more frugal recording of changes: join merely requires information from one side;
tuned;
(* Title: Pure/Isar/expression.ML
Author: Clemens Ballarin, TU Muenchen
Locale expressions and user interface layer of locales.
*)
signature EXPRESSION =
sig
(* Locale expressions *)
datatype 'term map = Positional of 'term option list | Named of (string * 'term) list
type ('name, 'term) expr = ('name * ((string * bool) * 'term map)) list
type expression_i = (string, term) expr * (binding * typ option * mixfix) list
type expression = (xstring * Position.T, string) expr * (binding * string option * mixfix) list
(* Processing of context statements *)
val cert_statement: Element.context_i list -> (term * term list) list list ->
Proof.context -> (term * term list) list list * Proof.context
val read_statement: Element.context list -> (string * string list) list list ->
Proof.context -> (term * term list) list list * Proof.context
(* Declaring locales *)
val cert_declaration: expression_i -> (Proof.context -> Proof.context) ->
Element.context_i list ->
Proof.context -> (((string * typ) * mixfix) list * (string * morphism) list
* Element.context_i list * Proof.context) * ((string * typ) list * Proof.context)
val cert_read_declaration: expression_i -> (Proof.context -> Proof.context) ->
Element.context list ->
Proof.context -> (((string * typ) * mixfix) list * (string * morphism) list
* Element.context_i list * Proof.context) * ((string * typ) list * Proof.context)
(*FIXME*)
val read_declaration: expression -> (Proof.context -> Proof.context) -> Element.context list ->
Proof.context -> (((string * typ) * mixfix) list * (string * morphism) list
* Element.context_i list * Proof.context) * ((string * typ) list * Proof.context)
val add_locale: (local_theory -> local_theory) -> binding -> binding ->
expression_i -> Element.context_i list -> theory -> string * local_theory
val add_locale_cmd: (local_theory -> local_theory) -> binding -> binding ->
expression -> Element.context list -> theory -> string * local_theory
(* Interpretation *)
val cert_goal_expression: expression_i -> Proof.context ->
(term list list * (string * morphism) list * morphism) * Proof.context
val read_goal_expression: expression -> Proof.context ->
(term list list * (string * morphism) list * morphism) * Proof.context
val permanent_interpretation: expression_i -> (Attrib.binding * term) list ->
local_theory -> Proof.state
val ephemeral_interpretation: expression_i -> (Attrib.binding * term) list ->
local_theory -> Proof.state
val interpret: expression_i -> (Attrib.binding * term) list -> bool -> Proof.state -> Proof.state
val interpret_cmd: expression -> (Attrib.binding * string) list ->
bool -> Proof.state -> Proof.state
val interpretation: expression_i -> (Attrib.binding * term) list -> local_theory -> Proof.state
val interpretation_cmd: expression -> (Attrib.binding * string) list ->
local_theory -> Proof.state
val sublocale: expression_i -> (Attrib.binding * term) list -> local_theory -> Proof.state
val sublocale_cmd: expression -> (Attrib.binding * string) list -> local_theory -> Proof.state
val sublocale_global: (local_theory -> local_theory) -> string -> expression_i ->
(Attrib.binding * term) list -> theory -> Proof.state
val sublocale_global_cmd: (local_theory -> local_theory) -> xstring * Position.T -> expression ->
(Attrib.binding * string) list -> theory -> Proof.state
(* Diagnostic *)
val print_dependencies: Proof.context -> bool -> expression -> unit
end;
structure Expression : EXPRESSION =
struct
datatype ctxt = datatype Element.ctxt;
(*** Expressions ***)
datatype 'term map =
Positional of 'term option list |
Named of (string * 'term) list;
type ('name, 'term) expr = ('name * ((string * bool) * 'term map)) list;
type expression_i = (string, term) expr * (binding * typ option * mixfix) list;
type expression = (xstring * Position.T, string) expr * (binding * string option * mixfix) list;
(** Internalise locale names in expr **)
fun check_expr thy instances = map (apfst (Locale.check thy)) instances;
(** Parameters of expression **)
(*Sanity check of instantiations and extraction of implicit parameters.
The latter only occurs iff strict = false.
