(* Title: Tools/induct.ML
ID: $Id$
Author: Markus Wenzel, TU Muenchen
Proof by cases and induction.
*)
signature INDUCT_DATA =
sig
val cases_default: thm
val atomize: thm list
val rulify: thm list
val rulify_fallback: thm list
end;
signature INDUCT =
sig
(*rule declarations*)
val vars_of: term -> term list
val dest_rules: Proof.context ->
{type_cases: (string * thm) list, pred_cases: (string * thm) list,
type_induct: (string * thm) list, pred_induct: (string * thm) list,
type_coinduct: (string * thm) list, pred_coinduct: (string * thm) list}
val print_rules: Proof.context -> unit
val lookup_casesT: Proof.context -> string -> thm option
val lookup_casesP: Proof.context -> string -> thm option
val lookup_inductT: Proof.context -> string -> thm option
val lookup_inductP: Proof.context -> string -> thm option
val lookup_coinductT: Proof.context -> string -> thm option
val lookup_coinductP: Proof.context -> string -> thm option
val find_casesT: Proof.context -> typ -> thm list
val find_casesP: Proof.context -> term -> thm list
val find_inductT: Proof.context -> typ -> thm list
val find_inductP: Proof.context -> term -> thm list
val find_coinductT: Proof.context -> typ -> thm list
val find_coinductP: Proof.context -> term -> thm list
val cases_type: string -> attribute
val cases_pred: string -> attribute
val induct_type: string -> attribute
val induct_pred: string -> attribute
val coinduct_type: string -> attribute
val coinduct_pred: string -> attribute
val casesN: string
val inductN: string
val coinductN: string
val typeN: string
val predN: string
val setN: string
(*proof methods*)
val fix_tac: Proof.context -> int -> (string * typ) list -> int -> tactic
val add_defs: (string option * term) option list -> Proof.context ->
(term option list * thm list) * Proof.context
val atomize_term: theory -> term -> term
val atomize_tac: int -> tactic
val inner_atomize_tac: int -> tactic
val rulified_term: thm -> theory * term
val rulify_tac: int -> tactic
val internalize: int -> thm -> thm
val guess_instance: thm -> int -> thm -> thm Seq.seq
val cases_tac: Proof.context -> bool -> term option list list -> thm option ->
thm list -> int -> cases_tactic
val induct_tac: Proof.context -> bool -> (string option * term) option list list ->
(string * typ) list list -> term option list -> thm list option -> thm list -> int ->
cases_tactic
val coinduct_tac: Proof.context -> bool -> term option list -> term option list ->
thm option -> thm list -> int -> cases_tactic
val setup: theory -> theory
end;
functor InductFun(Data: INDUCT_DATA): INDUCT =
struct
(** misc utils **)
(* encode_type -- for indexing purposes *)
fun encode_type (Type (c, Ts)) = Term.list_comb (Const (c, dummyT), map encode_type Ts)
| encode_type (TFree (a, _)) = Free (a, dummyT)
| encode_type (TVar (a, _)) = Var (a, dummyT);
(* variables -- ordered left-to-right, preferring right *)
fun vars_of tm =
rev (distinct (op =) (Term.fold_aterms (fn (t as Var _) => cons t | _ => I) tm []));
local
val mk_var = encode_type o #2 o Term.dest_Var;
fun concl_var which thm = mk_var (which (vars_of (Thm.concl_of thm))) handle Empty =>
raise THM ("No variables in conclusion of rule", 0, [thm]);
in
fun left_var_prem thm = mk_var (hd (vars_of (hd (Thm.prems_of thm)))) handle Empty =>
raise THM ("No variables in major premise of rule", 0, [thm]);
