replaced Source.of_list_limited by slightly more economic Source.of_string_limited;
(* Title: ZF/Perm.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
The theory underlying permutation groups
-- Composition of relations, the identity relation
-- Injections, surjections, bijections
-- Lemmas for the Schroeder-Bernstein Theorem
*)
header{*Injections, Surjections, Bijections, Composition*}
theory Perm imports func begin
definition
(*composition of relations and functions; NOT Suppes's relative product*)
comp :: "[i,i]=>i" (infixr "O" 60) where
"r O s == {xz : domain(s)*range(r) .
EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r}"
definition
(*the identity function for A*)
id :: "i=>i" where
"id(A) == (lam x:A. x)"
definition
(*one-to-one functions from A to B*)
inj :: "[i,i]=>i" where
"inj(A,B) == { f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x}"
definition
(*onto functions from A to B*)
surj :: "[i,i]=>i" where
"surj(A,B) == { f: A->B . ALL y:B. EX x:A. f`x=y}"
definition
(*one-to-one and onto functions*)
bij :: "[i,i]=>i" where
"bij(A,B) == inj(A,B) Int surj(A,B)"
subsection{*Surjections*}
(** Surjective function space **)
lemma surj_is_fun: "f: surj(A,B) ==> f: A->B"
apply (unfold surj_def)
apply (erule CollectD1)
done
lemma fun_is_surj: "f : Pi(A,B) ==> f: surj(A,range(f))"
apply (unfold surj_def)
apply (blast intro: apply_equality range_of_fun domain_type)
done
lemma surj_range: "f: surj(A,B) ==> range(f)=B"
apply (unfold surj_def)
apply (best intro: apply_Pair elim: range_type)
done
(** A function with a right inverse is a surjection **)
lemma f_imp_surjective:
"[| f: A->B; !!y. y:B ==> d(y): A; !!y. y:B ==> f`d(y) = y |]
==> f: surj(A,B)"
apply (simp add: surj_def, blast)
done
lemma lam_surjective:
"[| !!x. x:A ==> c(x): B;
!!y. y:B ==> d(y): A;
!!y. y:B ==> c(d(y)) = y
|] ==> (lam x:A. c(x)) : surj(A,B)"
apply (rule_tac d = d in f_imp_surjective)
apply (simp_all add: lam_type)
done
(*Cantor's theorem revisited*)
lemma cantor_surj: "f ~: surj(A,Pow(A))"
apply (unfold surj_def, safe)
apply (cut_tac cantor)
apply (best del: subsetI)
done
subsection{*Injections*}
(** Injective function space **)
lemma inj_is_fun: "f: inj(A,B) ==> f: A->B"
apply (unfold inj_def)
apply (erule CollectD1)
done
(*Good for dealing with sets of pairs, but a bit ugly in use [used in AC]*)
lemma inj_equality:
"[| <a,b>:f; <c,b>:f; f: inj(A,B) |] ==> a=c"
apply (unfold inj_def)
apply (blast dest: Pair_mem_PiD)
done
lemma inj_apply_equality: "[| f:inj(A,B); f`a=f`b; a:A; b:A |] ==> a=b"
by (unfold inj_def, blast)
(** A function with a left inverse is an injection **)
lemma f_imp_injective: "[| f: A->B; ALL x:A. d(f`x)=x |] ==> f: inj(A,B)"
apply (simp (no_asm_simp) add: inj_def)
apply (blast intro: subst_context [THEN box_equals])
done
lemma lam_injective:
"[| !!x. x:A ==> c(x): B;
!!x. x:A ==> d(c(x)) = x |]
==> (lam x:A. c(x)) : inj(A,B)"
apply (rule_tac d = d in f_imp_injective)
apply (simp_all add: lam_type)
