src/ZF/Constructible/Rec_Separation.thy
author paulson
Thu, 18 Jul 2002 10:37:55 +0200
changeset 13387 b7464ca2ebbb
parent 13386 f3e9e8b21aba
child 13395 4eb948d1eb4e
permissions -rw-r--r--
new theorems to support Constructible proofs

header{*Separation for Facts About Recursion*}

theory Rec_Separation = Separation + Datatype_absolute:

text{*This theory proves all instances needed for locales @{text
"M_trancl"}, @{text "M_wfrank"} and @{text "M_datatypes"}*}

lemma eq_succ_imp_lt: "[|i = succ(j); Ord(i)|] ==> j<i"
by simp 

subsection{*The Locale @{text "M_trancl"}*}

subsubsection{*Separation for Reflexive/Transitive Closure*}

text{*First, The Defining Formula*}

(* "rtran_closure_mem(M,A,r,p) ==
      \<exists>nnat[M]. \<exists>n[M]. \<exists>n'[M]. 
       omega(M,nnat) & n\<in>nnat & successor(M,n,n') &
       (\<exists>f[M]. typed_function(M,n',A,f) &
	(\<exists>x[M]. \<exists>y[M]. \<exists>zero[M]. pair(M,x,y,p) & empty(M,zero) &
	  fun_apply(M,f,zero,x) & fun_apply(M,f,n,y)) &
	(\<forall>j[M]. j\<in>n --> 
	  (\<exists>fj[M]. \<exists>sj[M]. \<exists>fsj[M]. \<exists>ffp[M]. 
	    fun_apply(M,f,j,fj) & successor(M,j,sj) &
	    fun_apply(M,f,sj,fsj) & pair(M,fj,fsj,ffp) & ffp \<in> r)))"*)
constdefs rtran_closure_mem_fm :: "[i,i,i]=>i"
 "rtran_closure_mem_fm(A,r,p) == 
   Exists(Exists(Exists(
    And(omega_fm(2),
     And(Member(1,2),
      And(succ_fm(1,0),
       Exists(And(typed_function_fm(1, A#+4, 0),
	And(Exists(Exists(Exists(
	      And(pair_fm(2,1,p#+7), 
	       And(empty_fm(0),
		And(fun_apply_fm(3,0,2), fun_apply_fm(3,5,1))))))),
	    Forall(Implies(Member(0,3),
	     Exists(Exists(Exists(Exists(
	      And(fun_apply_fm(5,4,3),
	       And(succ_fm(4,2),
		And(fun_apply_fm(5,2,1),
		 And(pair_fm(3,1,0), Member(0,r#+9))))))))))))))))))))"


lemma rtran_closure_mem_type [TC]:
 "[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> rtran_closure_mem_fm(x,y,z) \<in> formula"
by (simp add: rtran_closure_mem_fm_def) 

lemma arity_rtran_closure_mem_fm [simp]:
     "[| x \<in> nat; y \<in> nat; z \<in> nat |] 
      ==> arity(rtran_closure_mem_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
by (simp add: rtran_closure_mem_fm_def succ_Un_distrib [symmetric] Un_ac) 

lemma sats_rtran_closure_mem_fm [simp]:
   "[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
    ==> sats(A, rtran_closure_mem_fm(x,y,z), env) <-> 
        rtran_closure_mem(**A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: rtran_closure_mem_fm_def rtran_closure_mem_def)

lemma rtran_closure_mem_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
          i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
       ==> rtran_closure_mem(**A, x, y, z) <-> sats(A, rtran_closure_mem_fm(i,j,k), env)"
by (simp add: sats_rtran_closure_mem_fm)

theorem rtran_closure_mem_reflection:
     "REFLECTS[\<lambda>x. rtran_closure_mem(L,f(x),g(x),h(x)), 
               \<lambda>i x. rtran_closure_mem(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: rtran_closure_mem_def setclass_simps)
apply (intro FOL_reflections function_reflections fun_plus_reflections)  
done

text{*Separation for @{term "rtrancl(r)"}.*}
lemma rtrancl_separation:
     "[| L(r); L(A) |] ==> separation (L, rtran_closure_mem(L,A,r))"
apply (rule separation_CollectI) 
apply (rule_tac A="{r,A,z}" in subset_LsetE, blast ) 
apply (rule ReflectsE [OF rtran_closure_mem_reflection], assumption)
apply (drule subset_Lset_ltD, assumption) 
apply (erule reflection_imp_L_separation)
  apply (simp_all add: lt_Ord2)
apply (rule DPow_LsetI)
apply (rename_tac u)
apply (rule_tac env = "[u,r,A]" in rtran_closure_mem_iff_sats)
apply (rule sep_rules | simp)+
done


subsubsection{*Reflexive/Transitive Closure, Internalized*}

(*  "rtran_closure(M,r,s) == 
        \<forall>A[M]. is_field(M,r,A) -->
 	 (\<forall>p[M]. p \<in> s <-> rtran_closure_mem(M,A,r,p))" *)
constdefs rtran_closure_fm :: "[i,i]=>i"
 "rtran_closure_fm(r,s) == 
   Forall(Implies(field_fm(succ(r),0),
                  Forall(Iff(Member(0,succ(succ(s))),
                             rtran_closure_mem_fm(1,succ(succ(r)),0)))))"

lemma rtran_closure_type [TC]:
     "[| x \<in> nat; y \<in> nat |] ==> rtran_closure_fm(x,y) \<in> formula"
by (simp add: rtran_closure_fm_def) 

lemma arity_rtran_closure_fm [simp]:
     "[| x \<in> nat; y \<in> nat |] 
      ==> arity(rtran_closure_fm(x,y)) = succ(x) \<union> succ(y)"
by (simp add: rtran_closure_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_rtran_closure_fm [simp]:
   "[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
    ==> sats(A, rtran_closure_fm(x,y), env) <-> 
        rtran_closure(**A, nth(x,env), nth(y,env))"
by (simp add: rtran_closure_fm_def rtran_closure_def)

lemma rtran_closure_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; 
          i \<in> nat; j \<in> nat; env \<in> list(A)|]
       ==> rtran_closure(**A, x, y) <-> sats(A, rtran_closure_fm(i,j), env)"
by simp

theorem rtran_closure_reflection:
     "REFLECTS[\<lambda>x. rtran_closure(L,f(x),g(x)), 
               \<lambda>i x. rtran_closure(**Lset(i),f(x),g(x))]"
apply (simp only: rtran_closure_def setclass_simps)
apply (intro FOL_reflections function_reflections rtran_closure_mem_reflection)
done