val left_var_concl = concl_var hd;
val right_var_concl = concl_var List.last;
end;
(** induct data **)
(* rules *)
type rules = (string * thm) NetRules.T;
val init_rules =
NetRules.init (fn ((s1: string, th1), (s2, th2)) => s1 = s2 andalso
Thm.eq_thm_prop (th1, th2));
fun lookup_rule (rs: rules) = AList.lookup (op =) (NetRules.rules rs);
fun pretty_rules ctxt kind rs =
let val thms = map snd (NetRules.rules rs)
in Pretty.big_list kind (map (ProofContext.pretty_thm ctxt) thms) end;
(* context data *)
structure Induct = GenericDataFun
(
type T = (rules * rules) * (rules * rules) * (rules * rules);
val empty =
((init_rules (left_var_prem o #2), init_rules (Thm.major_prem_of o #2)),
(init_rules (right_var_concl o #2), init_rules (Thm.major_prem_of o #2)),
(init_rules (left_var_concl o #2), init_rules (Thm.concl_of o #2)));
val extend = I;
fun merge _ (((casesT1, casesP1), (inductT1, inductP1), (coinductT1, coinductP1)),
((casesT2, casesP2), (inductT2, inductP2), (coinductT2, coinductP2))) =
((NetRules.merge (casesT1, casesT2), NetRules.merge (casesP1, casesP2)),
(NetRules.merge (inductT1, inductT2), NetRules.merge (inductP1, inductP2)),
(NetRules.merge (coinductT1, coinductT2), NetRules.merge (coinductP1, coinductP2)));
);
val get_local = Induct.get o Context.Proof;
fun dest_rules ctxt =
let val ((casesT, casesP), (inductT, inductP), (coinductT, coinductP)) = get_local ctxt in
{type_cases = NetRules.rules casesT,
pred_cases = NetRules.rules casesP,
type_induct = NetRules.rules inductT,
pred_induct = NetRules.rules inductP,
type_coinduct = NetRules.rules coinductT,
pred_coinduct = NetRules.rules coinductP}
end;
fun print_rules ctxt =
let val ((casesT, casesP), (inductT, inductP), (coinductT, coinductP)) = get_local ctxt in
[pretty_rules ctxt "coinduct type:" coinductT,
pretty_rules ctxt "coinduct pred:" coinductP,
pretty_rules ctxt "induct type:" inductT,
pretty_rules ctxt "induct pred:" inductP,
pretty_rules ctxt "cases type:" casesT,
pretty_rules ctxt "cases pred:" casesP]
|> Pretty.chunks |> Pretty.writeln
end;
val _ =
OuterSyntax.improper_command "print_induct_rules" "print induction and cases rules"
OuterKeyword.diag (Scan.succeed (Toplevel.no_timing o Toplevel.unknown_context o
Toplevel.keep (print_rules o Toplevel.context_of)));
(* access rules *)
val lookup_casesT = lookup_rule o #1 o #1 o get_local;
val lookup_casesP = lookup_rule o #2 o #1 o get_local;
val lookup_inductT = lookup_rule o #1 o #2 o get_local;
val lookup_inductP = lookup_rule o #2 o #2 o get_local;
val lookup_coinductT = lookup_rule o #1 o #3 o get_local;
val lookup_coinductP = lookup_rule o #2 o #3 o get_local;
fun find_rules which how ctxt x =
map snd (NetRules.retrieve (which (get_local ctxt)) (how x));
val find_casesT = find_rules (#1 o #1) encode_type;
val find_casesP = find_rules (#2 o #1) I;
val find_inductT = find_rules (#1 o #2) encode_type;
val find_inductP = find_rules (#2 o #2) I;
val find_coinductT = find_rules (#1 o #3) encode_type;
val find_coinductP = find_rules (#2 o #3) I;
(** attributes **)
local
fun mk_att f g name arg =
let val (x, thm) = g arg in (Induct.map (f (name, thm)) x, thm) end;
fun map1 f (x, y, z) = (f x, y, z);
fun map2 f (x, y, z) = (x, f y, z);
fun map3 f (x, y, z) = (x, y, f z);
fun add_casesT rule x = map1 (apfst (NetRules.insert rule)) x;
