transaction f = present_transaction f (K ());
fun transaction0 f = present_transaction (node_presentation oo f) (K ());
fun keep f = add_trans (Keep (fn _ => f));
fun keep_proof f =
keep (fn st =>
if is_proof st then f st
else if is_skipped_proof st then ()
else warning "No proof state");
fun is_ignored tr = name_of tr = "<ignored>";
fun ignored pos =
empty |> name "<ignored>" |> position pos |> keep (fn _ => ());
fun malformed pos msg =
empty |> name "<malformed>" |> position pos |> keep (fn _ => error msg);
(* theory transitions *)
fun generic_theory f = transaction (fn _ =>
(fn Theory gthy => node_presentation (Theory (f gthy))
| _ => raise UNDEF));
fun theory' f = transaction (fn int =>
(fn Theory (Context.Theory thy) =>
let val thy' = thy
|> Sign.new_group
|> f int
|> Sign.reset_group;
in node_presentation (Theory (Context.Theory thy')) end
| _ => raise UNDEF));
fun theory f = theory' (K f);
fun begin_main_target begin f = transaction (fn _ =>
(fn Theory (Context.Theory thy) =>
let
val lthy = f thy;
val gthy =
if begin
then Context.Proof lthy
else Target_Context.end_named_cmd lthy;
val _ =
(case Local_Theory.pretty lthy of
[] => ()
| prts => Output.state (Pretty.string_of (Pretty.chunks prts)));
in (Theory gthy, lthy) end
| _ => raise UNDEF));
val end_main_target = transaction (fn _ =>
(fn Theory (Context.Proof lthy) => (Theory (Target_Context.end_named_cmd lthy), lthy)
| _ => raise UNDEF));
fun begin_nested_target f = transaction0 (fn _ =>
(fn Theory gthy =>
let
val lthy' = f gthy;
in Theory (Context.Proof lthy') end
| _ => raise UNDEF));
val end_nested_target = transaction (fn _ =>
(fn Theory (Context.Proof lthy) =>
(case try Target_Context.end_nested_cmd lthy of
SOME gthy' => (Theory gthy', lthy)
| NONE => raise UNDEF)
| _ => raise UNDEF));
fun restricted_context (SOME (strict, scope)) =
Proof_Context.map_naming (Name_Space.restricted strict scope)
| restricted_context NONE = I;
fun local_theory' restricted target f = present_transaction (fn int =>
(fn Theory gthy =>
let
val (finish, lthy) = Target_Context.switch_named_cmd target gthy;
val lthy' = lthy
|> restricted_context restricted
|> Local_Theory.new_group
|> f int
|> Local_Theory.reset_group;
in (Theory (finish lthy'), lthy') end
| _ => raise UNDEF))
(K ());
fun local_theory restricted target f = local_theory' restricted target (K f);
fun present_local_theory target = present_transaction (fn _ =>
(fn Theory gthy =>
let val (finish, lthy) = Target_Context.switch_named_cmd target gthy;
in (Theory (finish lthy), lthy) end
| _ => raise UNDEF));
(* proof transitions *)
fun end_proof f = transaction (fn int =>
(fn Proof (prf, (finish, _)) =>
let val state = Proof_Node.current prf in
if can (Proof.assert_bottom true) state then
let
val ctxt' = f int state;
val gthy' = finish ctxt';
in (Theory gthy', ctxt') end
else raise UNDEF
end
| Skipped_Proof (0, (gthy, _)) => node_presentation (Theory gthy)
| _ => raise UNDEF));
local
fun begin_proof init_proof = transaction0 (fn int =>
(fn Theory gthy =>
let
val (finish, prf) = init_proof int gthy;
val document = Options.default_string "document";
val skip = (document = "" orelse document = "false") andalso Goal.skip_proofs_enabled ();
val schematic_goal = try Proof.schematic_goal prf;
val _ =
if skip andalso schematic_goal = SOME true then
warning "Cannot skip proof of schematic goal statement"
else ();
in
if skip andalso schematic_goal = SOME false then
Skipped_Proof (0, (finish (Proof.global_skip_proof true prf), gthy))
