(* Title: HOL/ex/Adhoc_Overloading_Examples.thy
Author: Christian Sternagel
*)
section \<open>Ad Hoc Overloading\<close>
theory Adhoc_Overloading_Examples
imports
Main
"~~/src/HOL/Library/Infinite_Set"
"~~/src/Tools/Adhoc_Overloading"
begin
text \<open>Adhoc overloading allows to overload a constant depending on
its type. Typically this involves to introduce an uninterpreted
constant (used for input and output) and then add some variants (used
internally).\<close>
subsection \<open>Plain Ad Hoc Overloading\<close>
text \<open>Consider the type of first-order terms.\<close>
datatype ('a, 'b) "term" =
Var 'b |
Fun 'a "('a, 'b) term list"
text \<open>The set of variables of a term might be computed as follows.\<close>
fun term_vars :: "('a, 'b) term \<Rightarrow> 'b set" where
"term_vars (Var x) = {x}" |
"term_vars (Fun f ts) = \<Union>set (map term_vars ts)"
text \<open>However, also for \emph{rules} (i.e., pairs of terms) and term
rewrite systems (i.e., sets of rules), the set of variables makes
sense. Thus we introduce an unspecified constant \<open>vars\<close>.\<close>
consts vars :: "'a \<Rightarrow> 'b set"
text \<open>Which is then overloaded with variants for terms, rules, and TRSs.\<close>
adhoc_overloading
vars term_vars
value "vars (Fun ''f'' [Var 0, Var 1])"
fun rule_vars :: "('a, 'b) term \<times> ('a, 'b) term \<Rightarrow> 'b set" where
"rule_vars (l, r) = vars l \<union> vars r"
adhoc_overloading
vars rule_vars
value "vars (Var 1, Var 0)"
definition trs_vars :: "(('a, 'b) term \<times> ('a, 'b) term) set \<Rightarrow> 'b set" where
"trs_vars R = \<Union>(rule_vars ` R)"
adhoc_overloading
vars trs_vars
value "vars {(Var 1, Var 0)}"
text \<open>Sometimes it is necessary to add explicit type constraints
before a variant can be determined.\<close>
(*value "vars R" (*has multiple instances*)*)
value "vars (R :: (('a, 'b) term \<times> ('a, 'b) term) set)"
text \<open>It is also possible to remove variants.\<close>
no_adhoc_overloading
vars term_vars rule_vars
(*value "vars (Var 1)" (*does not have an instance*)*)
text \<open>As stated earlier, the overloaded constant is only used for
input and output. Internally, always a variant is used, as can be
observed by the configuration option \<open>show_variants\<close>.\<close>
adhoc_overloading
vars term_vars
declare [[show_variants]]
term "vars (Var 1)" (*which yields: "term_vars (Var 1)"*)
subsection \<open>Adhoc Overloading inside Locales\<close>
text \<open>As example we use permutations that are parametrized over an
atom type @{typ "'a"}.\<close>
definition perms :: "('a \<Rightarrow> 'a) set" where
"perms = {f. bij f \<and> finite {x. f x \<noteq> x}}"
typedef 'a perm = "perms :: ('a \<Rightarrow> 'a) set"
by standard (auto simp: perms_def)
text \<open>First we need some auxiliary lemmas.\<close>
lemma permsI [Pure.intro]:
assumes "bij f" and "MOST x. f x = x"
shows "f \<in> perms"
using assms by (auto simp: perms_def) (metis MOST_iff_finiteNeg)
lemma perms_imp_bij:
"f \<in> perms \<Longrightarrow> bij f"
by (simp add: perms_def)
lemma perms_imp_MOST_eq:
"f \<in> perms \<Longrightarrow> MOST x. f x = x"
by (simp add: perms_def) (metis MOST_iff_finiteNeg)
lemma id_perms [simp]:
"id \<in> perms"
"(\<lambda>x. x) \<in> perms"
by (auto simp: perms_def bij_def)
lemma perms_comp [simp]:
assumes f: "f \<in> perms" and g: "g \<in> perms"
shows "(f \<circ> g) \<in> perms"
apply (intro permsI bij_comp)
apply (rule perms_imp_bij [OF g])
apply (rule perms_imp_bij [OF f])
apply (rule MOST_rev_mp [OF perms_imp_MOST_eq [OF g]])
apply (rule MOST_rev_mp [OF perms_imp_MOST_eq [OF f]])
by simp
lemma perms_inv:
assumes f: "f \<in> perms"