fun add_casesP rule x = map1 (apsnd (NetRules.insert rule)) x;
fun add_inductT rule x = map2 (apfst (NetRules.insert rule)) x;
fun add_inductP rule x = map2 (apsnd (NetRules.insert rule)) x;
fun add_coinductT rule x = map3 (apfst (NetRules.insert rule)) x;
fun add_coinductP rule x = map3 (apsnd (NetRules.insert rule)) x;
fun consumes0 x = RuleCases.consumes_default 0 x;
fun consumes1 x = RuleCases.consumes_default 1 x;
in
val cases_type = mk_att add_casesT consumes0;
val cases_pred = mk_att add_casesP consumes1;
val induct_type = mk_att add_inductT consumes0;
val induct_pred = mk_att add_inductP consumes1;
val coinduct_type = mk_att add_coinductT consumes0;
val coinduct_pred = mk_att add_coinductP consumes1;
end;
(** attribute syntax **)
val casesN = "cases";
val inductN = "induct";
val coinductN = "coinduct";
val typeN = "type";
val predN = "pred";
val setN = "set";
local
fun spec k arg =
Scan.lift (Args.$$$ k -- Args.colon) |-- arg ||
Scan.lift (Args.$$$ k) >> K "";
fun attrib add_type add_pred = Attrib.syntax
(spec typeN Args.tyname >> add_type ||
spec predN Args.const >> add_pred ||
spec setN Args.const >> add_pred);
val cases_att = attrib cases_type cases_pred;
val induct_att = attrib induct_type induct_pred;
val coinduct_att = attrib coinduct_type coinduct_pred;
in
val attrib_setup = Attrib.add_attributes
[(casesN, cases_att, "declaration of cases rule for type or predicate/set"),
(inductN, induct_att, "declaration of induction rule for type or predicate/set"),
(coinductN, coinduct_att, "declaration of coinduction rule for type or predicate/set")];
end;
(** method utils **)
(* alignment *)
fun align_left msg xs ys =
let val m = length xs and n = length ys
in if m < n then error msg else (Library.take (n, xs) ~~ ys) end;
fun align_right msg xs ys =
let val m = length xs and n = length ys
in if m < n then error msg else (Library.drop (m - n, xs) ~~ ys) end;
(* prep_inst *)
fun prep_inst thy align tune (tm, ts) =
let
val cert = Thm.cterm_of thy;
fun prep_var (x, SOME t) =
let
val cx = cert x;
val {T = xT, thy, ...} = Thm.rep_cterm cx;
val ct = cert (tune t);
in
if Type.could_unify (#T (Thm.rep_cterm ct), xT) then SOME (cx, ct)
else error (Pretty.string_of (Pretty.block
[Pretty.str "Ill-typed instantiation:", Pretty.fbrk,
Display.pretty_cterm ct, Pretty.str " ::", Pretty.brk 1,
Display.pretty_ctyp (#T (Thm.crep_cterm ct))]))
end
| prep_var (_, NONE) = NONE;
val xs = vars_of tm;
in
align "Rule has fewer variables than instantiations given" xs ts
|> map_filter prep_var
end;
(* trace_rules *)
fun trace_rules _ kind [] = error ("Unable to figure out " ^ kind ^ " rule")
| trace_rules ctxt _ rules = Method.trace ctxt rules;
(* make_cases *)
fun make_cases is_open rule =
RuleCases.make_common is_open (Thm.theory_of_thm rule, Thm.prop_of rule);
fun warn_open true =
legacy_feature ("Open rule cases in proof method" ^ Position.str_of (Position.thread_data ()))
| warn_open false = ();
(** cases method **)
(*
rule selection scheme:
cases - default case split
`A t` cases ... - predicate/set cases
cases t - type cases
... cases ... r - explicit rule
*)
local
fun get_casesT ctxt ((SOME t :: _) :: _) = find_casesT ctxt (Term.fastype_of t)
| get_casesT _ _ = [];
fun get_casesP ctxt (fact :: _) = find_casesP ctxt (Thm.concl_of fact)
| get_casesP _ _ = [];