done
subsection{*Bijections*}
lemma bij_is_inj: "f: bij(A,B) ==> f: inj(A,B)"
apply (unfold bij_def)
apply (erule IntD1)
done
lemma bij_is_surj: "f: bij(A,B) ==> f: surj(A,B)"
apply (unfold bij_def)
apply (erule IntD2)
done
(* f: bij(A,B) ==> f: A->B *)
lemmas bij_is_fun = bij_is_inj [THEN inj_is_fun, standard]
lemma lam_bijective:
"[| !!x. x:A ==> c(x): B;
!!y. y:B ==> d(y): A;
!!x. x:A ==> d(c(x)) = x;
!!y. y:B ==> c(d(y)) = y
|] ==> (lam x:A. c(x)) : bij(A,B)"
apply (unfold bij_def)
apply (blast intro!: lam_injective lam_surjective)
done
lemma RepFun_bijective: "(ALL y : x. EX! y'. f(y') = f(y))
==> (lam z:{f(y). y:x}. THE y. f(y) = z) : bij({f(y). y:x}, x)"
apply (rule_tac d = f in lam_bijective)
apply (auto simp add: the_equality2)
done
subsection{*Identity Function*}
lemma idI [intro!]: "a:A ==> <a,a> : id(A)"
apply (unfold id_def)
apply (erule lamI)
done
lemma idE [elim!]: "[| p: id(A); !!x.[| x:A; p=<x,x> |] ==> P |] ==> P"
by (simp add: id_def lam_def, blast)
lemma id_type: "id(A) : A->A"
apply (unfold id_def)
apply (rule lam_type, assumption)
done
lemma id_conv [simp]: "x:A ==> id(A)`x = x"
apply (unfold id_def)
apply (simp (no_asm_simp))
done
lemma id_mono: "A<=B ==> id(A) <= id(B)"
apply (unfold id_def)
apply (erule lam_mono)
done
lemma id_subset_inj: "A<=B ==> id(A): inj(A,B)"
apply (simp add: inj_def id_def)
apply (blast intro: lam_type)
done
lemmas id_inj = subset_refl [THEN id_subset_inj, standard]
lemma id_surj: "id(A): surj(A,A)"
apply (unfold id_def surj_def)
apply (simp (no_asm_simp))
done
lemma id_bij: "id(A): bij(A,A)"
apply (unfold bij_def)
apply (blast intro: id_inj id_surj)
done
lemma subset_iff_id: "A <= B <-> id(A) : A->B"
apply (unfold id_def)
apply (force intro!: lam_type dest: apply_type)
done
text{*@{term id} as the identity relation*}
lemma id_iff [simp]: "<x,y> \<in> id(A) <-> x=y & y \<in> A"
by auto
subsection{*Converse of a Function*}
lemma inj_converse_fun: "f: inj(A,B) ==> converse(f) : range(f)->A"
apply (unfold inj_def)
apply (simp (no_asm_simp) add: Pi_iff function_def)
apply (erule CollectE)
apply (simp (no_asm_simp) add: apply_iff)
apply (blast dest: fun_is_rel)
done
(** Equations for converse(f) **)
text{*The premises are equivalent to saying that f is injective...*}
lemma left_inverse_lemma:
"[| f: A->B; converse(f): C->A; a: A |] ==> converse(f)`(f`a) = a"
by (blast intro: apply_Pair apply_equality converseI)
lemma left_inverse [simp]: "[| f: inj(A,B); a: A |] ==> converse(f)`(f`a) = a"
by (blast intro: left_inverse_lemma inj_converse_fun inj_is_fun)
lemma left_inverse_eq:
"[|f \<in> inj(A,B); f ` x = y; x \<in> A|] ==> converse(f) ` y = x"
by auto
lemmas left_inverse_bij = bij_is_inj [THEN left_inverse, standard]
lemma right_inverse_lemma:
"[| f: A->B; converse(f): C->A; b: C |] ==> f`(converse(f)`b) = b"
by (rule apply_Pair [THEN converseD [THEN apply_equality]], auto)
(*Should the premises be f:surj(A,B), b:B for symmetry with left_inverse?