Positional instantiations are extended to match full length of parameter list
of instantiated locale.*)
fun parameters_of thy strict (expr, fixed) =
let
val ctxt = Proof_Context.init_global thy;
fun reject_dups message xs =
(case duplicates (op =) xs of
[] => ()
| dups => error (message ^ commas dups));
fun parm_eq ((p1: string, mx1: mixfix), (p2, mx2)) = p1 = p2 andalso
(mx1 = mx2 orelse error ("Conflicting syntax for parameter " ^ quote p1 ^ " in expression"));
fun params_loc loc = Locale.params_of thy loc |> map (apfst #1);
fun params_inst (loc, (prfx, Positional insts)) =
let
val ps = params_loc loc;
val d = length ps - length insts;
val insts' =
if d < 0 then
error ("More arguments than parameters in instantiation of locale " ^
quote (Locale.markup_name ctxt loc))
else insts @ replicate d NONE;
val ps' = (ps ~~ insts') |>
map_filter (fn (p, NONE) => SOME p | (_, SOME _) => NONE);
in (ps', (loc, (prfx, Positional insts'))) end
| params_inst (loc, (prfx, Named insts)) =
let
val _ =
reject_dups "Duplicate instantiation of the following parameter(s): "
(map fst insts);
val ps' = (insts, params_loc loc) |-> fold (fn (p, _) => fn ps =>
if AList.defined (op =) ps p then AList.delete (op =) p ps
else error (quote p ^ " not a parameter of instantiated expression"));
in (ps', (loc, (prfx, Named insts))) end;
fun params_expr is =
let
val (is', ps') = fold_map (fn i => fn ps =>
let
val (ps', i') = params_inst i;
val ps'' = distinct parm_eq (ps @ ps');
in (i', ps'') end) is []
in (ps', is') end;
val (implicit, expr') = params_expr expr;
val implicit' = map #1 implicit;
val fixed' = map (Variable.check_name o #1) fixed;
val _ = reject_dups "Duplicate fixed parameter(s): " fixed';
val implicit'' =
if strict then []
else
let
val _ =
reject_dups
"Parameter(s) declared simultaneously in expression and for clause: "
(implicit' @ fixed');
in map (fn (x, mx) => (Binding.name x, NONE, mx)) implicit end;
in (expr', implicit'' @ fixed) end;
(** Read instantiation **)
(* Parse positional or named instantiation *)
local
fun prep_inst prep_term ctxt parms (Positional insts) =
(insts ~~ parms) |> map
(fn (NONE, p) => Free (p, dummyT)
| (SOME t, _) => prep_term ctxt t)
| prep_inst prep_term ctxt parms (Named insts) =
parms |> map (fn p =>
(case AList.lookup (op =) insts p of
SOME t => prep_term ctxt t |
NONE => Free (p, dummyT)));
in
fun parse_inst x = prep_inst Syntax.parse_term x;
fun make_inst x = prep_inst (K I) x;
end;
(* Instantiation morphism *)
fun inst_morphism (parm_names, parm_types) ((prfx, mandatory), insts') ctxt =
let
(* parameters *)
val type_parm_names = fold Term.add_tfreesT parm_types [] |> map fst;
(* type inference and contexts *)
val parm_types' = map (Type_Infer.paramify_vars o Logic.varifyT_global) parm_types;
val type_parms = fold Term.add_tvarsT parm_types' [] |> map (Logic.mk_type o TVar);
val arg = type_parms @ map2 Type.constraint parm_types' insts';
val res = Syntax.check_terms ctxt arg;
val ctxt' = ctxt |> fold Variable.auto_fixes res;
(* instantiation *)
val (type_parms'', res') = chop (length type_parms) res;
val insts'' = (parm_names ~~ res') |> map_filter
(fn inst as (x, Free (y, _)) => if x = y then NONE else SOME inst
| inst => SOME inst);
val instT = Symtab.make (type_parm_names ~~ map Logic.dest_type type_parms'');
val inst = Symtab.make insts'';
in
(Element.inst_morphism (Proof_Context.theory_of ctxt) (instT, inst) $>
Morphism.binding_morphism "Expression.inst" (Binding.prefix mandatory prfx), ctxt')
end;
(*** Locale processing ***)
(** Parsing **)
fun parse_elem prep_typ prep_term ctxt =
Element.map_ctxt
{binding = I,
typ = prep_typ ctxt,
term = prep_term (Proof_Context.set_mode Proof_Context.mode_schematic ctxt),
pattern = prep_term (Proof_Context.set_mode Proof_Context.mode_pattern ctxt),
fact = I,
attrib = I};
fun parse_concl prep_term ctxt concl =
(map o map) (fn (t, ps) =>
(prep_term (Proof_Context.set_mode Proof_Context.mode_schematic ctxt) t,
map (prep_term (Proof_Context.set_mode Proof_Context.mode_pattern ctxt)) ps)) concl;
(** Simultaneous type inference: instantiations + elements + conclusion **)
local
fun mk_type T = (Logic.mk_type T, []);
fun mk_term t = (t, []);