else Proof (Proof_Node.init prf, (finish, gthy))
end
| _ => raise UNDEF));
in
fun local_theory_to_proof' restricted target f = begin_proof
(fn int => fn gthy =>
let
val (finish, lthy) = Target_Context.switch_named_cmd target gthy;
val prf = lthy
|> restricted_context restricted
|> Local_Theory.new_group
|> f int;
in (finish o Local_Theory.reset_group, prf) end);
fun local_theory_to_proof restricted target f =
local_theory_to_proof' restricted target (K f);
fun theory_to_proof f = begin_proof
(fn _ => fn gthy =>
(Context.Theory o Sign.reset_group o Sign.change_check o Proof_Context.theory_of,
(case gthy of
Context.Theory thy => f (Sign.new_group thy)
| _ => raise UNDEF)));
end;
val forget_proof = transaction0 (fn _ =>
(fn Proof (prf, (_, orig_gthy)) =>
if Proof.is_notepad (Proof_Node.current prf) then raise UNDEF
else Theory orig_gthy
| Skipped_Proof (_, (_, orig_gthy)) => Theory orig_gthy
| _ => raise UNDEF));
fun proofs' f = transaction0 (fn int =>
(fn Proof (prf, x) => Proof (Proof_Node.applys (f int) prf, x)
| skip as Skipped_Proof _ => skip
| _ => raise UNDEF));
fun proof' f = proofs' ((Seq.single o Seq.Result) oo f);
val proofs = proofs' o K;
val proof = proof' o K;
(* skipped proofs *)
fun actual_proof f = transaction0 (fn _ =>
(fn Proof (prf, x) => Proof (f prf, x)
| _ => raise UNDEF));
fun skip_proof f = transaction0 (fn _ =>
(fn skip as Skipped_Proof _ => (f (); skip)
| _ => raise UNDEF));
val skip_proof_open = transaction0 (fn _ =>
(fn Skipped_Proof (d, x) => Skipped_Proof (d + 1, x)
| _ => raise UNDEF));
val skip_proof_close = transaction0 (fn _ =>
(fn Skipped_Proof (0, (gthy, _)) => Theory gthy
| Skipped_Proof (d, x) => Skipped_Proof (d - 1, x)
| _ => raise UNDEF));
(** toplevel transactions **)
(* runtime position *)
fun exec_id id (tr as Transition {pos, ...}) =
let val put_id = Position.put_id (Document_ID.print id)
in position (put_id pos) tr end;
fun setmp_thread_position (Transition {pos, ...}) f x =
Position.setmp_thread_data pos f x;
(* apply transitions *)
local
fun app int (tr as Transition {name, markers, trans, ...}) =
setmp_thread_position tr
(Timing.protocol (name_of tr) (pos_of tr) (apply_trans int name markers trans)
##> Option.map (fn UNDEF => ERROR (type_error tr) | exn => exn));
in
fun transition int tr st =
let
val (st', opt_err) =
Context.setmp_generic_context (try (Context.Proof o presentation_context0) st)
(fn () => app int tr st) ();
val opt_err' = opt_err |> Option.map
(fn Runtime.EXCURSION_FAIL exn_info => exn_info
| exn => (Runtime.exn_context (try context_of st) exn, at_command tr));
in (st', opt_err') end;
end;
(* managed commands *)
fun command_errors int tr st =
(case transition int tr st of
(st', NONE) => ([], SOME st')
| (_, SOME (exn, _)) => (Runtime.exn_messages exn, NONE));
fun command_exception int tr st =
(case transition int tr st of
(st', NONE) => st'
| (_, SOME (exn, info)) =>
if Exn.is_interrupt exn then Exn.reraise exn
else raise Runtime.EXCURSION_FAIL (exn, info));
val command = command_exception false;
(* reset state *)
local
fun reset_state check trans st =
if check st then NONE
else #2 (command_errors false (trans empty) st);
in
val reset_theory = reset_state is_theory forget_proof;
val reset_proof =
reset_state is_proof
(transaction0 (fn _ =>
(fn Theory gthy => Skipped_Proof (0, (gthy, gthy))
| _ => raise UNDEF)));
val reset_notepad =
reset_state
(fn st =>
(case try proof_of st of