subsubsection{*Transitive Closure of a Relation, Internalized*}

(*  "tran_closure(M,r,t) ==
         \<exists>s[M]. rtran_closure(M,r,s) & composition(M,r,s,t)" *)
constdefs tran_closure_fm :: "[i,i]=>i"
 "tran_closure_fm(r,s) == 
   Exists(And(rtran_closure_fm(succ(r),0), composition_fm(succ(r),0,succ(s))))"

lemma tran_closure_type [TC]:
     "[| x \<in> nat; y \<in> nat |] ==> tran_closure_fm(x,y) \<in> formula"
by (simp add: tran_closure_fm_def) 

lemma arity_tran_closure_fm [simp]:
     "[| x \<in> nat; y \<in> nat |] 
      ==> arity(tran_closure_fm(x,y)) = succ(x) \<union> succ(y)"
by (simp add: tran_closure_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_tran_closure_fm [simp]:
   "[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
    ==> sats(A, tran_closure_fm(x,y), env) <-> 
        tran_closure(**A, nth(x,env), nth(y,env))"
by (simp add: tran_closure_fm_def tran_closure_def)

lemma tran_closure_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; 
          i \<in> nat; j \<in> nat; env \<in> list(A)|]
       ==> tran_closure(**A, x, y) <-> sats(A, tran_closure_fm(i,j), env)"
by simp

theorem tran_closure_reflection:
     "REFLECTS[\<lambda>x. tran_closure(L,f(x),g(x)), 
               \<lambda>i x. tran_closure(**Lset(i),f(x),g(x))]"
apply (simp only: tran_closure_def setclass_simps)
apply (intro FOL_reflections function_reflections 
             rtran_closure_reflection composition_reflection)
done


subsection{*Separation for the Proof of @{text "wellfounded_on_trancl"}*}

lemma wellfounded_trancl_reflects:
  "REFLECTS[\<lambda>x. \<exists>w[L]. \<exists>wx[L]. \<exists>rp[L]. 
	         w \<in> Z & pair(L,w,x,wx) & tran_closure(L,r,rp) & wx \<in> rp,
   \<lambda>i x. \<exists>w \<in> Lset(i). \<exists>wx \<in> Lset(i). \<exists>rp \<in> Lset(i). 
       w \<in> Z & pair(**Lset(i),w,x,wx) & tran_closure(**Lset(i),r,rp) &
       wx \<in> rp]"
by (intro FOL_reflections function_reflections fun_plus_reflections 
          tran_closure_reflection)


lemma wellfounded_trancl_separation:
	 "[| L(r); L(Z) |] ==> 
	  separation (L, \<lambda>x. 
	      \<exists>w[L]. \<exists>wx[L]. \<exists>rp[L]. 
	       w \<in> Z & pair(L,w,x,wx) & tran_closure(L,r,rp) & wx \<in> rp)"
apply (rule separation_CollectI) 
apply (rule_tac A="{r,Z,z}" in subset_LsetE, blast ) 
apply (rule ReflectsE [OF wellfounded_trancl_reflects], assumption)
apply (drule subset_Lset_ltD, assumption) 
apply (erule reflection_imp_L_separation)
  apply (simp_all add: lt_Ord2)
apply (rule DPow_LsetI)
apply (rename_tac u) 
apply (rule bex_iff_sats conj_iff_sats)+
apply (rule_tac env = "[w,u,r,Z]" in mem_iff_sats) 
apply (rule sep_rules tran_closure_iff_sats | simp)+
done


subsubsection{*Instantiating the locale @{text M_trancl}*}
ML
{*
val rtrancl_separation = thm "rtrancl_separation";
val wellfounded_trancl_separation = thm "wellfounded_trancl_separation";


val m_trancl = [rtrancl_separation, wellfounded_trancl_separation];

fun trancl_L th =
    kill_flex_triv_prems (m_trancl MRS (axioms_L th));

bind_thm ("iterates_abs", trancl_L (thm "M_trancl.iterates_abs"));
bind_thm ("rtran_closure_rtrancl", trancl_L (thm "M_trancl.rtran_closure_rtrancl"));
bind_thm ("rtrancl_closed", trancl_L (thm "M_trancl.rtrancl_closed"));
bind_thm ("rtrancl_abs", trancl_L (thm "M_trancl.rtrancl_abs"));
bind_thm ("trancl_closed", trancl_L (thm "M_trancl.trancl_closed"));
bind_thm ("trancl_abs", trancl_L (thm "M_trancl.trancl_abs"));
bind_thm ("wellfounded_on_trancl", trancl_L (thm "M_trancl.wellfounded_on_trancl"));
bind_thm ("wellfounded_trancl", trancl_L (thm "M_trancl.wellfounded_trancl"));
bind_thm ("wfrec_relativize", trancl_L (thm "M_trancl.wfrec_relativize"));
bind_thm ("trans_wfrec_relativize", trancl_L (thm "M_trancl.trans_wfrec_relativize"));
bind_thm ("trans_wfrec_abs", trancl_L (thm "M_trancl.trans_wfrec_abs"));
bind_thm ("trans_eq_pair_wfrec_iff", trancl_L (thm "M_trancl.trans_eq_pair_wfrec_iff"));
bind_thm ("eq_pair_wfrec_iff", trancl_L (thm "M_trancl.eq_pair_wfrec_iff"));
*}

declare rtrancl_closed [intro,simp]
declare rtrancl_abs [simp]
declare trancl_closed [intro,simp]
declare trancl_abs [simp]


subsection{*Well-Founded Recursion!*}

(* M_is_recfun :: "[i=>o, [i,i,i]=>o, i, i, i] => o"
   "M_is_recfun(M,MH,r,a,f) == 
     \<forall>z[M]. z \<in> f <-> 
            5      4       3       2       1           0
            (\<exists>x[M]. \<exists>y[M]. \<exists>xa[M]. \<exists>sx[M]. \<exists>r_sx[M]. \<exists>f_r_sx[M]. 
	       pair(M,x,y,z) & pair(M,x,a,xa) & upair(M,x,x,sx) &
               pre_image(M,r,sx,r_sx) & restriction(M,f,r_sx,f_r_sx) &
               xa \<in> r & MH(x, f_r_sx, y))"
*)

constdefs is_recfun_fm :: "[[i,i,i]=>i, i, i, i]=>i"
 "is_recfun_fm(p,r,a,f) == 
   Forall(Iff(Member(0,succ(f)),
    Exists(Exists(Exists(Exists(Exists(Exists(
     And(pair_fm(5,4,6),
      And(pair_fm(5,a#+7,3),
       And(upair_fm(5,5,2),
        And(pre_image_fm(r#+7,2,1),
         And(restriction_fm(f#+7,1,0),
          And(Member(3,r#+7), p(5,0,4)))))))))))))))"