in
fun cases_tac ctxt is_open insts opt_rule facts =
let
val _ = warn_open is_open;
val thy = ProofContext.theory_of ctxt;
val cert = Thm.cterm_of thy;
fun inst_rule r =
if null insts then `RuleCases.get r
else (align_left "Rule has fewer premises than arguments given" (Thm.prems_of r) insts
|> maps (prep_inst thy align_left I)
|> Drule.cterm_instantiate) r |> pair (RuleCases.get r);
val ruleq =
(case opt_rule of
SOME r => Seq.single (inst_rule r)
| NONE =>
(get_casesP ctxt facts @ get_casesT ctxt insts @ [Data.cases_default])
|> tap (trace_rules ctxt casesN)
|> Seq.of_list |> Seq.maps (Seq.try inst_rule));
in
fn i => fn st =>
ruleq
|> Seq.maps (RuleCases.consume [] facts)
|> Seq.maps (fn ((cases, (_, more_facts)), rule) =>
CASES (make_cases is_open rule cases)
(Method.insert_tac more_facts i THEN Tactic.rtac rule i) st)
end;
end;
(** induct method **)
val conjunction_congs = [@{thm Pure.all_conjunction}, @{thm imp_conjunction}];
(* atomize *)
fun atomize_term thy =
MetaSimplifier.rewrite_term thy Data.atomize []
#> ObjectLogic.drop_judgment thy;
val atomize_cterm = MetaSimplifier.rewrite true Data.atomize;
val atomize_tac = Simplifier.rewrite_goal_tac Data.atomize;
val inner_atomize_tac =
Simplifier.rewrite_goal_tac (map Thm.symmetric conjunction_congs) THEN' atomize_tac;
(* rulify *)
fun rulify_term thy =
MetaSimplifier.rewrite_term thy (Data.rulify @ conjunction_congs) [] #>
MetaSimplifier.rewrite_term thy Data.rulify_fallback [];
fun rulified_term thm =
let
val thy = Thm.theory_of_thm thm;
val rulify = rulify_term thy;
val (As, B) = Logic.strip_horn (Thm.prop_of thm);
in (thy, Logic.list_implies (map rulify As, rulify B)) end;
val rulify_tac =
Simplifier.rewrite_goal_tac (Data.rulify @ conjunction_congs) THEN'
Simplifier.rewrite_goal_tac Data.rulify_fallback THEN'
Goal.conjunction_tac THEN_ALL_NEW
(Simplifier.rewrite_goal_tac [@{thm Pure.conjunction_imp}] THEN' Goal.norm_hhf_tac);
(* prepare rule *)
fun rule_instance thy inst rule =
Drule.cterm_instantiate (prep_inst thy align_left I (Thm.prop_of rule, inst)) rule;
fun internalize k th =
th |> Thm.permute_prems 0 k
|> Conv.fconv_rule (Conv.concl_conv (Thm.nprems_of th - k) atomize_cterm);
(* guess rule instantiation -- cannot handle pending goal parameters *)
local
fun dest_env thy (env as Envir.Envir {iTs, ...}) =
let
val cert = Thm.cterm_of thy;
val certT = Thm.ctyp_of thy;
val pairs = Envir.alist_of env;
val ts = map (cert o Envir.norm_term env o #2 o #2) pairs;
val xs = map2 (curry (cert o Var)) (map #1 pairs) (map (#T o Thm.rep_cterm) ts);
in (map (fn (xi, (S, T)) => (certT (TVar (xi, S)), certT T)) (Vartab.dest iTs), xs ~~ ts) end;
in
fun guess_instance rule i st =
let
val {thy, maxidx, ...} = Thm.rep_thm st;
val goal = Thm.term_of (Thm.cprem_of st i); (*exception Subscript*)
val params = rev (rename_wrt_term goal (Logic.strip_params goal));
in
if not (null params) then
(warning ("Cannot determine rule instantiation due to pending parameter(s): " ^
commas_quote (map (Sign.string_of_term thy o Syntax.mark_boundT) params));
Seq.single rule)
else
let
val rule' = Thm.incr_indexes (maxidx + 1) rule;
val concl = Logic.strip_assums_concl goal;
in
Unify.smash_unifiers thy [(Thm.concl_of rule', concl)]
(Envir.empty (#maxidx (Thm.rep_thm rule')))
|> Seq.map (fn env => Drule.instantiate (dest_env thy env) rule')