fun mk_propp (p, pats) = (Type.constraint propT p, pats);
fun dest_type (T, []) = Logic.dest_type T;
fun dest_term (t, []) = t;
fun dest_propp (p, pats) = (p, pats);
fun extract_inst (_, (_, ts)) = map mk_term ts;
fun restore_inst ((l, (p, _)), cs) = (l, (p, map dest_term cs));
fun extract_elem (Fixes fixes) = map (#2 #> the_list #> map mk_type) fixes
| extract_elem (Constrains csts) = map (#2 #> single #> map mk_type) csts
| extract_elem (Assumes asms) = map (#2 #> map mk_propp) asms
| extract_elem (Defines defs) = map (fn (_, (t, ps)) => [mk_propp (t, ps)]) defs
| extract_elem (Notes _) = [];
fun restore_elem (Fixes fixes, css) =
(fixes ~~ css) |> map (fn ((x, _, mx), cs) =>
(x, cs |> map dest_type |> try hd, mx)) |> Fixes
| restore_elem (Constrains csts, css) =
(csts ~~ css) |> map (fn ((x, _), cs) =>
(x, cs |> map dest_type |> hd)) |> Constrains
| restore_elem (Assumes asms, css) =
(asms ~~ css) |> map (fn ((b, _), cs) => (b, map dest_propp cs)) |> Assumes
| restore_elem (Defines defs, css) =
(defs ~~ css) |> map (fn ((b, _), [c]) => (b, dest_propp c)) |> Defines
| restore_elem (Notes notes, _) = Notes notes;
fun check cs context =
let
fun prep (_, pats) (ctxt, t :: ts) =
let val ctxt' = Variable.auto_fixes t ctxt
in
((t, Syntax.check_props (Proof_Context.set_mode Proof_Context.mode_pattern ctxt') pats),
(ctxt', ts))
end;
val (cs', (context', _)) = fold_map prep cs
(context, Syntax.check_terms
(Proof_Context.set_mode Proof_Context.mode_schematic context) (map fst cs));
in (cs', context') end;
in
fun check_autofix insts elems concl ctxt =
let
val inst_cs = map extract_inst insts;
val elem_css = map extract_elem elems;
val concl_cs = (map o map) mk_propp concl;
(* Type inference *)
val (inst_cs' :: css', ctxt') =
(fold_burrow o fold_burrow) check (inst_cs :: elem_css @ [concl_cs]) ctxt;
val (elem_css', [concl_cs']) = chop (length elem_css) css';
in
(map restore_inst (insts ~~ inst_cs'),
map restore_elem (elems ~~ elem_css'),
concl_cs', ctxt')
end;
end;
(** Prepare locale elements **)
fun declare_elem prep_vars (Fixes fixes) ctxt =
let val (vars, _) = prep_vars fixes ctxt
in ctxt |> Proof_Context.add_fixes vars |> snd end
| declare_elem prep_vars (Constrains csts) ctxt =
ctxt |> prep_vars (map (fn (x, T) => (Binding.name x, SOME T, NoSyn)) csts) |> snd
| declare_elem _ (Assumes _) ctxt = ctxt
| declare_elem _ (Defines _) ctxt = ctxt
| declare_elem _ (Notes _) ctxt = ctxt;
(** Finish locale elements **)
fun finish_inst ctxt (loc, (prfx, inst)) =
let
val thy = Proof_Context.theory_of ctxt;
val (parm_names, parm_types) = Locale.params_of thy loc |> map #1 |> split_list;
val (morph, _) = inst_morphism (parm_names, parm_types) (prfx, inst) ctxt;
in (loc, morph) end;
fun finish_fixes (parms: (string * typ) list) = map (fn (binding, _, mx) =>
let val x = Binding.name_of binding
in (binding, AList.lookup (op =) parms x, mx) end);
local
fun closeup _ _ false elem = elem
| closeup (outer_ctxt, ctxt) parms true elem =
let
(* FIXME consider closing in syntactic phase -- before type checking *)
fun close_frees t =
let
val rev_frees =
Term.fold_aterms (fn Free (x, T) =>
if Variable.is_fixed outer_ctxt x orelse AList.defined (op =) parms x then I
else insert (op =) (x, T) | _ => I) t [];
in fold (Logic.all o Free) rev_frees t end;
fun no_binds [] = []
| no_binds _ = error "Illegal term bindings in context element";
in
(case elem of
Assumes asms => Assumes (asms |> map (fn (a, propps) =>
(a, map (fn (t, ps) => (close_frees t, no_binds ps)) propps)))
| Defines defs => Defines (defs |> map (fn ((name, atts), (t, ps)) =>
let val ((c, _), t') = Local_Defs.cert_def ctxt (close_frees t)
in ((Thm.def_binding_optional (Binding.name c) name, atts), (t', no_binds ps)) end))
| e => e)
end;
in
fun finish_elem _ parms _ (Fixes fixes) = Fixes (finish_fixes parms fixes)
| finish_elem _ _ _ (Constrains _) = Constrains []
| finish_elem ctxts parms do_close (Assumes asms) = closeup ctxts parms do_close (Assumes asms)
| finish_elem ctxts parms do_close (Defines defs) = closeup ctxts parms do_close (Defines defs)
| finish_elem _ _ _ (Notes facts) = Notes facts;
end;
(** Process full context statement: instantiations + elements + conclusion **)