No: they would not imply that converse(f) was a function! *)
lemma right_inverse [simp]:
"[| f: inj(A,B); b: range(f) |] ==> f`(converse(f)`b) = b"
by (blast intro: right_inverse_lemma inj_converse_fun inj_is_fun)
lemma right_inverse_bij: "[| f: bij(A,B); b: B |] ==> f`(converse(f)`b) = b"
by (force simp add: bij_def surj_range)
subsection{*Converses of Injections, Surjections, Bijections*}
lemma inj_converse_inj: "f: inj(A,B) ==> converse(f): inj(range(f), A)"
apply (rule f_imp_injective)
apply (erule inj_converse_fun, clarify)
apply (rule right_inverse)
apply assumption
apply blast
done
lemma inj_converse_surj: "f: inj(A,B) ==> converse(f): surj(range(f), A)"
by (blast intro: f_imp_surjective inj_converse_fun left_inverse inj_is_fun
range_of_fun [THEN apply_type])
(*Adding this as an intro! rule seems to cause looping*)
lemma bij_converse_bij [TC]: "f: bij(A,B) ==> converse(f): bij(B,A)"
apply (unfold bij_def)
apply (fast elim: surj_range [THEN subst] inj_converse_inj inj_converse_surj)
done
subsection{*Composition of Two Relations*}
(*The inductive definition package could derive these theorems for (r O s)*)
lemma compI [intro]: "[| <a,b>:s; <b,c>:r |] ==> <a,c> : r O s"
by (unfold comp_def, blast)
lemma compE [elim!]:
"[| xz : r O s;
!!x y z. [| xz=<x,z>; <x,y>:s; <y,z>:r |] ==> P |]
==> P"
by (unfold comp_def, blast)
lemma compEpair:
"[| <a,c> : r O s;
!!y. [| <a,y>:s; <y,c>:r |] ==> P |]
==> P"
by (erule compE, simp)
lemma converse_comp: "converse(R O S) = converse(S) O converse(R)"
by blast
subsection{*Domain and Range -- see Suppes, Section 3.1*}
(*Boyer et al., Set Theory in First-Order Logic, JAR 2 (1986), 287-327*)
lemma range_comp: "range(r O s) <= range(r)"
by blast
lemma range_comp_eq: "domain(r) <= range(s) ==> range(r O s) = range(r)"
by (rule range_comp [THEN equalityI], blast)
lemma domain_comp: "domain(r O s) <= domain(s)"
by blast
lemma domain_comp_eq: "range(s) <= domain(r) ==> domain(r O s) = domain(s)"
by (rule domain_comp [THEN equalityI], blast)
lemma image_comp: "(r O s)``A = r``(s``A)"
by blast
subsection{*Other Results*}
lemma comp_mono: "[| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)"
by blast
(*composition preserves relations*)
lemma comp_rel: "[| s<=A*B; r<=B*C |] ==> (r O s) <= A*C"
by blast
(*associative law for composition*)
lemma comp_assoc: "(r O s) O t = r O (s O t)"
by blast
(*left identity of composition; provable inclusions are
id(A) O r <= r
and [| r<=A*B; B<=C |] ==> r <= id(C) O r *)
lemma left_comp_id: "r<=A*B ==> id(B) O r = r"
by blast
(*right identity of composition; provable inclusions are
r O id(A) <= r
and [| r<=A*B; A<=C |] ==> r <= r O id(C) *)
lemma right_comp_id: "r<=A*B ==> r O id(A) = r"
by blast
subsection{*Composition Preserves Functions, Injections, and Surjections*}
lemma comp_function: "[| function(g); function(f) |] ==> function(f O g)"
by (unfold function_def, blast)
(*Don't think the premises can be weakened much*)
lemma comp_fun: "[| g: A->B; f: B->C |] ==> (f O g) : A->C"
apply (auto simp add: Pi_def comp_function Pow_iff comp_rel)
