(* Title: ZF/ZF.thy
ID: $Id$
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory
Copyright 1993 University of Cambridge
Zermelo-Fraenkel Set Theory
*)
ZF = FOL + Let +
types
i
arities
i :: term
consts
"0" :: i ("0") (*the empty set*)
Pow :: i => i (*power sets*)
Inf :: i (*infinite set*)
(* Bounded Quantifiers *)
Ball, Bex :: [i, i => o] => o
(* General Union and Intersection *)
Union,Inter :: i => i
(* Variations on Replacement *)
PrimReplace :: [i, [i, i] => o] => i
Replace :: [i, [i, i] => o] => i
RepFun :: [i, i => i] => i
Collect :: [i, i => o] => i
(* Descriptions *)
The :: (i => o) => i (binder "THE " 10)
if :: [o, i, i] => i
(* Finite Sets *)
Upair, cons :: [i, i] => i
succ :: i => i
(* Ordered Pairing *)
Pair :: [i, i] => i
fst, snd :: i => i
split :: [[i, i] => 'a, i] => 'a::logic (*for pattern-matching*)
(* Sigma and Pi Operators *)
Sigma, Pi :: [i, i => i] => i
(* Relations and Functions *)
domain :: i => i
range :: i => i
field :: i => i
converse :: i => i
function :: i => o (*is a relation a function?*)
Lambda :: [i, i => i] => i
restrict :: [i, i] => i
(* Infixes in order of decreasing precedence *)
"``" :: [i, i] => i (infixl 90) (*image*)
"-``" :: [i, i] => i (infixl 90) (*inverse image*)
"`" :: [i, i] => i (infixl 90) (*function application*)
(*"*" :: [i, i] => i (infixr 80) (*Cartesian product*)*)
"Int" :: [i, i] => i (infixl 70) (*binary intersection*)
"Un" :: [i, i] => i (infixl 65) (*binary union*)
"-" :: [i, i] => i (infixl 65) (*set difference*)
(*"->" :: [i, i] => i (infixr 60) (*function space*)*)
"<=" :: [i, i] => o (infixl 50) (*subset relation*)
":" :: [i, i] => o (infixl 50) (*membership relation*)
(*"~:" :: [i, i] => o (infixl 50) (*negated membership relation*)*)
types
is
pttrns
syntax
"" :: i => is ("_")
"@Enum" :: [i, is] => is ("_,/ _")
"~:" :: [i, i] => o (infixl 50)
"@Finset" :: is => i ("{(_)}")
"@Tuple" :: [i, is] => i ("<(_,/ _)>")
"@Collect" :: [pttrn, i, o] => i ("(1{_: _ ./ _})")
"@Replace" :: [pttrn, pttrn, i, o] => i ("(1{_ ./ _: _, _})")
"@RepFun" :: [i, pttrn, i] => i ("(1{_ ./ _: _})" [51,0,51])
"@INTER" :: [pttrn, i, i] => i ("(3INT _:_./ _)" 10)
"@UNION" :: [pttrn, i, i] => i ("(3UN _:_./ _)" 10)
"@PROD" :: [pttrn, i, i] => i ("(3PROD _:_./ _)" 10)
"@SUM" :: [pttrn, i, i] => i ("(3SUM _:_./ _)" 10)
"->" :: [i, i] => i (infixr 60)
"*" :: [i, i] => i (infixr 80)
"@lam" :: [pttrn, i, i] => i ("(3lam _:_./ _)" 10)
"@Ball" :: [pttrn, i, o] => o ("(3ALL _:_./ _)" 10)
"@Bex" :: [pttrn, i, o] => o ("(3EX _:_./ _)" 10)
(** Patterns -- extends pre-defined type "pttrn" used in abstractions **)
"@pttrn" :: pttrns => pttrn ("<_>")
"" :: pttrn => pttrns ("_")
"@pttrns" :: [pttrn,pttrns] => pttrns ("_,/_")
translations
"x ~: y" == "~ (x : y)"
"{x, xs}" == "cons(x, {xs})"
"{x}" == "cons(x, 0)"
"{x:A. P}" == "Collect(A, %x. P)"
"{y. x:A, Q}" == "Replace(A, %x y. Q)"
"{b. x:A}" == "RepFun(A, %x. b)"
"INT x:A. B" == "Inter({B. x:A})"
"UN x:A. B" == "Union({B. x:A})"
"PROD x:A. B" => "Pi(A, %x. B)"
"SUM x:A. B" => "Sigma(A, %x. B)"
"A -> B" => "Pi(A, _K(B))"
"A * B" => "Sigma(A, _K(B))"
"lam x:A. f" == "Lambda(A, %x. f)"