(* Interleave incremental parsing and type inference over entire parsed stretch. *)
local
fun prep_full_context_statement
parse_typ parse_prop prep_vars_elem prep_inst prep_vars_inst prep_expr
{strict, do_close, fixed_frees} raw_import init_body raw_elems raw_concl ctxt1 =
let
val thy = Proof_Context.theory_of ctxt1;
val (raw_insts, fixed) = parameters_of thy strict (apfst (prep_expr thy) raw_import);
fun prep_insts_cumulative (loc, (prfx, inst)) (i, insts, ctxt) =
let
val (parm_names, parm_types) = Locale.params_of thy loc |> map #1 |> split_list;
val inst' = prep_inst ctxt parm_names inst;
val parm_types' = parm_types
|> map (Type_Infer.paramify_vars o
Term.map_type_tvar (fn ((x, _), S) => TVar ((x, i), S)) o Logic.varifyT_global);
val inst'' = map2 Type.constraint parm_types' inst';
val insts' = insts @ [(loc, (prfx, inst''))];
val (insts'', _, _, _) = check_autofix insts' [] [] ctxt;
val inst''' = insts'' |> List.last |> snd |> snd;
val (morph, _) = inst_morphism (parm_names, parm_types) (prfx, inst''') ctxt;
val ctxt'' = Locale.activate_declarations (loc, morph) ctxt;
in (i + 1, insts', ctxt'') end;
fun prep_elem raw_elem ctxt =
let
val ctxt' = ctxt
|> Context_Position.set_visible false
|> declare_elem prep_vars_elem raw_elem
|> Context_Position.restore_visible ctxt;
val elems' = parse_elem parse_typ parse_prop ctxt' raw_elem;
in (elems', ctxt') end;
fun prep_concl raw_concl (insts, elems, ctxt) =
let
val concl = parse_concl parse_prop ctxt raw_concl;
in check_autofix insts elems concl ctxt end;
val fors = prep_vars_inst fixed ctxt1 |> fst;
val ctxt2 = ctxt1 |> Proof_Context.add_fixes fors |> snd;
val (_, insts', ctxt3) = fold prep_insts_cumulative raw_insts (0, [], ctxt2);
val _ =
if fixed_frees then ()
else
(case fold (fold (Variable.add_frees ctxt3) o snd o snd) insts' [] of
[] => ()
| frees => error ("Illegal free variables in expression: " ^
commas_quote (map (Syntax.string_of_term ctxt3 o Free) (rev frees))));
val ctxt4 = init_body ctxt3;
val (elems, ctxt5) = fold_map prep_elem raw_elems ctxt4;
val (insts, elems', concl, ctxt6) = prep_concl raw_concl (insts', elems, ctxt5);
(* Retrieve parameter types *)
val xs = maps (fn Fixes fixes => map (Variable.check_name o #1) fixes | _ => [])
(Fixes fors :: elems');
val (Ts, ctxt7) = fold_map Proof_Context.inferred_param xs ctxt6;
val parms = xs ~~ Ts; (* params from expression and elements *)
val fors' = finish_fixes parms fors;
val fixed = map (fn (b, SOME T, mx) => ((Binding.name_of b, T), mx)) fors';
val deps = map (finish_inst ctxt6) insts;
val elems'' = map (finish_elem (ctxt1, ctxt6) parms do_close) elems';
in ((fixed, deps, elems'', concl), (parms, ctxt7)) end;
in
fun cert_full_context_statement x =
prep_full_context_statement (K I) (K I) Proof_Context.cert_vars
make_inst Proof_Context.cert_vars (K I) x;
fun cert_read_full_context_statement x =
prep_full_context_statement Syntax.parse_typ Syntax.parse_prop Proof_Context.read_vars
make_inst Proof_Context.cert_vars (K I) x;
fun read_full_context_statement x =
prep_full_context_statement Syntax.parse_typ Syntax.parse_prop Proof_Context.read_vars
parse_inst Proof_Context.read_vars check_expr x;
end;
(* Context statement: elements + conclusion *)
local
fun prep_statement prep activate raw_elems raw_concl context =
let
val ((_, _, elems, concl), _) =
prep {strict = true, do_close = false, fixed_frees = true}
([], []) I raw_elems raw_concl context;
val (_, context') = context
|> Proof_Context.set_stmt true
|> fold_map activate elems;
in (concl, context') end;
in
fun cert_statement x = prep_statement cert_full_context_statement Element.activate_i x;
fun read_statement x = prep_statement read_full_context_statement Element.activate x;
end;
(* Locale declaration: import + elements *)
fun fix_params params =
Proof_Context.add_fixes (map (fn ((x, T), mx) => (Binding.name x, SOME T, mx)) params) #> snd;
local
fun prep_declaration prep activate raw_import init_body raw_elems context =
let
val ((fixed, deps, elems, _), (parms, ctxt')) =
prep {strict = false, do_close = true, fixed_frees = false}
raw_import init_body raw_elems [] context;
(* Declare parameters and imported facts *)
val context' = context |>
fix_params fixed |>
fold (Context.proof_map o Locale.activate_facts NONE) deps;