lemma is_recfun_type_0:
     "[| !!x y z. [| x \<in> nat; y \<in> nat; z \<in> nat |] ==> p(x,y,z) \<in> formula;  
         x \<in> nat; y \<in> nat; z \<in> nat |] 
      ==> is_recfun_fm(p,x,y,z) \<in> formula"
apply (unfold is_recfun_fm_def)
(*FIXME: FIND OUT why simp loops!*)
apply typecheck
by simp 

lemma is_recfun_type [TC]:
     "[| p(5,0,4) \<in> formula;  
         x \<in> nat; y \<in> nat; z \<in> nat |] 
      ==> is_recfun_fm(p,x,y,z) \<in> formula"
by (simp add: is_recfun_fm_def) 

lemma arity_is_recfun_fm [simp]:
     "[| arity(p(5,0,4)) le 8; x \<in> nat; y \<in> nat; z \<in> nat |] 
      ==> arity(is_recfun_fm(p,x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
apply (frule lt_nat_in_nat, simp) 
apply (simp add: is_recfun_fm_def succ_Un_distrib [symmetric] ) 
apply (subst subset_Un_iff2 [of "arity(p(5,0,4))", THEN iffD1]) 
apply (rule le_imp_subset) 
apply (erule le_trans, simp) 
apply (simp add: succ_Un_distrib [symmetric] Un_ac) 
done

lemma sats_is_recfun_fm:
  assumes MH_iff_sats: 
      "!!x y z env. 
	 [| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
	 ==> MH(nth(x,env), nth(y,env), nth(z,env)) <-> sats(A, p(x,y,z), env)"
  shows 
      "[|x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
       ==> sats(A, is_recfun_fm(p,x,y,z), env) <-> 
           M_is_recfun(**A, MH, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: is_recfun_fm_def M_is_recfun_def MH_iff_sats [THEN iff_sym])

lemma is_recfun_iff_sats:
  "[| (!!x y z env. [| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
                    ==> MH(nth(x,env), nth(y,env), nth(z,env)) <->
                        sats(A, p(x,y,z), env));
      nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
      i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
   ==> M_is_recfun(**A, MH, x, y, z) <-> sats(A, is_recfun_fm(p,i,j,k), env)" 
by (simp add: sats_is_recfun_fm [of A MH])

theorem is_recfun_reflection:
  assumes MH_reflection:
    "!!f g h. REFLECTS[\<lambda>x. MH(L, f(x), g(x), h(x)), 
                     \<lambda>i x. MH(**Lset(i), f(x), g(x), h(x))]"
  shows "REFLECTS[\<lambda>x. M_is_recfun(L, MH(L), f(x), g(x), h(x)), 
               \<lambda>i x. M_is_recfun(**Lset(i), MH(**Lset(i)), f(x), g(x), h(x))]"
apply (simp (no_asm_use) only: M_is_recfun_def setclass_simps)
apply (intro FOL_reflections function_reflections 
             restriction_reflection MH_reflection)  
done

text{*Currently, @{text sats}-theorems for higher-order operators don't seem
useful.  Reflection theorems do work, though.  This one avoids the repetition
of the @{text MH}-term.*}
theorem is_wfrec_reflection:
  assumes MH_reflection:
    "!!f g h. REFLECTS[\<lambda>x. MH(L, f(x), g(x), h(x)), 
                     \<lambda>i x. MH(**Lset(i), f(x), g(x), h(x))]"
  shows "REFLECTS[\<lambda>x. is_wfrec(L, MH(L), f(x), g(x), h(x)), 
               \<lambda>i x. is_wfrec(**Lset(i), MH(**Lset(i)), f(x), g(x), h(x))]"
apply (simp (no_asm_use) only: is_wfrec_def setclass_simps)
apply (intro FOL_reflections MH_reflection is_recfun_reflection)  
done

subsection{*The Locale @{text "M_wfrank"}*}

subsubsection{*Separation for @{term "wfrank"}*}

lemma wfrank_Reflects:
 "REFLECTS[\<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) -->
              ~ (\<exists>f[L]. M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f)),
      \<lambda>i x. \<forall>rplus \<in> Lset(i). tran_closure(**Lset(i),r,rplus) -->
         ~ (\<exists>f \<in> Lset(i). 
            M_is_recfun(**Lset(i), %x f y. is_range(**Lset(i),f,y), 
                        rplus, x, f))]"
by (intro FOL_reflections function_reflections is_recfun_reflection tran_closure_reflection)  

lemma wfrank_separation:
     "L(r) ==>
      separation (L, \<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) -->
         ~ (\<exists>f[L]. M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f)))"
apply (rule separation_CollectI) 
apply (rule_tac A="{r,z}" in subset_LsetE, blast ) 
apply (rule ReflectsE [OF wfrank_Reflects], assumption)
apply (drule subset_Lset_ltD, assumption) 
apply (erule reflection_imp_L_separation)
  apply (simp_all add: lt_Ord2, clarify)
apply (rule DPow_LsetI)
apply (rename_tac u)  
apply (rule ball_iff_sats imp_iff_sats)+
apply (rule_tac env="[rplus,u,r]" in tran_closure_iff_sats)
apply (rule sep_rules is_recfun_iff_sats | simp)+
done


subsubsection{*Replacement for @{term "wfrank"}*}

lemma wfrank_replacement_Reflects:
 "REFLECTS[\<lambda>z. \<exists>x[L]. x \<in> A & 
        (\<forall>rplus[L]. tran_closure(L,r,rplus) -->
         (\<exists>y[L]. \<exists>f[L]. pair(L,x,y,z)  & 
                        M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f) &
                        is_range(L,f,y))),
 \<lambda>i z. \<exists>x \<in> Lset(i). x \<in> A & 
      (\<forall>rplus \<in> Lset(i). tran_closure(**Lset(i),r,rplus) -->
       (\<exists>y \<in> Lset(i). \<exists>f \<in> Lset(i). pair(**Lset(i),x,y,z)  & 
         M_is_recfun(**Lset(i), %x f y. is_range(**Lset(i),f,y), rplus, x, f) &
         is_range(**Lset(i),f,y)))]"
by (intro FOL_reflections function_reflections fun_plus_reflections
             is_recfun_reflection tran_closure_reflection)


