(* Title: Option.ML
ID: $Id$
Author: Tobias Nipkow
Copyright 1996 TU Muenchen
Derived rules
*)
Goal "(x ~= None) = (? y. x = Some y)";
by (induct_tac "x" 1);
by Auto_tac;
qed "not_None_eq";
AddIffs[not_None_eq];
Goal "(!y. x ~= Some y) = (x = None)";
by (induct_tac "x" 1);
by Auto_tac;
qed "not_Some_eq";
AddIffs[not_Some_eq];
section "case analysis in premises";
val prems = Goal
"[| opt = None ==> P; !!x. opt = Some x ==> P |] ==> P";
by (case_tac "opt = None" 1);
by (eresolve_tac prems 1);
by (dtac (not_None_eq RS iffD1) 1);
by (etac exE 1);
by (eresolve_tac prems 1);
qed "optionE";
val prems = Goal
"[| case x of None => P | Some y => Q y; \
\ [| x = None; P |] ==> R; \
\ !!y. [|x = Some y; Q y|] ==> R|] ==> R";
by (cut_facts_tac prems 1);
by (res_inst_tac [("opt","x")] optionE 1);
by (forward_tac prems 1);
by (forward_tac prems 3);
by Auto_tac;
qed "option_caseE";
section "the";
Goalw [the_def] "the (Some x) = x";
by (Simp_tac 1);
qed "the_Some";
Addsimps [the_Some];
section "option_map";
Goalw [option_map_def] "option_map f None = None";
by (Simp_tac 1);
qed "option_map_None";
Goalw [option_map_def] "option_map f (Some x) = Some (f x)";
by (Simp_tac 1);
qed "option_map_Some";
Addsimps [option_map_None, option_map_Some];
Goalw [option_map_def]
"(option_map f xo = Some y) = (? z. xo = Some z & f z = y)";
by (asm_full_simp_tac (simpset() addsplits [option.split]) 1);
qed "option_map_eq_Some";
AddIffs[option_map_eq_Some];
section "o2s";
Goal "[| !x:o2s A. P x; A = Some x |] ==> P x";
by Auto_tac;
qed "ospec";
AddDs[ospec];
claset_ref() := claset() addSD2 ("ospec", ospec);
Goal "x : o2s xo = (xo = Some x)";
by (exhaust_tac "xo" 1);
by Auto_tac;
qed "elem_o2s";
AddIffs [elem_o2s];
Goal "(o2s xo = {}) = (xo = None)";
by (exhaust_tac "xo" 1);
by Auto_tac;
qed "o2s_empty_eq";
Addsimps [o2s_empty_eq];