val (elems', context'') = context' |>
Proof_Context.set_stmt true |>
fold_map activate elems;
in ((fixed, deps, elems', context''), (parms, ctxt')) end;
in
fun cert_declaration x = prep_declaration cert_full_context_statement Element.activate_i x;
fun cert_read_declaration x = prep_declaration cert_read_full_context_statement Element.activate x;
fun read_declaration x = prep_declaration read_full_context_statement Element.activate x;
end;
(* Locale expression to set up a goal *)
local
fun props_of thy (name, morph) =
let
val (asm, defs) = Locale.specification_of thy name;
in
(case asm of NONE => defs | SOME asm => asm :: defs)
|> map (Morphism.term morph)
end;
fun prep_goal_expression prep expression context =
let
val thy = Proof_Context.theory_of context;
val ((fixed, deps, _, _), _) =
prep {strict = true, do_close = true, fixed_frees = true} expression I [] [] context;
(* proof obligations *)
val propss = map (props_of thy) deps;
val goal_ctxt = context |>
fix_params fixed |>
(fold o fold) Variable.auto_fixes propss;
val export = Variable.export_morphism goal_ctxt context;
val exp_fact = Drule.zero_var_indexes_list o map Thm.strip_shyps o Morphism.fact export;
val exp_term = Term_Subst.zero_var_indexes o Morphism.term export;
val exp_typ = Logic.type_map exp_term;
val export' =
Morphism.morphism "Expression.prep_goal"
{binding = [], typ = [exp_typ], term = [exp_term], fact = [exp_fact]};
in ((propss, deps, export'), goal_ctxt) end;
in
fun cert_goal_expression x = prep_goal_expression cert_full_context_statement x;
fun read_goal_expression x = prep_goal_expression read_full_context_statement x;
end;
(*** Locale declarations ***)
(* extract specification text *)
val norm_term = Envir.beta_norm oo Term.subst_atomic;
fun bind_def ctxt eq (xs, env, eqs) =
let
val _ = Local_Defs.cert_def ctxt eq;
val ((y, T), b) = Local_Defs.abs_def eq;
val b' = norm_term env b;
fun err msg = error (msg ^ ": " ^ quote y);
in
(case filter (fn (Free (y', _), _) => y = y' | _ => false) env of
[] => (Term.add_frees b' xs, (Free (y, T), b') :: env, eq :: eqs)
| dups =>
if forall (fn (_, b'') => b' aconv b'') dups then (xs, env, eqs)
else err "Attempt to redefine variable")
end;
(* text has the following structure:
(((exts, exts'), (ints, ints')), (xs, env, defs))
where
exts: external assumptions (terms in assumes elements)
exts': dito, normalised wrt. env
ints: internal assumptions (terms in assumptions from insts)
ints': dito, normalised wrt. env
xs: the free variables in exts' and ints' and rhss of definitions,
this includes parameters except defined parameters
env: list of term pairs encoding substitutions, where the first term
is a free variable; substitutions represent defines elements and
the rhs is normalised wrt. the previous env
defs: the equations from the defines elements
*)
fun eval_text _ _ (Fixes _) text = text
| eval_text _ _ (Constrains _) text = text
| eval_text _ is_ext (Assumes asms)
(((exts, exts'), (ints, ints')), (xs, env, defs)) =
let
val ts = maps (map #1 o #2) asms;
val ts' = map (norm_term env) ts;
val spec' =
if is_ext then ((exts @ ts, exts' @ ts'), (ints, ints'))
else ((exts, exts'), (ints @ ts, ints' @ ts'));
in (spec', (fold Term.add_frees ts' xs, env, defs)) end
| eval_text ctxt _ (Defines defs) (spec, binds) =
(spec, fold (bind_def ctxt o #1 o #2) defs binds)
| eval_text _ _ (Notes _) text = text;
fun eval_inst ctxt (loc, morph) text =
let
val thy = Proof_Context.theory_of ctxt;
val (asm, defs) = Locale.specification_of thy loc;
val asm' = Option.map (Morphism.term morph) asm;
val defs' = map (Morphism.term morph) defs;
val text' =
text |>
(if is_some asm then
eval_text ctxt false (Assumes [(Attrib.empty_binding, [(the asm', [])])])
else I) |>
(if not (null defs) then
eval_text ctxt false (Defines (map (fn def => (Attrib.empty_binding, (def, []))) defs'))
else I)
(* FIXME clone from locale.ML *)
in text' end;
fun eval_elem ctxt elem text =
eval_text ctxt true elem text;
fun eval ctxt deps elems =
let
val text' = fold (eval_inst ctxt) deps ((([], []), ([], [])), ([], [], []));
val ((spec, (_, _, defs))) = fold (eval_elem ctxt) elems text';
in (spec, defs) end;