lemma wfrank_strong_replacement:
     "L(r) ==>
      strong_replacement(L, \<lambda>x z. 
         \<forall>rplus[L]. tran_closure(L,r,rplus) -->
         (\<exists>y[L]. \<exists>f[L]. pair(L,x,y,z)  & 
                        M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f) &
                        is_range(L,f,y)))"
apply (rule strong_replacementI) 
apply (rule rallI)
apply (rename_tac B)  
apply (rule separation_CollectI) 
apply (rule_tac A="{B,r,z}" in subset_LsetE, blast ) 
apply (rule ReflectsE [OF wfrank_replacement_Reflects], assumption)
apply (drule subset_Lset_ltD, assumption) 
apply (erule reflection_imp_L_separation)
  apply (simp_all add: lt_Ord2)
apply (rule DPow_LsetI)
apply (rename_tac u) 
apply (rule bex_iff_sats ball_iff_sats conj_iff_sats)+
apply (rule_tac env = "[x,u,B,r]" in mem_iff_sats) 
apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+
done


subsubsection{*Separation for Proving @{text Ord_wfrank_range}*}

lemma Ord_wfrank_Reflects:
 "REFLECTS[\<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) --> 
          ~ (\<forall>f[L]. \<forall>rangef[L]. 
             is_range(L,f,rangef) -->
             M_is_recfun(L, \<lambda>x f y. is_range(L,f,y), rplus, x, f) -->
             ordinal(L,rangef)),
      \<lambda>i x. \<forall>rplus \<in> Lset(i). tran_closure(**Lset(i),r,rplus) --> 
          ~ (\<forall>f \<in> Lset(i). \<forall>rangef \<in> Lset(i). 
             is_range(**Lset(i),f,rangef) -->
             M_is_recfun(**Lset(i), \<lambda>x f y. is_range(**Lset(i),f,y), 
                         rplus, x, f) -->
             ordinal(**Lset(i),rangef))]"
by (intro FOL_reflections function_reflections is_recfun_reflection 
          tran_closure_reflection ordinal_reflection)

lemma  Ord_wfrank_separation:
     "L(r) ==>
      separation (L, \<lambda>x.
         \<forall>rplus[L]. tran_closure(L,r,rplus) --> 
          ~ (\<forall>f[L]. \<forall>rangef[L]. 
             is_range(L,f,rangef) -->
             M_is_recfun(L, \<lambda>x f y. is_range(L,f,y), rplus, x, f) -->
             ordinal(L,rangef)))" 
apply (rule separation_CollectI) 
apply (rule_tac A="{r,z}" in subset_LsetE, blast ) 
apply (rule ReflectsE [OF Ord_wfrank_Reflects], assumption)
apply (drule subset_Lset_ltD, assumption) 
apply (erule reflection_imp_L_separation)
  apply (simp_all add: lt_Ord2, clarify)
apply (rule DPow_LsetI)
apply (rename_tac u)  
apply (rule ball_iff_sats imp_iff_sats)+
apply (rule_tac env="[rplus,u,r]" in tran_closure_iff_sats)
apply (rule sep_rules is_recfun_iff_sats | simp)+
done


subsubsection{*Instantiating the locale @{text M_wfrank}*}
ML
{*
val wfrank_separation = thm "wfrank_separation";
val wfrank_strong_replacement = thm "wfrank_strong_replacement";
val Ord_wfrank_separation = thm "Ord_wfrank_separation";

val m_wfrank = 
    [wfrank_separation, wfrank_strong_replacement, Ord_wfrank_separation];

fun wfrank_L th =
    kill_flex_triv_prems (m_wfrank MRS (trancl_L th));



bind_thm ("iterates_closed", wfrank_L (thm "M_wfrank.iterates_closed"));
bind_thm ("exists_wfrank", wfrank_L (thm "M_wfrank.exists_wfrank"));
bind_thm ("M_wellfoundedrank", wfrank_L (thm "M_wfrank.M_wellfoundedrank"));
bind_thm ("Ord_wfrank_range", wfrank_L (thm "M_wfrank.Ord_wfrank_range"));
bind_thm ("Ord_range_wellfoundedrank", wfrank_L (thm "M_wfrank.Ord_range_wellfoundedrank"));
bind_thm ("function_wellfoundedrank", wfrank_L (thm "M_wfrank.function_wellfoundedrank"));
bind_thm ("domain_wellfoundedrank", wfrank_L (thm "M_wfrank.domain_wellfoundedrank"));
bind_thm ("wellfoundedrank_type", wfrank_L (thm "M_wfrank.wellfoundedrank_type"));
bind_thm ("Ord_wellfoundedrank", wfrank_L (thm "M_wfrank.Ord_wellfoundedrank"));
bind_thm ("wellfoundedrank_eq", wfrank_L (thm "M_wfrank.wellfoundedrank_eq"));
bind_thm ("wellfoundedrank_lt", wfrank_L (thm "M_wfrank.wellfoundedrank_lt"));
bind_thm ("wellfounded_imp_subset_rvimage", wfrank_L (thm "M_wfrank.wellfounded_imp_subset_rvimage"));
bind_thm ("wellfounded_imp_wf", wfrank_L (thm "M_wfrank.wellfounded_imp_wf"));
bind_thm ("wellfounded_on_imp_wf_on", wfrank_L (thm "M_wfrank.wellfounded_on_imp_wf_on"));
bind_thm ("wf_abs", wfrank_L (thm "M_wfrank.wf_abs"));
bind_thm ("wf_on_abs", wfrank_L (thm "M_wfrank.wf_on_abs"));
bind_thm ("wfrec_replacement_iff", wfrank_L (thm "M_wfrank.wfrec_replacement_iff"));
bind_thm ("trans_wfrec_closed", wfrank_L (thm "M_wfrank.trans_wfrec_closed"));
bind_thm ("wfrec_closed", wfrank_L (thm "M_wfrank.wfrec_closed"));
*}

declare iterates_closed [intro,simp]
declare Ord_wfrank_range [rule_format]
declare wf_abs [simp]
declare wf_on_abs [simp]


subsection{*For Datatypes*}

subsubsection{*Binary Products, Internalized*}

constdefs cartprod_fm :: "[i,i,i]=>i"
(* "cartprod(M,A,B,z) == 
	\<forall>u[M]. u \<in> z <-> (\<exists>x[M]. x\<in>A & (\<exists>y[M]. y\<in>B & pair(M,x,y,u)))" *)
    "cartprod_fm(A,B,z) == 
       Forall(Iff(Member(0,succ(z)),
                  Exists(And(Member(0,succ(succ(A))),
                         Exists(And(Member(0,succ(succ(succ(B)))),
                                    pair_fm(1,0,2)))))))"

lemma cartprod_type [TC]:
     "[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> cartprod_fm(x,y,z) \<in> formula"
by (simp add: cartprod_fm_def) 

lemma arity_cartprod_fm [simp]:
     "[| x \<in> nat; y \<in> nat; z \<in> nat |] 
      ==> arity(cartprod_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
by (simp add: cartprod_fm_def succ_Un_distrib [symmetric] Un_ac) 

