added a fresh_left lemma that contains all instantiation
for the various atom-types.
(* ID: $Id$
Author: Christian Urban and Makarius
The nominal induct proof method.
*)
structure NominalInduct:
sig
val nominal_induct_tac: Proof.context -> (string option * term) option list ->
(string * typ) list -> (string * typ) list list -> thm ->
thm list -> int -> RuleCases.cases_tactic
val nominal_induct_method: Method.src -> Proof.context -> Method.method
end =
struct
(* proper tuples -- nested left *)
fun tupleT Ts = HOLogic.unitT |> fold (fn T => fn U => HOLogic.mk_prodT (U, T)) Ts;
fun tuple ts = HOLogic.unit |> fold (fn t => fn u => HOLogic.mk_prod (u, t)) ts;
fun tuple_fun Ts (xi, T) =
Library.funpow (length Ts) HOLogic.mk_split
(Var (xi, (HOLogic.unitT :: Ts) ---> Term.range_type T));
val split_all_tuples =
Simplifier.full_simplify (HOL_basic_ss addsimps
[split_conv, split_paired_all, unit_all_eq1, thm "fresh_unit_elim", thm "fresh_prod_elim"]);
(* prepare rule *)
(*conclusion: ?P fresh_struct ... insts*)
fun inst_rule thy insts fresh rule =
let
val vars = InductAttrib.vars_of (Thm.concl_of rule);
val m = length vars and n = length insts;
val _ = if m >= n + 2 then () else error "Too few variables in conclusion of rule";
val P :: x :: ys = vars;
val zs = Library.drop (m - n - 2, ys);
val subst =
(P, tuple_fun (map #2 fresh) (Term.dest_Var P)) ::
(x, tuple (map Free fresh)) ::
List.mapPartial (fn (z, SOME t) => SOME (z, t) | _ => NONE) (zs ~~ insts);
in
rule
|> Drule.cterm_instantiate (map (pairself (Thm.cterm_of thy)) subst)
end;
fun rename_params_rule internal xs rule =
let
val tune =
if internal then Syntax.internal
else fn x => the_default x (try Syntax.dest_internal x);
val n = length xs;
fun rename prem =
let
val ps = Logic.strip_params prem;
val p = length ps;
val ys =
if p < n then []
else map (tune o #1) (Library.take (p - n, ps)) @ xs;
in Logic.list_rename_params (ys, prem) end;
fun rename_prems prop =
let val (As, C) = Logic.strip_horn (Thm.prop_of rule)
in Logic.list_implies (map rename As, C) end;
in Thm.equal_elim (Thm.reflexive (Drule.cterm_fun rename_prems (Thm.cprop_of rule))) rule end;
(* nominal_induct_tac *)
fun nominal_induct_tac ctxt def_insts fresh fixing rule facts =
let
val thy = ProofContext.theory_of ctxt;
val cert = Thm.cterm_of thy;
val ((insts, defs), defs_ctxt) = InductMethod.add_defs def_insts ctxt;
val atomized_defs = map ObjectLogic.atomize_thm defs;
val finish_rule =
split_all_tuples
#> rename_params_rule true (map (ProofContext.revert_skolem defs_ctxt o #1) fresh);
fun rule_cases r = RuleCases.make true (SOME (Thm.prop_of r)) (InductMethod.rulified_term r);
in
(fn i => fn st =>
rule
|> `RuleCases.get
||> inst_rule thy insts fresh
|> RuleCases.consume defs facts
|> Seq.maps (fn ((cases, (k, more_facts)), r) =>
(CONJUNCTS (ALLGOALS (fn j =>
Method.insert_tac (more_facts @ atomized_defs) j
THEN InductMethod.fix_tac defs_ctxt k (Library.nth_list fixing (j - 1)) j))
THEN' InductMethod.atomize_tac) i st |> Seq.maps (fn st' =>
InductMethod.guess_instance (finish_rule r) i st'
|> Seq.maps (fn r' =>
CASES (rule_cases r' cases)
(Tactic.rtac (rename_params_rule false [] r') i THEN
PRIMSEQ (ProofContext.exports defs_ctxt ctxt)) st'))))
THEN_ALL_NEW_CASES InductMethod.rulify_tac
end;
(* concrete syntax *)
local
val freshN = "avoiding";
val fixingN = "fixing";
val ruleN = "rule";
val inst = Scan.lift (Args.$$$ "_") >> K NONE || Args.local_term >> SOME;
val def_inst =
((Scan.lift (Args.name --| (Args.$$$ "\\<equiv>" || Args.$$$ "==")) >> SOME)
-- Args.local_term) >> SOME ||
inst >> Option.map (pair NONE);
val free = Scan.state -- Args.local_term >> (fn (_, Free v) => v | (ctxt, t) =>
error ("Bad free variable: " ^ ProofContext.string_of_term ctxt t));
fun unless_more_args scan = Scan.unless (Scan.lift
((Args.$$$ freshN || Args.$$$ fixingN || Args.$$$ ruleN) -- Args.colon)) scan;
val def_insts = Scan.repeat (unless_more_args def_inst);
val fresh = Scan.optional (Scan.lift (Args.$$$ freshN -- Args.colon) |--
Scan.repeat (unless_more_args free)) [];
val fixing = Scan.optional (Scan.lift (Args.$$$ fixingN -- Args.colon) |--
Args.and_list1 (Scan.repeat (unless_more_args free))) [];
val rule_spec = Scan.lift (Args.$$$ "rule" -- Args.colon) |-- Attrib.local_thm;
in
fun nominal_induct_method src =
Method.syntax (def_insts -- fresh -- fixing -- rule_spec) src
#> (fn (ctxt, (((x, y), z), w)) =>
Method.RAW_METHOD_CASES (fn facts =>
HEADGOAL (nominal_induct_tac ctxt x y z w facts)));
end;
end;