(* axiomsN: name of theorem set with destruct rules for locale predicates,
also name suffix of delta predicates and assumptions. *)
val axiomsN = "axioms";
local
(* introN: name of theorems for introduction rules of locale and
delta predicates *)
val introN = "intro";
fun atomize_spec thy ts =
let
val t = Logic.mk_conjunction_balanced ts;
val body = Object_Logic.atomize_term thy t;
val bodyT = Term.fastype_of body;
in
if bodyT = propT
then (t, propT, Thm.reflexive (Thm.cterm_of thy t))
else (body, bodyT, Object_Logic.atomize (Proof_Context.init_global thy) (Thm.cterm_of thy t))
end;
(* achieve plain syntax for locale predicates (without "PROP") *)
fun aprop_tr' n c =
let
val c' = Lexicon.mark_const c;
fun tr' (_: Proof.context) T args =
if T <> dummyT andalso length args = n
then Syntax.const "_aprop" $ Term.list_comb (Syntax.const c', args)
else raise Match;
in (c', tr') end;
(* define one predicate including its intro rule and axioms
- binding: predicate name
- parms: locale parameters
- defs: thms representing substitutions from defines elements
- ts: terms representing locale assumptions (not normalised wrt. defs)
- norm_ts: terms representing locale assumptions (normalised wrt. defs)
- thy: the theory
*)
fun def_pred binding parms defs ts norm_ts thy =
let
val name = Sign.full_name thy binding;
val (body, bodyT, body_eq) = atomize_spec thy norm_ts;
val env = Term.add_free_names body [];
val xs = filter (member (op =) env o #1) parms;
val Ts = map #2 xs;
val extraTs =
(subtract (op =) (fold Term.add_tfreesT Ts []) (Term.add_tfrees body []))
|> Library.sort_wrt #1 |> map TFree;
val predT = map Term.itselfT extraTs ---> Ts ---> bodyT;
val args = map Logic.mk_type extraTs @ map Free xs;
val head = Term.list_comb (Const (name, predT), args);
val statement = Object_Logic.ensure_propT thy head;
val ([pred_def], defs_thy) =
thy
|> bodyT = propT ? Sign.typed_print_translation [aprop_tr' (length args) name]
|> Sign.declare_const_global ((Binding.conceal binding, predT), NoSyn) |> snd
|> Global_Theory.add_defs false
[((Binding.conceal (Thm.def_binding binding), Logic.mk_equals (head, body)), [])];
val defs_ctxt = Proof_Context.init_global defs_thy |> Variable.declare_term head;
val cert = Thm.cterm_of defs_thy;
val intro = Goal.prove_global defs_thy [] norm_ts statement
(fn {context = ctxt, ...} =>
rewrite_goals_tac ctxt [pred_def] THEN
compose_tac (false, body_eq RS Drule.equal_elim_rule1, 1) 1 THEN
compose_tac (false, Conjunction.intr_balanced (map (Thm.assume o cert) norm_ts), 0) 1);
val conjuncts =
(Drule.equal_elim_rule2 OF
[body_eq, rewrite_rule defs_ctxt [pred_def] (Thm.assume (cert statement))])
|> Conjunction.elim_balanced (length ts);
val (_, axioms_ctxt) = defs_ctxt
|> Assumption.add_assumes (maps (#hyps o Thm.crep_thm) (defs @ conjuncts));
val axioms = ts ~~ conjuncts |> map (fn (t, ax) =>
Element.prove_witness axioms_ctxt t
(rewrite_goals_tac axioms_ctxt defs THEN compose_tac (false, ax, 0) 1));
in ((statement, intro, axioms), defs_thy) end;
in
(* main predicate definition function *)
fun define_preds binding parms (((exts, exts'), (ints, ints')), defs) thy =
let
val ctxt = Proof_Context.init_global thy;
val defs' = map (cterm_of thy #> Assumption.assume ctxt #> Drule.abs_def) defs;
val (a_pred, a_intro, a_axioms, thy'') =
if null exts then (NONE, NONE, [], thy)
else
let
val abinding =
if null ints then binding else Binding.suffix_name ("_" ^ axiomsN) binding;
val ((statement, intro, axioms), thy') =
thy
|> def_pred abinding parms defs' exts exts';
val (_, thy'') =
thy'
|> Sign.qualified_path true abinding
|> Global_Theory.note_thmss ""
[((Binding.conceal (Binding.name introN), []), [([intro], [Locale.unfold_add])])]
||> Sign.restore_naming thy';
in (SOME statement, SOME intro, axioms, thy'') end;
val (b_pred, b_intro, b_axioms, thy'''') =
if null ints then (NONE, NONE, [], thy'')
else
let
val ((statement, intro, axioms), thy''') =
thy''
|> def_pred binding parms defs' (ints @ the_list a_pred) (ints' @ the_list a_pred);
val ctxt''' = Proof_Context.init_global thy''';
val (_, thy'''') =
thy'''
|> Sign.qualified_path true binding
|> Global_Theory.note_thmss ""
[((Binding.conceal (Binding.name introN), []), [([intro], [Locale.intro_add])]),