lemma sats_cartprod_fm [simp]:
   "[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
    ==> sats(A, cartprod_fm(x,y,z), env) <-> 
        cartprod(**A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: cartprod_fm_def cartprod_def)

lemma cartprod_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
          i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
       ==> cartprod(**A, x, y, z) <-> sats(A, cartprod_fm(i,j,k), env)"
by (simp add: sats_cartprod_fm)

theorem cartprod_reflection:
     "REFLECTS[\<lambda>x. cartprod(L,f(x),g(x),h(x)), 
               \<lambda>i x. cartprod(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: cartprod_def setclass_simps)
apply (intro FOL_reflections pair_reflection)  
done


subsubsection{*Binary Sums, Internalized*}

(* "is_sum(M,A,B,Z) == 
       \<exists>A0[M]. \<exists>n1[M]. \<exists>s1[M]. \<exists>B1[M]. 
         3      2       1        0
       number1(M,n1) & cartprod(M,n1,A,A0) & upair(M,n1,n1,s1) &
       cartprod(M,s1,B,B1) & union(M,A0,B1,Z)"  *)
constdefs sum_fm :: "[i,i,i]=>i"
    "sum_fm(A,B,Z) == 
       Exists(Exists(Exists(Exists(
	And(number1_fm(2),
            And(cartprod_fm(2,A#+4,3),
                And(upair_fm(2,2,1),
                    And(cartprod_fm(1,B#+4,0), union_fm(3,0,Z#+4)))))))))"

lemma sum_type [TC]:
     "[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> sum_fm(x,y,z) \<in> formula"
by (simp add: sum_fm_def) 

lemma arity_sum_fm [simp]:
     "[| x \<in> nat; y \<in> nat; z \<in> nat |] 
      ==> arity(sum_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
by (simp add: sum_fm_def succ_Un_distrib [symmetric] Un_ac) 

lemma sats_sum_fm [simp]:
   "[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
    ==> sats(A, sum_fm(x,y,z), env) <-> 
        is_sum(**A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: sum_fm_def is_sum_def)

lemma sum_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
          i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
       ==> is_sum(**A, x, y, z) <-> sats(A, sum_fm(i,j,k), env)"
by simp

theorem sum_reflection:
     "REFLECTS[\<lambda>x. is_sum(L,f(x),g(x),h(x)), 
               \<lambda>i x. is_sum(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_sum_def setclass_simps)
apply (intro FOL_reflections function_reflections cartprod_reflection)  
done


subsubsection{*The Operator @{term quasinat}*}

(* "is_quasinat(M,z) == empty(M,z) | (\<exists>m[M]. successor(M,m,z))" *)
constdefs quasinat_fm :: "i=>i"
    "quasinat_fm(z) == Or(empty_fm(z), Exists(succ_fm(0,succ(z))))"

lemma quasinat_type [TC]:
     "x \<in> nat ==> quasinat_fm(x) \<in> formula"
by (simp add: quasinat_fm_def) 

lemma arity_quasinat_fm [simp]:
     "x \<in> nat ==> arity(quasinat_fm(x)) = succ(x)"
by (simp add: quasinat_fm_def succ_Un_distrib [symmetric] Un_ac) 

lemma sats_quasinat_fm [simp]:
   "[| x \<in> nat; env \<in> list(A)|]
    ==> sats(A, quasinat_fm(x), env) <-> is_quasinat(**A, nth(x,env))"
by (simp add: quasinat_fm_def is_quasinat_def)

lemma quasinat_iff_sats:
      "[| nth(i,env) = x; nth(j,env) = y; 
          i \<in> nat; env \<in> list(A)|]
       ==> is_quasinat(**A, x) <-> sats(A, quasinat_fm(i), env)"
by simp

theorem quasinat_reflection:
     "REFLECTS[\<lambda>x. is_quasinat(L,f(x)), 
               \<lambda>i x. is_quasinat(**Lset(i),f(x))]"
apply (simp only: is_quasinat_def setclass_simps)
apply (intro FOL_reflections function_reflections)  
done


subsubsection{*The Operator @{term is_nat_case}*}

(* is_nat_case :: "[i=>o, i, [i,i]=>o, i, i] => o"
    "is_nat_case(M, a, is_b, k, z) == 
       (empty(M,k) --> z=a) &
       (\<forall>m[M]. successor(M,m,k) --> is_b(m,z)) &
       (is_quasinat(M,k) | empty(M,z))" *)
text{*The formula @{term is_b} has free variables 1 and 0.*}
constdefs is_nat_case_fm :: "[i, [i,i]=>i, i, i]=>i"
 "is_nat_case_fm(a,is_b,k,z) == 
    And(Implies(empty_fm(k), Equal(z,a)),
        And(Forall(Implies(succ_fm(0,succ(k)), 
                   Forall(Implies(Equal(0,succ(succ(z))), is_b(1,0))))),
            Or(quasinat_fm(k), empty_fm(z))))"

lemma is_nat_case_type [TC]:
     "[| is_b(1,0) \<in> formula;  
         x \<in> nat; y \<in> nat; z \<in> nat |] 
      ==> is_nat_case_fm(x,is_b,y,z) \<in> formula"
by (simp add: is_nat_case_fm_def) 

lemma arity_is_nat_case_fm [simp]:
     "[| is_b(1,0) \<in> formula; x \<in> nat; y \<in> nat; z \<in> nat |] 
      ==> arity(is_nat_case_fm(x,is_b,y,z)) = 
          succ(x) \<union> succ(y) \<union> succ(z) \<union> (arity(is_b(1,0)) #- 2)" 
apply (subgoal_tac "arity(is_b(1,0)) \<in> nat")  
apply typecheck
(*FIXME: could nat_diff_split work?*)
apply (auto simp add: diff_def raw_diff_succ is_nat_case_fm_def nat_imp_quasinat
                 succ_Un_distrib [symmetric] Un_ac
                 split: split_nat_case) 
done

lemma sats_is_nat_case_fm:
  assumes is_b_iff_sats: 
      "!!a b. [| a \<in> A; b \<in> A|] 
              ==> is_b(a,b) <-> sats(A, p(1,0), Cons(b, Cons(a,env)))"
  shows 
      "[|x \<in> nat; y \<in> nat; z < length(env); env \<in> list(A)|]
       ==> sats(A, is_nat_case_fm(x,p,y,z), env) <-> 
           is_nat_case(**A, nth(x,env), is_b, nth(y,env), nth(z,env))"
apply (frule lt_length_in_nat, assumption)  
apply (simp add: is_nat_case_fm_def is_nat_case_def is_b_iff_sats [THEN iff_sym])
done