"ALL x:A. P" == "Ball(A, %x. P)"
"EX x:A. P" == "Bex(A, %x. P)"
"<x, y, z>" == "<x, <y, z>>"
"<x, y>" == "Pair(x, y)"
"%<x,y,zs>.b" == "split(%x <y,zs>.b)"
"%<x,y>.b" == "split(%x y.b)"
defs
(* Bounded Quantifiers *)
Ball_def "Ball(A, P) == ALL x. x:A --> P(x)"
Bex_def "Bex(A, P) == EX x. x:A & P(x)"
subset_def "A <= B == ALL x:A. x:B"
succ_def "succ(i) == cons(i, i)"
rules
(* ZF axioms -- see Suppes p.238
Axioms for Union, Pow and Replace state existence only,
uniqueness is derivable using extensionality. *)
extension "A = B <-> A <= B & B <= A"
Union_iff "A : Union(C) <-> (EX B:C. A:B)"
Pow_iff "A : Pow(B) <-> A <= B"
(*We may name this set, though it is not uniquely defined.*)
infinity "0:Inf & (ALL y:Inf. succ(y): Inf)"
(*This formulation facilitates case analysis on A.*)
foundation "A=0 | (EX x:A. ALL y:x. y~:A)"
(*Schema axiom since predicate P is a higher-order variable*)
replacement "(ALL x:A. ALL y z. P(x,y) & P(x,z) --> y=z) ==>
b : PrimReplace(A,P) <-> (EX x:A. P(x,b))"
defs
(* Derived form of replacement, restricting P to its functional part.
The resulting set (for functional P) is the same as with
PrimReplace, but the rules are simpler. *)
Replace_def "Replace(A,P) == PrimReplace(A, %x y. (EX!z.P(x,z)) & P(x,y))"
(* Functional form of replacement -- analgous to ML's map functional *)
RepFun_def "RepFun(A,f) == {y . x:A, y=f(x)}"
(* Separation and Pairing can be derived from the Replacement
and Powerset Axioms using the following definitions. *)
Collect_def "Collect(A,P) == {y . x:A, x=y & P(x)}"
Inter_def "Inter(A) == { x:Union(A) . ALL y:A. x:y}"
(*Unordered pairs (Upair) express binary union/intersection and cons;
set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*)
Upair_def "Upair(a,b) == {y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}"
cons_def "cons(a,A) == Upair(a,a) Un A"
(* this "symmetric" definition works better than {{a}, {a,b}} *)
Pair_def "<a,b> == {{a,a}, {a,b}}"
fst_def "fst(p) == THE a. EX b. p=<a,b>"
snd_def "snd(p) == THE b. EX a. p=<a,b>"
split_def "split(c,p) == c(fst(p), snd(p))"
Sigma_def "Sigma(A,B) == UN x:A. UN y:B(x). {<x,y>}"
(* Operations on relations *)
(*converse of relation r, inverse of function*)
converse_def "converse(r) == {z. w:r, EX x y. w=<x,y> & z=<y,x>}"
domain_def "domain(r) == {x. w:r, EX y. w=<x,y>}"
range_def "range(r) == domain(converse(r))"
field_def "field(r) == domain(r) Un range(r)"
function_def "function(r) == ALL x y. <x,y>:r -->
(ALL y'. <x,y'>:r --> y=y')"
image_def "r `` A == {y : range(r) . EX x:A. <x,y> : r}"
vimage_def "r -`` A == converse(r)``A"
(* Abstraction, application and Cartesian product of a family of sets *)
lam_def "Lambda(A,b) == {<x,b(x)> . x:A}"
apply_def "f`a == THE y. <a,y> : f"
Pi_def "Pi(A,B) == {f: Pow(Sigma(A,B)). A<=domain(f) & function(f)}"
(* Restrict the function f to the domain A *)
restrict_def "restrict(f,A) == lam x:A.f`x"
end
ML
(* Pattern-matching and 'Dependent' type operators *)
val print_translation =
[(*("split", split_tr'),*)
("Pi", dependent_tr' ("@PROD", "op ->")),
("Sigma", dependent_tr' ("@SUM", "op *"))];