end
end handle Subscript => Seq.empty;
end;
(* special renaming of rule parameters *)
fun special_rename_params ctxt [[SOME (Free (z, Type (T, _)))]] [thm] =
let
val x = ProofContext.revert_skolem ctxt z;
fun index i [] = []
| index i (y :: ys) =
if x = y then x ^ string_of_int i :: index (i + 1) ys
else y :: index i ys;
fun rename_params [] = []
| rename_params ((y, Type (U, _)) :: ys) =
(if U = T then x else y) :: rename_params ys
| rename_params ((y, _) :: ys) = y :: rename_params ys;
fun rename_asm A =
let
val xs = rename_params (Logic.strip_params A);
val xs' =
(case List.filter (equal x) xs of
[] => xs | [_] => xs | _ => index 1 xs);
in Logic.list_rename_params (xs', A) end;
fun rename_prop p =
let val (As, C) = Logic.strip_horn p
in Logic.list_implies (map rename_asm As, C) end;
val cp' = cterm_fun rename_prop (Thm.cprop_of thm);
val thm' = Thm.equal_elim (Thm.reflexive cp') thm;
in [RuleCases.save thm thm'] end
| special_rename_params _ _ ths = ths;
(* fix_tac *)
local
fun goal_prefix k ((c as Const ("all", _)) $ Abs (a, T, B)) = c $ Abs (a, T, goal_prefix k B)
| goal_prefix 0 _ = Term.dummy_pattern propT
| goal_prefix k ((c as Const ("==>", _)) $ A $ B) = c $ A $ goal_prefix (k - 1) B
| goal_prefix _ _ = Term.dummy_pattern propT;
fun goal_params k (Const ("all", _) $ Abs (_, _, B)) = goal_params k B + 1
| goal_params 0 _ = 0
| goal_params k (Const ("==>", _) $ _ $ B) = goal_params (k - 1) B
| goal_params _ _ = 0;
fun meta_spec_tac ctxt n (x, T) = SUBGOAL (fn (goal, i) =>
let
val thy = ProofContext.theory_of ctxt;
val cert = Thm.cterm_of thy;
val certT = Thm.ctyp_of thy;
val v = Free (x, T);
fun spec_rule prfx (xs, body) =
@{thm Pure.meta_spec}
|> Thm.rename_params_rule ([ProofContext.revert_skolem ctxt x], 1)
|> Thm.lift_rule (cert prfx)
|> `(Thm.prop_of #> Logic.strip_assums_concl)
|-> (fn pred $ arg =>
Drule.cterm_instantiate
[(cert (Term.head_of pred), cert (Logic.rlist_abs (xs, body))),
(cert (Term.head_of arg), cert (Logic.rlist_abs (xs, v)))]);
fun goal_concl k xs (Const ("all", _) $ Abs (a, T, B)) = goal_concl k ((a, T) :: xs) B
| goal_concl 0 xs B =
if not (Term.exists_subterm (fn t => t aconv v) B) then NONE
else SOME (xs, Term.absfree (x, T, Term.incr_boundvars 1 B))
| goal_concl k xs (Const ("==>", _) $ _ $ B) = goal_concl (k - 1) xs B
| goal_concl _ _ _ = NONE;
in
(case goal_concl n [] goal of
SOME concl =>
(compose_tac (false, spec_rule (goal_prefix n goal) concl, 1) THEN' rtac asm_rl) i
| NONE => all_tac)
end);
fun miniscope_tac p = CONVERSION o
Conv.forall_conv p (K (MetaSimplifier.rewrite true [Thm.symmetric Drule.norm_hhf_eq]));
in
fun fix_tac _ _ [] = K all_tac
| fix_tac ctxt n xs = SUBGOAL (fn (goal, i) =>
(EVERY' (map (meta_spec_tac ctxt n) xs) THEN'
(miniscope_tac (goal_params n goal) ctxt)) i);
end;
(* add_defs *)
fun add_defs def_insts =
let
fun add (SOME (SOME x, t)) ctxt =
let val ([(lhs, (_, th))], ctxt') = LocalDefs.add_defs [((x, NoSyn), (("", []), t))] ctxt
in ((SOME lhs, [th]), ctxt') end
| add (SOME (NONE, t)) ctxt = ((SOME t, []), ctxt)
| add NONE ctxt = ((NONE, []), ctxt);
in fold_map add def_insts #> apfst (split_list #> apsnd flat) end;
(* induct_tac *)
(*
rule selection scheme:
`A x` induct ... - predicate/set induction
induct x - type induction
... induct ... r - explicit rule
*)
local