lemma is_nat_case_iff_sats:
  "[| (!!a b. [| a \<in> A; b \<in> A|] 
              ==> is_b(a,b) <-> sats(A, p(1,0), Cons(b, Cons(a,env))));
      nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
      i \<in> nat; j \<in> nat; k < length(env); env \<in> list(A)|]
   ==> is_nat_case(**A, x, is_b, y, z) <-> sats(A, is_nat_case_fm(i,p,j,k), env)" 
by (simp add: sats_is_nat_case_fm [of A is_b])


text{*The second argument of @{term is_b} gives it direct access to @{term x},
  which is essential for handling free variable references.  Without this 
  argument, we cannot prove reflection for @{term iterates_MH}.*}
theorem is_nat_case_reflection:
  assumes is_b_reflection:
    "!!h f g. REFLECTS[\<lambda>x. is_b(L, h(x), f(x), g(x)), 
                     \<lambda>i x. is_b(**Lset(i), h(x), f(x), g(x))]"
  shows "REFLECTS[\<lambda>x. is_nat_case(L, f(x), is_b(L,x), g(x), h(x)), 
               \<lambda>i x. is_nat_case(**Lset(i), f(x), is_b(**Lset(i), x), g(x), h(x))]"
apply (simp (no_asm_use) only: is_nat_case_def setclass_simps)
apply (intro FOL_reflections function_reflections 
             restriction_reflection is_b_reflection quasinat_reflection)  
done



subsection{*The Operator @{term iterates_MH}, Needed for Iteration*}

(*  iterates_MH :: "[i=>o, [i,i]=>o, i, i, i, i] => o"
   "iterates_MH(M,isF,v,n,g,z) ==
        is_nat_case(M, v, \<lambda>m u. \<exists>gm[M]. fun_apply(M,g,m,gm) & isF(gm,u),
                    n, z)" *)
constdefs iterates_MH_fm :: "[[i,i]=>i, i, i, i, i]=>i"
 "iterates_MH_fm(isF,v,n,g,z) == 
    is_nat_case_fm(v, 
      \<lambda>m u. Exists(And(fun_apply_fm(succ(succ(succ(g))),succ(m),0), 
                     Forall(Implies(Equal(0,succ(succ(u))), isF(1,0))))), 
      n, z)"

lemma iterates_MH_type [TC]:
     "[| p(1,0) \<in> formula;  
         v \<in> nat; x \<in> nat; y \<in> nat; z \<in> nat |] 
      ==> iterates_MH_fm(p,v,x,y,z) \<in> formula"
by (simp add: iterates_MH_fm_def) 


lemma arity_iterates_MH_fm [simp]:
     "[| p(1,0) \<in> formula; 
         v \<in> nat; x \<in> nat; y \<in> nat; z \<in> nat |] 
      ==> arity(iterates_MH_fm(p,v,x,y,z)) = 
          succ(v) \<union> succ(x) \<union> succ(y) \<union> succ(z) \<union> (arity(p(1,0)) #- 4)"
apply (subgoal_tac "arity(p(1,0)) \<in> nat")
apply typecheck
apply (simp add: nat_imp_quasinat iterates_MH_fm_def Un_ac
            split: split_nat_case, clarify)
apply (rename_tac i j)
apply (drule eq_succ_imp_eq_m1, simp) 
apply (drule eq_succ_imp_eq_m1, simp)
apply (simp add: diff_Un_distrib succ_Un_distrib Un_ac diff_diff_left)
done

lemma sats_iterates_MH_fm:
  assumes is_F_iff_sats: 
      "!!a b c d. [| a \<in> A; b \<in> A; c \<in> A; d \<in> A|] 
              ==> is_F(a,b) <->
                  sats(A, p(1,0), Cons(b, Cons(a, Cons(c, Cons(d,env)))))"
  shows 
      "[|v \<in> nat; x \<in> nat; y \<in> nat; z < length(env); env \<in> list(A)|]
       ==> sats(A, iterates_MH_fm(p,v,x,y,z), env) <-> 
           iterates_MH(**A, is_F, nth(v,env), nth(x,env), nth(y,env), nth(z,env))"
by (simp add: iterates_MH_fm_def iterates_MH_def sats_is_nat_case_fm 
              is_F_iff_sats [symmetric])

lemma iterates_MH_iff_sats:
  "[| (!!a b c d. [| a \<in> A; b \<in> A; c \<in> A; d \<in> A|] 
              ==> is_F(a,b) <->
                  sats(A, p(1,0), Cons(b, Cons(a, Cons(c, Cons(d,env))))));
      nth(i',env) = v; nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
      i' \<in> nat; i \<in> nat; j \<in> nat; k < length(env); env \<in> list(A)|]
   ==> iterates_MH(**A, is_F, v, x, y, z) <-> 
       sats(A, iterates_MH_fm(p,i',i,j,k), env)"
apply (rule iff_sym) 
apply (rule iff_trans) 
apply (rule sats_iterates_MH_fm [of A is_F], blast, simp_all) 
done

theorem iterates_MH_reflection:
  assumes p_reflection:
    "!!f g h. REFLECTS[\<lambda>x. p(L, f(x), g(x)), 
                     \<lambda>i x. p(**Lset(i), f(x), g(x))]"
 shows "REFLECTS[\<lambda>x. iterates_MH(L, p(L), e(x), f(x), g(x), h(x)), 
               \<lambda>i x. iterates_MH(**Lset(i), p(**Lset(i)), e(x), f(x), g(x), h(x))]"
apply (simp (no_asm_use) only: iterates_MH_def)
txt{*Must be careful: simplifying with @{text setclass_simps} above would
     change @{text "\<exists>gm[**Lset(i)]"} into @{text "\<exists>gm \<in> Lset(i)"}, when
     it would no longer match rule @{text is_nat_case_reflection}. *}
apply (rule is_nat_case_reflection) 
apply (simp (no_asm_use) only: setclass_simps)
apply (intro FOL_reflections function_reflections is_nat_case_reflection
             restriction_reflection p_reflection)  
done



subsection{*@{term L} is Closed Under the Operator @{term list}*} 

subsubsection{*The List Functor, Internalized*}

constdefs list_functor_fm :: "[i,i,i]=>i"
(* "is_list_functor(M,A,X,Z) == 
        \<exists>n1[M]. \<exists>AX[M]. 
         number1(M,n1) & cartprod(M,A,X,AX) & is_sum(M,n1,AX,Z)" *)
    "list_functor_fm(A,X,Z) == 
       Exists(Exists(
	And(number1_fm(1),
            And(cartprod_fm(A#+2,X#+2,0), sum_fm(1,0,Z#+2)))))"

lemma list_functor_type [TC]:
     "[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> list_functor_fm(x,y,z) \<in> formula"
by (simp add: list_functor_fm_def) 