((Binding.conceal (Binding.name axiomsN), []),
[(map (Drule.export_without_context o Element.conclude_witness ctxt''') axioms,
[])])]
||> Sign.restore_naming thy''';
in (SOME statement, SOME intro, axioms, thy'''') end;
in ((a_pred, a_intro, a_axioms), (b_pred, b_intro, b_axioms), thy'''') end;
end;
local
fun assumes_to_notes (Assumes asms) axms =
fold_map (fn (a, spec) => fn axs =>
let val (ps, qs) = chop (length spec) axs
in ((a, [(ps, [])]), qs) end) asms axms
|> apfst (curry Notes "")
| assumes_to_notes e axms = (e, axms);
fun defines_to_notes ctxt (Defines defs) =
Notes ("", map (fn (a, (def, _)) =>
(a, [([Assumption.assume ctxt (cterm_of (Proof_Context.theory_of ctxt) def)],
[(Attrib.internal o K) Locale.witness_add])])) defs)
| defines_to_notes _ e = e;
fun gen_add_locale prep_decl
before_exit binding raw_predicate_binding raw_import raw_body thy =
let
val name = Sign.full_name thy binding;
val _ = Locale.defined thy name andalso
error ("Duplicate definition of locale " ^ quote name);
val ((fixed, deps, body_elems, _), (parms, ctxt')) =
prep_decl raw_import I raw_body (Proof_Context.init_global thy);
val text as (((_, exts'), _), defs) = eval ctxt' deps body_elems;
val extraTs =
subtract (op =)
(fold Term.add_tfreesT (map snd parms) [])
(fold Term.add_tfrees exts' []);
val _ =
if null extraTs then ()
else warning ("Additional type variable(s) in locale specification " ^
Binding.print binding ^ ": " ^
commas (map (Syntax.string_of_typ ctxt' o TFree) (sort_wrt #1 extraTs)));
val predicate_binding =
if Binding.is_empty raw_predicate_binding then binding
else raw_predicate_binding;
val ((a_statement, a_intro, a_axioms), (b_statement, b_intro, b_axioms), thy') =
define_preds predicate_binding parms text thy;
val pred_ctxt = Proof_Context.init_global thy';
val a_satisfy = Element.satisfy_morphism a_axioms;
val b_satisfy = Element.satisfy_morphism b_axioms;
val params = fixed @
maps (fn Fixes fixes =>
map (fn (b, SOME T, mx) => ((Binding.name_of b, T), mx)) fixes | _ => []) body_elems;
val asm = if is_some b_statement then b_statement else a_statement;
val notes =
if is_some asm then
[("", [((Binding.conceal (Binding.suffix_name ("_" ^ axiomsN) binding), []),
[([Assumption.assume pred_ctxt (cterm_of thy' (the asm))],
[(Attrib.internal o K) Locale.witness_add])])])]
else [];
val notes' =
body_elems
|> map (defines_to_notes pred_ctxt)
|> map (Element.transform_ctxt a_satisfy)
|> (fn elems =>
fold_map assumes_to_notes elems (map (Element.conclude_witness pred_ctxt) a_axioms))
|> fst
|> map (Element.transform_ctxt b_satisfy)
|> map_filter (fn Notes notes => SOME notes | _ => NONE);
val deps' = map (fn (l, morph) => (l, morph $> b_satisfy)) deps;
val axioms = map (Element.conclude_witness pred_ctxt) b_axioms;
val loc_ctxt = thy'
|> Locale.register_locale binding (extraTs, params)
(asm, rev defs) (a_intro, b_intro) axioms [] (rev notes) (rev deps')
|> Named_Target.init before_exit name
|> fold (fn (kind, facts) => Local_Theory.notes_kind kind facts #> snd) notes';
in (name, loc_ctxt) end;
in
val add_locale = gen_add_locale cert_declaration;
val add_locale_cmd = gen_add_locale read_declaration;
end;
(*** Interpretation ***)
local
(* reading *)
fun prep_with_extended_syntax prep_prop deps ctxt props =
let
val deps_ctxt = fold Locale.activate_declarations deps ctxt;
in
map (prep_prop deps_ctxt o snd) props |> Syntax.check_terms deps_ctxt
|> Variable.export_terms deps_ctxt ctxt
end;
fun prep_interpretation prep_expr prep_prop prep_attr expression raw_eqns initial_ctxt =
let
val ((propss, deps, export), expr_ctxt) = prep_expr expression initial_ctxt;
val eqns = prep_with_extended_syntax prep_prop deps expr_ctxt raw_eqns;
val attrss = map (apsnd (map (prep_attr initial_ctxt)) o fst) raw_eqns;
val goal_ctxt = fold Variable.auto_fixes eqns expr_ctxt;
val export' = Variable.export_morphism goal_ctxt expr_ctxt;
in (((propss, deps, export, export'), (eqns, attrss)), goal_ctxt) end;
val cert_interpretation =
prep_interpretation cert_goal_expression (K I) (K I);
val read_interpretation =
prep_interpretation read_goal_expression Syntax.parse_prop Attrib.check_src;
(* generic interpretation machinery *)
fun meta_rewrite eqns ctxt =