fun get_inductT ctxt insts =
fold_rev multiply (insts |> map_filter (fn [] => NONE | ts => List.last ts)
|> map (find_inductT ctxt o Term.fastype_of)) [[]]
|> filter_out (forall PureThy.is_internal);
fun get_inductP ctxt (fact :: _) = map single (find_inductP ctxt (Thm.concl_of fact))
| get_inductP _ _ = [];
in
fun induct_tac ctxt is_open def_insts arbitrary taking opt_rule facts =
let
val _ = warn_open is_open;
val thy = ProofContext.theory_of ctxt;
val cert = Thm.cterm_of thy;
val ((insts, defs), defs_ctxt) = fold_map add_defs def_insts ctxt |>> split_list;
val atomized_defs = map (map (Conv.fconv_rule ObjectLogic.atomize)) defs;
fun inst_rule (concls, r) =
(if null insts then `RuleCases.get r
else (align_left "Rule has fewer conclusions than arguments given"
(map Logic.strip_imp_concl (Logic.dest_conjunctions (Thm.concl_of r))) insts
|> maps (prep_inst thy align_right (atomize_term thy))
|> Drule.cterm_instantiate) r |> pair (RuleCases.get r))
|> (fn ((cases, consumes), th) => (((cases, concls), consumes), th));
val ruleq =
(case opt_rule of
SOME rs => Seq.single (inst_rule (RuleCases.strict_mutual_rule ctxt rs))
| NONE =>
(get_inductP ctxt facts @
map (special_rename_params defs_ctxt insts) (get_inductT ctxt insts))
|> map_filter (RuleCases.mutual_rule ctxt)
|> tap (trace_rules ctxt inductN o map #2)
|> Seq.of_list |> Seq.maps (Seq.try inst_rule));
fun rule_cases rule =
RuleCases.make_nested is_open (Thm.prop_of rule) (rulified_term rule);
in
(fn i => fn st =>
ruleq
|> Seq.maps (RuleCases.consume (flat defs) facts)
|> Seq.maps (fn (((cases, concls), (more_consumes, more_facts)), rule) =>
(PRECISE_CONJUNCTS (length concls) (ALLGOALS (fn j =>
(CONJUNCTS (ALLGOALS
(Method.insert_tac (more_facts @ nth_list atomized_defs (j - 1))
THEN' fix_tac defs_ctxt
(nth concls (j - 1) + more_consumes)
(nth_list arbitrary (j - 1))))
THEN' inner_atomize_tac) j))
THEN' atomize_tac) i st |> Seq.maps (fn st' =>
guess_instance (internalize more_consumes rule) i st'
|> Seq.map (rule_instance thy (burrow_options (Variable.polymorphic ctxt) taking))
|> Seq.maps (fn rule' =>
CASES (rule_cases rule' cases)
(Tactic.rtac rule' i THEN
PRIMITIVE (singleton (ProofContext.export defs_ctxt ctxt))) st'))))
THEN_ALL_NEW_CASES rulify_tac
end;
end;
(** coinduct method **)
(*
rule selection scheme:
goal "A x" coinduct ... - predicate/set coinduction
coinduct x - type coinduction
coinduct ... r - explicit rule
*)
local
fun get_coinductT ctxt (SOME t :: _) = find_coinductT ctxt (Term.fastype_of t)
| get_coinductT _ _ = [];
fun get_coinductP ctxt goal = find_coinductP ctxt (Logic.strip_assums_concl goal);
fun main_prop_of th =
if RuleCases.get_consumes th > 0 then Thm.major_prem_of th else Thm.concl_of th;
in
fun coinduct_tac ctxt is_open inst taking opt_rule facts =
let
val _ = warn_open is_open;
val thy = ProofContext.theory_of ctxt;
val cert = Thm.cterm_of thy;
fun inst_rule r =
if null inst then `RuleCases.get r
else Drule.cterm_instantiate (prep_inst thy align_right I (main_prop_of r, inst)) r
|> pair (RuleCases.get r);
fun ruleq goal =
(case opt_rule of
SOME r => Seq.single (inst_rule r)
| NONE =>
(get_coinductP ctxt goal @ get_coinductT ctxt inst)
|> tap (trace_rules ctxt coinductN)
|> Seq.of_list |> Seq.maps (Seq.try inst_rule));
in
SUBGOAL_CASES (fn (goal, i) => fn st =>
ruleq goal