apply (subst range_rel_subset [THEN domain_comp_eq], auto)
done
(*Thanks to the new definition of "apply", the premise f: B->C is gone!*)
lemma comp_fun_apply [simp]:
"[| g: A->B; a:A |] ==> (f O g)`a = f`(g`a)"
apply (frule apply_Pair, assumption)
apply (simp add: apply_def image_comp)
apply (blast dest: apply_equality)
done
(*Simplifies compositions of lambda-abstractions*)
lemma comp_lam:
"[| !!x. x:A ==> b(x): B |]
==> (lam y:B. c(y)) O (lam x:A. b(x)) = (lam x:A. c(b(x)))"
apply (subgoal_tac "(lam x:A. b(x)) : A -> B")
apply (rule fun_extension)
apply (blast intro: comp_fun lam_funtype)
apply (rule lam_funtype)
apply simp
apply (simp add: lam_type)
done
lemma comp_inj:
"[| g: inj(A,B); f: inj(B,C) |] ==> (f O g) : inj(A,C)"
apply (frule inj_is_fun [of g])
apply (frule inj_is_fun [of f])
apply (rule_tac d = "%y. converse (g) ` (converse (f) ` y)" in f_imp_injective)
apply (blast intro: comp_fun, simp)
done
lemma comp_surj:
"[| g: surj(A,B); f: surj(B,C) |] ==> (f O g) : surj(A,C)"
apply (unfold surj_def)
apply (blast intro!: comp_fun comp_fun_apply)
done
lemma comp_bij:
"[| g: bij(A,B); f: bij(B,C) |] ==> (f O g) : bij(A,C)"
apply (unfold bij_def)
apply (blast intro: comp_inj comp_surj)
done
subsection{*Dual Properties of @{term inj} and @{term surj}*}
text{*Useful for proofs from
D Pastre. Automatic theorem proving in set theory.
Artificial Intelligence, 10:1--27, 1978.*}
lemma comp_mem_injD1:
"[| (f O g): inj(A,C); g: A->B; f: B->C |] ==> g: inj(A,B)"
by (unfold inj_def, force)
lemma comp_mem_injD2:
"[| (f O g): inj(A,C); g: surj(A,B); f: B->C |] ==> f: inj(B,C)"
apply (unfold inj_def surj_def, safe)
apply (rule_tac x1 = x in bspec [THEN bexE])
apply (erule_tac [3] x1 = w in bspec [THEN bexE], assumption+, safe)
apply (rule_tac t = "op ` (g) " in subst_context)
apply (erule asm_rl bspec [THEN bspec, THEN mp])+
apply (simp (no_asm_simp))
done
lemma comp_mem_surjD1:
"[| (f O g): surj(A,C); g: A->B; f: B->C |] ==> f: surj(B,C)"
apply (unfold surj_def)
apply (blast intro!: comp_fun_apply [symmetric] apply_funtype)
done
lemma comp_mem_surjD2:
"[| (f O g): surj(A,C); g: A->B; f: inj(B,C) |] ==> g: surj(A,B)"
apply (unfold inj_def surj_def, safe)
apply (drule_tac x = "f`y" in bspec, auto)
apply (blast intro: apply_funtype)
done
subsubsection{*Inverses of Composition*}
(*left inverse of composition; one inclusion is
f: A->B ==> id(A) <= converse(f) O f *)
lemma left_comp_inverse: "f: inj(A,B) ==> converse(f) O f = id(A)"
apply (unfold inj_def, clarify)
apply (rule equalityI)
apply (auto simp add: apply_iff, blast)
done
(*right inverse of composition; one inclusion is
f: A->B ==> f O converse(f) <= id(B) *)
lemma right_comp_inverse:
"f: surj(A,B) ==> f O converse(f) = id(B)"
apply (simp add: surj_def, clarify)
apply (rule equalityI)
apply (best elim: domain_type range_type dest: apply_equality2)
apply (blast intro: apply_Pair)
done
subsubsection{*Proving that a Function is a Bijection*}
lemma comp_eq_id_iff:
"[| f: A->B; g: B->A |] ==> f O g = id(B) <-> (ALL y:B. f`(g`y)=y)"
apply (unfold id_def, safe)
