(* Title: HOL/Old_Number_Theory/Finite2.thy
Authors: Jeremy Avigad, David Gray, and Adam Kramer
*)
section {*Finite Sets and Finite Sums*}
theory Finite2
imports IntFact "~~/src/HOL/Library/Infinite_Set"
begin
text{*
These are useful for combinatorial and number-theoretic counting
arguments.
*}
subsection {* Useful properties of sums and products *}
lemma setsum_same_function_zcong:
assumes a: "\<forall>x \<in> S. [f x = g x](mod m)"
shows "[setsum f S = setsum g S] (mod m)"
proof cases
assume "finite S"
thus ?thesis using a by induct (simp_all add: zcong_zadd)
next
assume "infinite S" thus ?thesis by simp
qed
lemma setprod_same_function_zcong:
assumes a: "\<forall>x \<in> S. [f x = g x](mod m)"
shows "[setprod f S = setprod g S] (mod m)"
proof cases
assume "finite S"
thus ?thesis using a by induct (simp_all add: zcong_zmult)
next
assume "infinite S" thus ?thesis by simp
qed
lemma setsum_const: "finite X ==> setsum (%x. (c :: int)) X = c * int(card X)"
apply (induct set: finite)
apply (auto simp add: distrib_right distrib_left)
done
lemma setsum_const2: "finite X ==> int (setsum (%x. (c :: nat)) X) =
int(c) * int(card X)"
apply (induct set: finite)
apply (auto simp add: distrib_left)
done
lemma setsum_const_mult: "finite A ==> setsum (%x. c * ((f x)::int)) A =
c * setsum f A"
by (induct set: finite) (auto simp add: distrib_left)
subsection {* Cardinality of explicit finite sets *}
lemma finite_surjI: "[| B \<subseteq> f ` A; finite A |] ==> finite B"
by (simp add: finite_subset)
lemma bdd_nat_set_l_finite: "finite {y::nat . y < x}"
by (rule bounded_nat_set_is_finite) blast
lemma bdd_nat_set_le_finite: "finite {y::nat . y \<le> x}"
proof -
have "{y::nat . y \<le> x} = {y::nat . y < Suc x}" by auto
then show ?thesis by (auto simp add: bdd_nat_set_l_finite)
qed
lemma bdd_int_set_l_finite: "finite {x::int. 0 \<le> x & x < n}"
apply (subgoal_tac " {(x :: int). 0 \<le> x & x < n} \<subseteq>
int ` {(x :: nat). x < nat n}")
apply (erule finite_surjI)
apply (auto simp add: bdd_nat_set_l_finite image_def)
apply (rule_tac x = "nat x" in exI, simp)
done
lemma bdd_int_set_le_finite: "finite {x::int. 0 \<le> x & x \<le> n}"
apply (subgoal_tac "{x. 0 \<le> x & x \<le> n} = {x. 0 \<le> x & x < n + 1}")
apply (erule ssubst)
apply (rule bdd_int_set_l_finite)
apply auto
done
lemma bdd_int_set_l_l_finite: "finite {x::int. 0 < x & x < n}"
proof -
have "{x::int. 0 < x & x < n} \<subseteq> {x::int. 0 \<le> x & x < n}"
by auto
then show ?thesis by (auto simp add: bdd_int_set_l_finite finite_subset)
qed
lemma bdd_int_set_l_le_finite: "finite {x::int. 0 < x & x \<le> n}"
proof -
have "{x::int. 0 < x & x \<le> n} \<subseteq> {x::int. 0 \<le> x & x \<le> n}"
by auto
then show ?thesis by (auto simp add: bdd_int_set_le_finite finite_subset)
qed
lemma card_bdd_nat_set_l: "card {y::nat . y < x} = x"
proof (induct x)
case 0
show "card {y::nat . y < 0} = 0" by simp
next
case (Suc n)
have "{y. y < Suc n} = insert n {y. y < n}"
by auto
then have "card {y. y < Suc n} = card (insert n {y. y < n})"
by auto
also have "... = Suc (card {y. y < n})"
by (rule card_insert_disjoint) (auto simp add: bdd_nat_set_l_finite)
finally show "card {y. y < Suc n} = Suc n"
using `card {y. y < n} = n` by simp
qed
lemma card_bdd_nat_set_le: "card { y::nat. y \<le> x} = Suc x"
proof -
have "{y::nat. y \<le> x} = { y::nat. y < Suc x}"
by auto
then show ?thesis by (auto simp add: card_bdd_nat_set_l)
qed
lemma card_bdd_int_set_l: "0 \<le> (n::int) ==> card {y. 0 \<le> y & y < n} = nat n"
proof -
assume "0 \<le> n"
have "inj_on (%y. int y) {y. y < nat n}"
by (auto simp add: inj_on_def)
hence "card (int ` {y. y < nat n}) = card {y. y < nat n}"
by (rule card_image)
also from `0 \<le> n` have "int ` {y. y < nat n} = {y. 0 \<le> y & y < n}"
apply (auto simp add: zless_nat_eq_int_zless image_def)
apply (rule_tac x = "nat x" in exI)
apply (auto simp add: nat_0_le)
done
also have "card {y. y < nat n} = nat n"
by (rule card_bdd_nat_set_l)
finally show "card {y. 0 \<le> y & y < n} = nat n" .
qed
lemma card_bdd_int_set_le: "0 \<le> (n::int) ==> card {y. 0 \<le> y & y \<le> n} =
nat n + 1"
proof -
assume "0 \<le> n"
moreover have "{y. 0 \<le> y & y \<le> n} = {y. 0 \<le> y & y < n+1}" by auto
ultimately show ?thesis
using card_bdd_int_set_l [of "n + 1"]
by (auto simp add: nat_add_distrib)
qed
lemma card_bdd_int_set_l_le: "0 \<le> (n::int) ==>
card {x. 0 < x & x \<le> n} = nat n"
proof -
assume "0 \<le> n"
have "inj_on (%x. x+1) {x. 0 \<le> x & x < n}"
by (auto simp add: inj_on_def)
hence "card ((%x. x+1) ` {x. 0 \<le> x & x < n}) =
card {x. 0 \<le> x & x < n}"
by (rule card_image)
also from `0 \<le> n` have "... = nat n"
by (rule card_bdd_int_set_l)
also have "(%x. x + 1) ` {x. 0 \<le> x & x < n} = {x. 0 < x & x<= n}"
apply (auto simp add: image_def)
apply (rule_tac x = "x - 1" in exI)
apply arith
done
finally show "card {x. 0 < x & x \<le> n} = nat n" .
qed
lemma card_bdd_int_set_l_l: "0 < (n::int) ==>
card {x. 0 < x & x < n} = nat n - 1"
proof -
assume "0 < n"
moreover have "{x. 0 < x & x < n} = {x. 0 < x & x \<le> n - 1}"
by simp
ultimately show ?thesis
using insert card_bdd_int_set_l_le [of "n - 1"]
by (auto simp add: nat_diff_distrib)
qed
lemma int_card_bdd_int_set_l_l: "0 < n ==>
int(card {x. 0 < x & x < n}) = n - 1"
apply (auto simp add: card_bdd_int_set_l_l)
done
lemma int_card_bdd_int_set_l_le: "0 \<le> n ==>
int(card {x. 0 < x & x \<le> n}) = n"
by (auto simp add: card_bdd_int_set_l_le)
end