lemma arity_list_functor_fm [simp]:
     "[| x \<in> nat; y \<in> nat; z \<in> nat |] 
      ==> arity(list_functor_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
by (simp add: list_functor_fm_def succ_Un_distrib [symmetric] Un_ac) 

lemma sats_list_functor_fm [simp]:
   "[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
    ==> sats(A, list_functor_fm(x,y,z), env) <-> 
        is_list_functor(**A, nth(x,env), nth(y,env), nth(z,env))"
by (simp add: list_functor_fm_def is_list_functor_def)

lemma list_functor_iff_sats:
  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
      i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
   ==> is_list_functor(**A, x, y, z) <-> sats(A, list_functor_fm(i,j,k), env)"
by simp

theorem list_functor_reflection:
     "REFLECTS[\<lambda>x. is_list_functor(L,f(x),g(x),h(x)), 
               \<lambda>i x. is_list_functor(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_list_functor_def setclass_simps)
apply (intro FOL_reflections number1_reflection
             cartprod_reflection sum_reflection)  
done


subsubsection{*Instances of Replacement for Lists*}

lemma list_replacement1_Reflects:
 "REFLECTS
   [\<lambda>x. \<exists>u[L]. u \<in> B \<and> (\<exists>y[L]. pair(L,u,y,x) \<and>
         is_wfrec(L, iterates_MH(L, is_list_functor(L,A), 0), memsn, u, y)),
    \<lambda>i x. \<exists>u \<in> Lset(i). u \<in> B \<and> (\<exists>y \<in> Lset(i). pair(**Lset(i), u, y, x) \<and>
         is_wfrec(**Lset(i), 
                  iterates_MH(**Lset(i), 
                          is_list_functor(**Lset(i), A), 0), memsn, u, y))]"
by (intro FOL_reflections function_reflections is_wfrec_reflection 
          iterates_MH_reflection list_functor_reflection) 

lemma list_replacement1: 
   "L(A) ==> iterates_replacement(L, is_list_functor(L,A), 0)"
apply (unfold iterates_replacement_def wfrec_replacement_def, clarify)
apply (rule strong_replacementI) 
apply (rule rallI)
apply (rename_tac B)   
apply (rule separation_CollectI) 
apply (insert nonempty) 
apply (subgoal_tac "L(Memrel(succ(n)))") 
apply (rule_tac A="{B,A,n,z,0,Memrel(succ(n))}" in subset_LsetE, blast ) 
apply (rule ReflectsE [OF list_replacement1_Reflects], assumption)
apply (drule subset_Lset_ltD, assumption) 
apply (erule reflection_imp_L_separation)
  apply (simp_all add: lt_Ord2 Memrel_closed)
apply (elim conjE) 
apply (rule DPow_LsetI)
apply (rename_tac v) 
apply (rule bex_iff_sats conj_iff_sats)+
apply (rule_tac env = "[u,v,A,n,B,0,Memrel(succ(n))]" in mem_iff_sats)
apply (rule sep_rules | simp)+
txt{*Can't get sat rules to work for higher-order operators, so just expand them!*}
apply (simp add: is_wfrec_def M_is_recfun_def iterates_MH_def is_nat_case_def)
apply (rule sep_rules list_functor_iff_sats quasinat_iff_sats | simp)+
done


lemma list_replacement2_Reflects:
 "REFLECTS
   [\<lambda>x. \<exists>u[L]. u \<in> B \<and> u \<in> nat \<and>
         (\<exists>sn[L]. \<exists>msn[L]. successor(L, u, sn) \<and> membership(L, sn, msn) \<and>
           is_wfrec (L, iterates_MH (L, is_list_functor(L, A), 0),
                              msn, u, x)),
    \<lambda>i x. \<exists>u \<in> Lset(i). u \<in> B \<and> u \<in> nat \<and>
         (\<exists>sn \<in> Lset(i). \<exists>msn \<in> Lset(i). 
          successor(**Lset(i), u, sn) \<and> membership(**Lset(i), sn, msn) \<and>
           is_wfrec (**Lset(i), 
                 iterates_MH (**Lset(i), is_list_functor(**Lset(i), A), 0),
                     msn, u, x))]"
by (intro FOL_reflections function_reflections is_wfrec_reflection 
          iterates_MH_reflection list_functor_reflection) 


lemma list_replacement2: 
   "L(A) ==> strong_replacement(L, 
         \<lambda>n y. n\<in>nat & 
               (\<exists>sn[L]. \<exists>msn[L]. successor(L,n,sn) & membership(L,sn,msn) &
               is_wfrec(L, iterates_MH(L,is_list_functor(L,A), 0), 
                        msn, n, y)))"
apply (rule strong_replacementI) 
apply (rule rallI)
apply (rename_tac B)   
apply (rule separation_CollectI) 
apply (insert nonempty) 
apply (rule_tac A="{A,B,z,0,nat}" in subset_LsetE) 
apply (blast intro: L_nat) 
apply (rule ReflectsE [OF list_replacement2_Reflects], assumption)
apply (drule subset_Lset_ltD, assumption) 
apply (erule reflection_imp_L_separation)
  apply (simp_all add: lt_Ord2)
apply (rule DPow_LsetI)
apply (rename_tac v) 
apply (rule bex_iff_sats conj_iff_sats)+
apply (rule_tac env = "[u,v,A,B,0,nat]" in mem_iff_sats)
apply (rule sep_rules | simp)+
apply (simp add: is_wfrec_def M_is_recfun_def iterates_MH_def is_nat_case_def)
apply (rule sep_rules list_functor_iff_sats quasinat_iff_sats | simp)+
done


subsection{*@{term L} is Closed Under the Operator @{term formula}*} 

subsubsection{*The Formula Functor, Internalized*}

constdefs formula_functor_fm :: "[i,i]=>i"
(*     "is_formula_functor(M,X,Z) == 
        \<exists>nat'[M]. \<exists>natnat[M]. \<exists>natnatsum[M]. \<exists>XX[M]. \<exists>X3[M]. \<exists>X4[M]. 
          5          4              3          2       1       0
          omega(M,nat') & cartprod(M,nat',nat',natnat) & 
          is_sum(M,natnat,natnat,natnatsum) &
          cartprod(M,X,X,XX) & is_sum(M,XX,X,X3) & is_sum(M,X,X3,X4) &
          is_sum(M,natnatsum,X4,Z)" *) 
    "formula_functor_fm(X,Z) == 
       Exists(Exists(Exists(Exists(Exists(Exists(
	And(omega_fm(5),
         And(cartprod_fm(5,5,4),
          And(sum_fm(4,4,3),
           And(cartprod_fm(X#+6,X#+6,2),
            And(sum_fm(2,X#+6,1),
             And(sum_fm(X#+6,1,0), sum_fm(3,0,Z#+6)))))))))))))"