|> Seq.maps (RuleCases.consume [] facts)
|> Seq.maps (fn ((cases, (_, more_facts)), rule) =>
guess_instance rule i st
|> Seq.map (rule_instance thy (burrow_options (Variable.polymorphic ctxt) taking))
|> Seq.maps (fn rule' =>
CASES (make_cases is_open rule' cases)
(Method.insert_tac more_facts i THEN Tactic.rtac rule' i) st)))
end;
end;
(** concrete syntax **)
val openN = "open";
val arbitraryN = "arbitrary";
val takingN = "taking";
val ruleN = "rule";
local
fun single_rule [rule] = rule
| single_rule _ = error "Single rule expected";
fun named_rule k arg get =
Scan.lift (Args.$$$ k -- Args.colon) |-- Scan.repeat arg :|--
(fn names => Scan.peek (fn context => Scan.succeed (names |> map (fn name =>
(case get (Context.proof_of context) name of SOME x => x
| NONE => error ("No rule for " ^ k ^ " " ^ quote name))))));
fun rule get_type get_pred =
named_rule typeN Args.tyname get_type ||
named_rule predN Args.const get_pred ||
named_rule setN Args.const get_pred ||
Scan.lift (Args.$$$ ruleN -- Args.colon) |-- Attrib.thms;
val cases_rule = rule lookup_casesT lookup_casesP >> single_rule;
val induct_rule = rule lookup_inductT lookup_inductP;
val coinduct_rule = rule lookup_coinductT lookup_coinductP >> single_rule;
val inst = Scan.lift (Args.$$$ "_") >> K NONE || Args.term >> SOME;
val def_inst =
((Scan.lift (Args.name --| (Args.$$$ "\<equiv>" || Args.$$$ "==")) >> SOME)
-- Args.term) >> SOME ||
inst >> Option.map (pair NONE);
val free = Scan.state -- Args.term >> (fn (_, Free v) => v | (context, t) =>
error ("Bad free variable: " ^ Syntax.string_of_term (Context.proof_of context) t));
fun unless_more_args scan = Scan.unless (Scan.lift
((Args.$$$ arbitraryN || Args.$$$ takingN || Args.$$$ typeN ||
Args.$$$ predN || Args.$$$ setN || Args.$$$ ruleN) -- Args.colon)) scan;
val arbitrary = Scan.optional (Scan.lift (Args.$$$ arbitraryN -- Args.colon) |--
Args.and_list1 (Scan.repeat (unless_more_args free))) [];
val taking = Scan.optional (Scan.lift (Args.$$$ takingN -- Args.colon) |--
Scan.repeat1 (unless_more_args inst)) [];
in
fun cases_meth src =
Method.syntax (Args.mode openN --
(Args.and_list (Scan.repeat (unless_more_args inst)) -- Scan.option cases_rule)) src
#> (fn ((is_open, (insts, opt_rule)), ctxt) =>
Method.METHOD_CASES (fn facts =>
Seq.DETERM (HEADGOAL (cases_tac ctxt is_open insts opt_rule facts))));
fun induct_meth src =
Method.syntax (Args.mode openN --
(Args.and_list (Scan.repeat (unless_more_args def_inst)) --
(arbitrary -- taking -- Scan.option induct_rule))) src
#> (fn ((is_open, (insts, ((arbitrary, taking), opt_rule))), ctxt) =>
Method.RAW_METHOD_CASES (fn facts =>
Seq.DETERM (HEADGOAL (induct_tac ctxt is_open insts arbitrary taking opt_rule facts))));
fun coinduct_meth src =
Method.syntax (Args.mode openN --
(Scan.repeat (unless_more_args inst) -- taking -- Scan.option coinduct_rule)) src
#> (fn ((is_open, ((insts, taking), opt_rule)), ctxt) =>
Method.RAW_METHOD_CASES (fn facts =>
Seq.DETERM (HEADGOAL (coinduct_tac ctxt is_open insts taking opt_rule facts))));
end;
(** theory setup **)
val setup =
attrib_setup #>
Method.add_methods
[(casesN, cases_meth, "case analysis on types or predicates/sets"),
(inductN, induct_meth, "induction on types or predicates/sets"),
(coinductN, coinduct_meth, "coinduction on types or predicates/sets")];
end;