SOME state => not (Proof.is_notepad state) orelse can Proof.end_notepad state
| NONE => true))
(proof Proof.reset_notepad);
end;
(* scheduled proof result *)
datatype result =
Result of transition * state |
Result_List of result list |
Result_Future of result future;
fun join_results result =
let
fun add (tr, st') res =
(case res of
[] => [(init_toplevel (), tr, st')]
| (_, _, st) :: _ => (st, tr, st') :: res);
fun acc (Result r) = add r
| acc (Result_List rs) = fold acc rs
| acc (Result_Future x) = acc (Future.join x);
in rev (acc result []) end;
local
structure Result = Proof_Data
(
type T = result;
fun init _ = Result_List [];
);
val get_result = Result.get o Proof.context_of;
val put_result = Proof.map_context o Result.put;
fun timing_estimate elem =
let val trs = tl (Thy_Element.flat_element elem)
in fold (fn tr => fn t => timing_of tr + t) trs Time.zeroTime end;
fun future_proofs_enabled estimate st =
(case try proof_of st of
NONE => false
| SOME state =>
not (Proofterm.proofs_enabled ()) andalso
not (Proof.is_relevant state) andalso
(if can (Proof.assert_bottom true) state
then Future.proofs_enabled 1
else Future.proofs_enabled 2 orelse Future.proofs_enabled_timing estimate));
val empty_markers = markers [];
val empty_trans = reset_trans #> keep (K ());
in
fun fork_presentation tr = (tr |> empty_markers, tr |> empty_trans);
fun atom_result keywords tr st =
let
val st' =
if Future.proofs_enabled 1 andalso Keyword.is_diag keywords (name_of tr) then
let
val (tr1, tr2) = fork_presentation tr;
val _ =
Execution.fork {name = "Toplevel.diag", pos = pos_of tr, pri = ~1}
(fn () => command tr1 st);
in command tr2 st end
else command tr st;
in (Result (tr, st'), st') end;
fun element_result keywords (Thy_Element.Element (tr, NONE)) st = atom_result keywords tr st
| element_result keywords (elem as Thy_Element.Element (head_tr, SOME element_rest)) st =
let
val (head_result, st') = atom_result keywords head_tr st;
val (body_elems, end_tr) = element_rest;
val estimate = timing_estimate elem;
in
if not (future_proofs_enabled estimate st')
then
let
val proof_trs = maps Thy_Element.flat_element body_elems @ [end_tr];
val (proof_results, st'') = fold_map (atom_result keywords) proof_trs st';
in (Result_List (head_result :: proof_results), st'') end
else
let
val (end_tr1, end_tr2) = fork_presentation end_tr;
val finish = Context.Theory o Proof_Context.theory_of;
val future_proof =
Proof.future_proof (fn state =>
Execution.fork
{name = "Toplevel.future_proof", pos = pos_of head_tr, pri = ~1}
(fn () =>
let
val State ((Proof (prf, (_, orig_gthy)), _), prev_thy) = st';
val node' = Proof (Proof_Node.apply (K state) prf, (finish, orig_gthy));
val (results, result_state) =
State (node_presentation node', prev_thy)
|> fold_map (element_result keywords) body_elems ||> command end_tr1;
in (Result_List results, presentation_context0 result_state) end))
#> (fn (res, state') => state' |> put_result (Result_Future res));
val forked_proof =
proof (future_proof #>
(fn state => state |> Proof.local_done_proof |> put_result (get_result state))) o
end_proof (fn _ => future_proof #>
(fn state => state |> Proof.global_done_proof |> Result.put (get_result state)));
val st'' = st' |> command (head_tr |> reset_trans |> forked_proof);
val end_st = st'' |> command end_tr2;
val end_result = Result (end_tr, end_st);
val result =
Result_List [head_result, Result.get (presentation_context0 st''), end_result];
in (result, end_st) end
end;
end;
end;