shows "inv f \<in> perms"
apply (rule permsI)
apply (rule bij_imp_bij_inv)
apply (rule perms_imp_bij [OF f])
apply (rule MOST_mono [OF perms_imp_MOST_eq [OF f]])
apply (erule subst, rule inv_f_f)
apply (rule bij_is_inj [OF perms_imp_bij [OF f]])
done
lemma bij_Rep_perm: "bij (Rep_perm p)"
using Rep_perm [of p] unfolding perms_def by simp
instantiation perm :: (type) group_add
begin
definition "0 = Abs_perm id"
definition "- p = Abs_perm (inv (Rep_perm p))"
definition "p + q = Abs_perm (Rep_perm p \<circ> Rep_perm q)"
definition "(p1::'a perm) - p2 = p1 + - p2"
lemma Rep_perm_0: "Rep_perm 0 = id"
unfolding zero_perm_def by (simp add: Abs_perm_inverse)
lemma Rep_perm_add:
"Rep_perm (p1 + p2) = Rep_perm p1 \<circ> Rep_perm p2"
unfolding plus_perm_def by (simp add: Abs_perm_inverse Rep_perm)
lemma Rep_perm_uminus:
"Rep_perm (- p) = inv (Rep_perm p)"
unfolding uminus_perm_def by (simp add: Abs_perm_inverse perms_inv Rep_perm)
instance
apply standard
unfolding Rep_perm_inject [symmetric]
unfolding minus_perm_def
unfolding Rep_perm_add
unfolding Rep_perm_uminus
unfolding Rep_perm_0
apply (simp_all add: o_assoc inv_o_cancel [OF bij_is_inj [OF bij_Rep_perm]])
done
end
lemmas Rep_perm_simps =
Rep_perm_0
Rep_perm_add
Rep_perm_uminus
section \<open>Permutation Types\<close>
text \<open>We want to be able to apply permutations to arbitrary types. To
this end we introduce a constant \<open>PERMUTE\<close> together with
convenient infix syntax.\<close>
consts PERMUTE :: "'a perm \<Rightarrow> 'b \<Rightarrow> 'b" (infixr "\<bullet>" 75)
text \<open>Then we add a locale for types @{typ 'b} that support
appliciation of permutations.\<close>
locale permute =
fixes permute :: "'a perm \<Rightarrow> 'b \<Rightarrow> 'b"
assumes permute_zero [simp]: "permute 0 x = x"
and permute_plus [simp]: "permute (p + q) x = permute p (permute q x)"
begin
adhoc_overloading
PERMUTE permute
end
text \<open>Permuting atoms.\<close>
definition permute_atom :: "'a perm \<Rightarrow> 'a \<Rightarrow> 'a" where
"permute_atom p a = (Rep_perm p) a"
adhoc_overloading
PERMUTE permute_atom
interpretation atom_permute: permute permute_atom
by standard (simp_all add: permute_atom_def Rep_perm_simps)
text \<open>Permuting permutations.\<close>
definition permute_perm :: "'a perm \<Rightarrow> 'a perm \<Rightarrow> 'a perm" where
"permute_perm p q = p + q - p"
adhoc_overloading
PERMUTE permute_perm
interpretation perm_permute: permute permute_perm
apply standard
unfolding permute_perm_def
apply simp
apply (simp only: diff_conv_add_uminus minus_add add.assoc)
done
text \<open>Permuting functions.\<close>
locale fun_permute =
dom: permute perm1 + ran: permute perm2
for perm1 :: "'a perm \<Rightarrow> 'b \<Rightarrow> 'b"
and perm2 :: "'a perm \<Rightarrow> 'c \<Rightarrow> 'c"
begin
adhoc_overloading
PERMUTE perm1 perm2
definition permute_fun :: "'a perm \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'c)" where
"permute_fun p f = (\<lambda>x. p \<bullet> (f (-p \<bullet> x)))"
adhoc_overloading
PERMUTE permute_fun
end
sublocale fun_permute \<subseteq> permute permute_fun
by (unfold_locales, auto simp: permute_fun_def)
(metis dom.permute_plus minus_add)
lemma "(Abs_perm id :: nat perm) \<bullet> Suc 0 = Suc 0"
unfolding permute_atom_def
by (metis Rep_perm_0 id_apply zero_perm_def)
interpretation atom_fun_permute: fun_permute permute_atom permute_atom
by (unfold_locales)
adhoc_overloading
PERMUTE atom_fun_permute.permute_fun
lemma "(Abs_perm id :: 'a perm) \<bullet> id = id"
unfolding atom_fun_permute.permute_fun_def
unfolding permute_atom_def
by (metis Rep_perm_0 id_def inj_imp_inv_eq inj_on_id uminus_perm_def zero_perm_def)
end