lemma formula_functor_type [TC]:
     "[| x \<in> nat; y \<in> nat |] ==> formula_functor_fm(x,y) \<in> formula"
by (simp add: formula_functor_fm_def) 

lemma sats_formula_functor_fm [simp]:
   "[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
    ==> sats(A, formula_functor_fm(x,y), env) <-> 
        is_formula_functor(**A, nth(x,env), nth(y,env))"
by (simp add: formula_functor_fm_def is_formula_functor_def)

lemma formula_functor_iff_sats:
  "[| nth(i,env) = x; nth(j,env) = y; 
      i \<in> nat; j \<in> nat; env \<in> list(A)|]
   ==> is_formula_functor(**A, x, y) <-> sats(A, formula_functor_fm(i,j), env)"
by simp

theorem formula_functor_reflection:
     "REFLECTS[\<lambda>x. is_formula_functor(L,f(x),g(x)), 
               \<lambda>i x. is_formula_functor(**Lset(i),f(x),g(x))]"
apply (simp only: is_formula_functor_def setclass_simps)
apply (intro FOL_reflections omega_reflection
             cartprod_reflection sum_reflection)  
done

subsubsection{*Instances of Replacement for Formulas*}

lemma formula_replacement1_Reflects:
 "REFLECTS
   [\<lambda>x. \<exists>u[L]. u \<in> B \<and> (\<exists>y[L]. pair(L,u,y,x) \<and>
         is_wfrec(L, iterates_MH(L, is_formula_functor(L), 0), memsn, u, y)),
    \<lambda>i x. \<exists>u \<in> Lset(i). u \<in> B \<and> (\<exists>y \<in> Lset(i). pair(**Lset(i), u, y, x) \<and>
         is_wfrec(**Lset(i), 
                  iterates_MH(**Lset(i), 
                          is_formula_functor(**Lset(i)), 0), memsn, u, y))]"
by (intro FOL_reflections function_reflections is_wfrec_reflection 
          iterates_MH_reflection formula_functor_reflection) 

lemma formula_replacement1: 
   "iterates_replacement(L, is_formula_functor(L), 0)"
apply (unfold iterates_replacement_def wfrec_replacement_def, clarify)
apply (rule strong_replacementI) 
apply (rule rallI)
apply (rename_tac B)   
apply (rule separation_CollectI) 
apply (insert nonempty) 
apply (subgoal_tac "L(Memrel(succ(n)))") 
apply (rule_tac A="{B,n,z,0,Memrel(succ(n))}" in subset_LsetE, blast ) 
apply (rule ReflectsE [OF formula_replacement1_Reflects], assumption)
apply (drule subset_Lset_ltD, assumption) 
apply (erule reflection_imp_L_separation)
  apply (simp_all add: lt_Ord2 Memrel_closed)
apply (rule DPow_LsetI)
apply (rename_tac v) 
apply (rule bex_iff_sats conj_iff_sats)+
apply (rule_tac env = "[u,v,n,B,0,Memrel(succ(n))]" in mem_iff_sats)
apply (rule sep_rules | simp)+
txt{*Can't get sat rules to work for higher-order operators, so just expand them!*}
apply (simp add: is_wfrec_def M_is_recfun_def iterates_MH_def is_nat_case_def)
apply (rule sep_rules formula_functor_iff_sats quasinat_iff_sats | simp)+
txt{*SLOW: like 40 seconds!*}
done

lemma formula_replacement2_Reflects:
 "REFLECTS
   [\<lambda>x. \<exists>u[L]. u \<in> B \<and> u \<in> nat \<and>
         (\<exists>sn[L]. \<exists>msn[L]. successor(L, u, sn) \<and> membership(L, sn, msn) \<and>
           is_wfrec (L, iterates_MH (L, is_formula_functor(L), 0),
                              msn, u, x)),
    \<lambda>i x. \<exists>u \<in> Lset(i). u \<in> B \<and> u \<in> nat \<and>
         (\<exists>sn \<in> Lset(i). \<exists>msn \<in> Lset(i). 
          successor(**Lset(i), u, sn) \<and> membership(**Lset(i), sn, msn) \<and>
           is_wfrec (**Lset(i), 
                 iterates_MH (**Lset(i), is_formula_functor(**Lset(i)), 0),
                     msn, u, x))]"
by (intro FOL_reflections function_reflections is_wfrec_reflection 
          iterates_MH_reflection formula_functor_reflection) 


lemma formula_replacement2: 
   "strong_replacement(L, 
         \<lambda>n y. n\<in>nat & 
               (\<exists>sn[L]. \<exists>msn[L]. successor(L,n,sn) & membership(L,sn,msn) &
               is_wfrec(L, iterates_MH(L,is_formula_functor(L), 0), 
                        msn, n, y)))"
apply (rule strong_replacementI) 
apply (rule rallI)
apply (rename_tac B)   
apply (rule separation_CollectI) 
apply (insert nonempty) 
apply (rule_tac A="{B,z,0,nat}" in subset_LsetE) 
apply (blast intro: L_nat) 
apply (rule ReflectsE [OF formula_replacement2_Reflects], assumption)
apply (drule subset_Lset_ltD, assumption) 
apply (erule reflection_imp_L_separation)
  apply (simp_all add: lt_Ord2)
apply (rule DPow_LsetI)
apply (rename_tac v) 
apply (rule bex_iff_sats conj_iff_sats)+
apply (rule_tac env = "[u,v,B,0,nat]" in mem_iff_sats)
apply (rule sep_rules | simp)+
apply (simp add: is_wfrec_def M_is_recfun_def iterates_MH_def is_nat_case_def)
apply (rule sep_rules formula_functor_iff_sats quasinat_iff_sats | simp)+
done

text{*NB The proofs for type @{term formula} are virtually identical to those
for @{term "list(A)"}.  It was a cut-and-paste job! *}


subsubsection{*Instantiating the locale @{text M_datatypes}*}
ML
{*
val list_replacement1 = thm "list_replacement1"; 
val list_replacement2 = thm "list_replacement2";
val formula_replacement1 = thm "formula_replacement1";
val formula_replacement2 = thm "formula_replacement2";

val m_datatypes = [list_replacement1, list_replacement2, 
                   formula_replacement1, formula_replacement2];

fun datatypes_L th =
    kill_flex_triv_prems (m_datatypes MRS (wfrank_L th));

bind_thm ("list_closed", datatypes_L (thm "M_datatypes.list_closed"));
bind_thm ("formula_closed", datatypes_L (thm "M_datatypes.formula_closed"));
*}

declare list_closed [intro,simp]
declare formula_closed [intro,simp]

end