apply (drule_tac t = "%h. h`y " in subst_context)
apply simp
apply (rule fun_extension)
apply (blast intro: comp_fun lam_type)
apply auto
done
lemma fg_imp_bijective:
"[| f: A->B; g: B->A; f O g = id(B); g O f = id(A) |] ==> f : bij(A,B)"
apply (unfold bij_def)
apply (simp add: comp_eq_id_iff)
apply (blast intro: f_imp_injective f_imp_surjective apply_funtype)
done
lemma nilpotent_imp_bijective: "[| f: A->A; f O f = id(A) |] ==> f : bij(A,A)"
by (blast intro: fg_imp_bijective)
lemma invertible_imp_bijective:
"[| converse(f): B->A; f: A->B |] ==> f : bij(A,B)"
by (simp add: fg_imp_bijective comp_eq_id_iff
left_inverse_lemma right_inverse_lemma)
subsubsection{*Unions of Functions*}
text{*See similar theorems in func.thy*}
(*Theorem by KG, proof by LCP*)
lemma inj_disjoint_Un:
"[| f: inj(A,B); g: inj(C,D); B Int D = 0 |]
==> (lam a: A Un C. if a:A then f`a else g`a) : inj(A Un C, B Un D)"
apply (rule_tac d = "%z. if z:B then converse (f) `z else converse (g) `z"
in lam_injective)
apply (auto simp add: inj_is_fun [THEN apply_type])
done
lemma surj_disjoint_Un:
"[| f: surj(A,B); g: surj(C,D); A Int C = 0 |]
==> (f Un g) : surj(A Un C, B Un D)"
apply (simp add: surj_def fun_disjoint_Un)
apply (blast dest!: domain_of_fun
intro!: fun_disjoint_apply1 fun_disjoint_apply2)
done
(*A simple, high-level proof; the version for injections follows from it,
using f:inj(A,B) <-> f:bij(A,range(f)) *)
lemma bij_disjoint_Un:
"[| f: bij(A,B); g: bij(C,D); A Int C = 0; B Int D = 0 |]
==> (f Un g) : bij(A Un C, B Un D)"
apply (rule invertible_imp_bijective)
apply (subst converse_Un)
apply (auto intro: fun_disjoint_Un bij_is_fun bij_converse_bij)
done
subsubsection{*Restrictions as Surjections and Bijections*}
lemma surj_image:
"f: Pi(A,B) ==> f: surj(A, f``A)"
apply (simp add: surj_def)
apply (blast intro: apply_equality apply_Pair Pi_type)
done
lemma restrict_image [simp]: "restrict(f,A) `` B = f `` (A Int B)"
by (auto simp add: restrict_def)
lemma restrict_inj:
"[| f: inj(A,B); C<=A |] ==> restrict(f,C): inj(C,B)"
apply (unfold inj_def)
apply (safe elim!: restrict_type2, auto)
done
lemma restrict_surj: "[| f: Pi(A,B); C<=A |] ==> restrict(f,C): surj(C, f``C)"
apply (insert restrict_type2 [THEN surj_image])
apply (simp add: restrict_image)
done
lemma restrict_bij:
"[| f: inj(A,B); C<=A |] ==> restrict(f,C): bij(C, f``C)"
apply (simp add: inj_def bij_def)
apply (blast intro: restrict_surj surj_is_fun)
done
subsubsection{*Lemmas for Ramsey's Theorem*}
lemma inj_weaken_type: "[| f: inj(A,B); B<=D |] ==> f: inj(A,D)"
apply (unfold inj_def)
apply (blast intro: fun_weaken_type)
done
lemma inj_succ_restrict:
"[| f: inj(succ(m), A) |] ==> restrict(f,m) : inj(m, A-{f`m})"
apply (rule restrict_bij [THEN bij_is_inj, THEN inj_weaken_type], assumption, blast)
apply (unfold inj_def)
apply (fast elim: range_type mem_irrefl dest: apply_equality)
done
lemma inj_extend:
"[| f: inj(A,B); a~:A; b~:B |]
==> cons(<a,b>,f) : inj(cons(a,A), cons(b,B))"
apply (unfold inj_def)
apply (force intro: apply_type simp add: fun_extend)
done
end