(map (Local_Defs.meta_rewrite_rule ctxt #> Drule.abs_def) (maps snd eqns), ctxt);
fun note_eqns_register note activate deps witss eqns attrss export export' ctxt =
let
val facts = map2 (fn attrs => fn eqn =>
(attrs, [([Morphism.thm (export' $> export) eqn], [])])) attrss eqns;
val (eqns', ctxt') = ctxt
|> note Thm.lemmaK facts
|-> meta_rewrite;
val dep_morphs =
map2 (fn (dep, morph) => fn wits =>
(dep, morph $> Element.satisfy_morphism (map (Element.transform_witness export') wits)))
deps witss;
fun activate' dep_morph ctxt =
activate dep_morph
(Option.map (rpair true) (Element.eq_morphism (Proof_Context.theory_of ctxt) eqns'))
export ctxt;
in
ctxt'
|> fold activate' dep_morphs
end;
fun generic_interpretation prep_interpretation setup_proof note activate
expression raw_eqns initial_ctxt =
let
val (((propss, deps, export, export'), (eqns, attrss)), goal_ctxt) =
prep_interpretation expression raw_eqns initial_ctxt;
fun after_qed witss eqns =
note_eqns_register note activate deps witss eqns attrss export export';
in setup_proof after_qed propss eqns goal_ctxt end;
(* first dimension: proof vs. local theory *)
fun gen_interpret prep_interpretation expression raw_eqns int state =
let
val _ = Proof.assert_forward_or_chain state;
val ctxt = Proof.context_of state;
fun lift_after_qed after_qed witss eqns =
Proof.map_context (after_qed witss eqns) #> Proof.reset_facts;
fun setup_proof after_qed propss eqns goal_ctxt =
Element.witness_local_proof_eqs (lift_after_qed after_qed) "interpret"
propss eqns goal_ctxt int state;
in
generic_interpretation prep_interpretation setup_proof
Attrib.local_notes (Context.proof_map ooo Locale.add_registration) expression raw_eqns ctxt
end;
fun gen_local_theory_interpretation prep_interpretation activate expression raw_eqns lthy =
generic_interpretation prep_interpretation Element.witness_proof_eqs
Local_Theory.notes_kind (activate lthy) expression raw_eqns lthy;
(* second dimension: relation to underlying target *)
fun subscribe lthy =
if Named_Target.is_theory lthy
then Generic_Target.theory_registration
else Generic_Target.locale_dependency (Named_Target.the_name lthy);
fun subscribe_or_activate lthy =
if Named_Target.is_theory lthy
then subscribe lthy
else Local_Theory.activate;
fun subscribe_locale_only lthy =
let
val _ =
if Named_Target.is_theory lthy
then error "Not possible on level of global theory"
else ();
in subscribe lthy end;
(* special case: global sublocale command *)
fun gen_sublocale_global prep_loc prep_interpretation
before_exit raw_locale expression raw_eqns thy =
let
val lthy = Named_Target.init before_exit (prep_loc thy raw_locale) thy;
fun setup_proof after_qed =
Element.witness_proof_eqs
(fn wits => fn eqs => after_qed wits eqs #> Local_Theory.exit);
in
lthy |>
generic_interpretation prep_interpretation setup_proof
Local_Theory.notes_kind (subscribe_locale_only lthy) expression raw_eqns
end;
in
(* interfaces *)
fun interpret x = gen_interpret cert_interpretation x;
fun interpret_cmd x = gen_interpret read_interpretation x;
fun permanent_interpretation x =
gen_local_theory_interpretation cert_interpretation subscribe x;
fun ephemeral_interpretation x =
gen_local_theory_interpretation cert_interpretation (K Local_Theory.activate) x;
fun interpretation x =
gen_local_theory_interpretation cert_interpretation subscribe_or_activate x;
fun interpretation_cmd x =
gen_local_theory_interpretation read_interpretation subscribe_or_activate x;
fun sublocale x =
gen_local_theory_interpretation cert_interpretation subscribe_locale_only x;
fun sublocale_cmd x =
gen_local_theory_interpretation read_interpretation subscribe_locale_only x;
fun sublocale_global x = gen_sublocale_global (K I) cert_interpretation x;
fun sublocale_global_cmd x = gen_sublocale_global Locale.check read_interpretation x;
end;
(** Print the instances that would be activated by an interpretation
of the expression in the current context (clean = false) or in an
empty context (clean = true). **)
fun print_dependencies ctxt clean expression =
let
val ((_, deps, export), expr_ctxt) = read_goal_expression expression ctxt;
val export' = if clean then Morphism.identity else export;
in
Locale.print_dependencies expr_ctxt clean export' deps
end;
end;