discontinued raw symbols;
discontinued Symbol.source;
use initial Symbol.explode;
(* Title: FOL/FOL.thy
Author: Lawrence C Paulson and Markus Wenzel
*)
section \<open>Classical first-order logic\<close>
theory FOL
imports IFOL
keywords "print_claset" "print_induct_rules" :: diag
begin
ML_file "~~/src/Provers/classical.ML"
ML_file "~~/src/Provers/blast.ML"
ML_file "~~/src/Provers/clasimp.ML"
subsection \<open>The classical axiom\<close>
axiomatization where
classical: "(\<not> P \<Longrightarrow> P) \<Longrightarrow> P"
subsection \<open>Lemmas and proof tools\<close>
lemma ccontr: "(\<not> P \<Longrightarrow> False) \<Longrightarrow> P"
by (erule FalseE [THEN classical])
subsubsection \<open>Classical introduction rules for \<open>\<or>\<close> and \<open>\<exists>\<close>\<close>
lemma disjCI: "(\<not> Q \<Longrightarrow> P) \<Longrightarrow> P \<or> Q"
apply (rule classical)
apply (assumption | erule meta_mp | rule disjI1 notI)+
apply (erule notE disjI2)+
done
text \<open>Introduction rule involving only \<open>\<exists>\<close>\<close>
lemma ex_classical:
assumes r: "\<not> (\<exists>x. P(x)) \<Longrightarrow> P(a)"
shows "\<exists>x. P(x)"
apply (rule classical)
apply (rule exI, erule r)
done
text \<open>Version of above, simplifying \<open>\<not>\<exists>\<close> to \<open>\<forall>\<not>\<close>.\<close>
lemma exCI:
assumes r: "\<forall>x. \<not> P(x) \<Longrightarrow> P(a)"
shows "\<exists>x. P(x)"
apply (rule ex_classical)
apply (rule notI [THEN allI, THEN r])
apply (erule notE)
apply (erule exI)
done
lemma excluded_middle: "\<not> P \<or> P"
apply (rule disjCI)
apply assumption
done
lemma case_split [case_names True False]:
assumes r1: "P \<Longrightarrow> Q"
and r2: "\<not> P \<Longrightarrow> Q"
shows Q
apply (rule excluded_middle [THEN disjE])
apply (erule r2)
apply (erule r1)
done
ML \<open>
fun case_tac ctxt a fixes =
Rule_Insts.res_inst_tac ctxt [((("P", 0), Position.none), a)] fixes @{thm case_split};
\<close>
method_setup case_tac = \<open>
Args.goal_spec -- Scan.lift (Args.embedded_inner_syntax -- Parse.for_fixes) >>
(fn (quant, (s, fixes)) => fn ctxt => SIMPLE_METHOD'' quant (case_tac ctxt s fixes))
\<close> "case_tac emulation (dynamic instantiation!)"
subsection \<open>Special elimination rules\<close>
text \<open>Classical implies (\<open>\<longrightarrow>\<close>) elimination.\<close>
lemma impCE:
assumes major: "P \<longrightarrow> Q"
and r1: "\<not> P \<Longrightarrow> R"
and r2: "Q \<Longrightarrow> R"
shows R
apply (rule excluded_middle [THEN disjE])
apply (erule r1)
apply (rule r2)
apply (erule major [THEN mp])
done
text \<open>
This version of \<open>\<longrightarrow>\<close> elimination works on \<open>Q\<close> before \<open>P\<close>. It works best for those cases in which P holds ``almost everywhere''.
Can't install as default: would break old proofs.
\<close>
lemma impCE':
assumes major: "P \<longrightarrow> Q"
and r1: "Q \<Longrightarrow> R"
and r2: "\<not> P \<Longrightarrow> R"
shows R
apply (rule excluded_middle [THEN disjE])
apply (erule r2)
apply (rule r1)
apply (erule major [THEN mp])
done
text \<open>Double negation law.\<close>
lemma notnotD: "\<not> \<not> P \<Longrightarrow> P"
apply (rule classical)
apply (erule notE)
apply assumption
done
lemma contrapos2: "\<lbrakk>Q; \<not> P \<Longrightarrow> \<not> Q\<rbrakk> \<Longrightarrow> P"
apply (rule classical)
apply (drule (1) meta_mp)
apply (erule (1) notE)
done
subsubsection \<open>Tactics for implication and contradiction\<close>
text \<open>
Classical \<open>\<longleftrightarrow>\<close> elimination. Proof substitutes \<open>P = Q\<close> in
\<open>\<not> P \<Longrightarrow> \<not> Q\<close> and \<open>P \<Longrightarrow> Q\<close>.
\<close>
lemma iffCE:
assumes major: "P \<longleftrightarrow> Q"
and r1: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R"
and r2: "\<lbrakk>\<not> P; \<not> Q\<rbrakk> \<Longrightarrow> R"
shows R
apply (rule major [unfolded iff_def, THEN conjE])
apply (elim impCE)
apply (erule (1) r2)
apply (erule (1) notE)+
apply (erule (1) r1)
done
(*Better for fast_tac: needs no quantifier duplication!*)
lemma alt_ex1E:
assumes major: "\<exists>! x. P(x)"
and r: "\<And>x. \<lbrakk>P(x); \<forall>y y'. P(y) \<and> P(y') \<longrightarrow> y = y'\<rbrakk> \<Longrightarrow> R"
shows R
using major
proof (rule ex1E)
fix x
assume * : "\<forall>y. P(y) \<longrightarrow> y = x"
assume "P(x)"
then show R
proof (rule r)
{
fix y y'
assume "P(y)" and "P(y')"
with * have "x = y" and "x = y'"
by - (tactic "IntPr.fast_tac @{context} 1")+
then have "y = y'" by (rule subst)
} note r' = this
show "\<forall>y y'. P(y) \<and> P(y') \<longrightarrow> y = y'"
by (intro strip, elim conjE) (rule r')
qed
qed
lemma imp_elim: "P \<longrightarrow> Q \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"
by (rule classical) iprover
lemma swap: "\<not> P \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> R"
by (rule classical) iprover
section \<open>Classical Reasoner\<close>
ML \<open>
structure Cla = Classical
(
val imp_elim = @{thm imp_elim}
val not_elim = @{thm notE}
val swap = @{thm swap}
val classical = @{thm classical}
val sizef = size_of_thm
val hyp_subst_tacs = [hyp_subst_tac]
);
structure Basic_Classical: BASIC_CLASSICAL = Cla;
open Basic_Classical;
\<close>
(*Propositional rules*)
lemmas [intro!] = refl TrueI conjI disjCI impI notI iffI
and [elim!] = conjE disjE impCE FalseE iffCE
ML \<open>val prop_cs = claset_of @{context}\<close>
(*Quantifier rules*)
lemmas [intro!] = allI ex_ex1I
and [intro] = exI
and [elim!] = exE alt_ex1E
and [elim] = allE
ML \<open>val FOL_cs = claset_of @{context}\<close>
ML \<open>
structure Blast = Blast
(
structure Classical = Cla
val Trueprop_const = dest_Const @{const Trueprop}
val equality_name = @{const_name eq}
val not_name = @{const_name Not}
val notE = @{thm notE}
val ccontr = @{thm ccontr}
val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac
);
val blast_tac = Blast.blast_tac;
\<close>
lemma ex1_functional: "\<lbrakk>\<exists>! z. P(a,z); P(a,b); P(a,c)\<rbrakk> \<Longrightarrow> b = c"
by blast
text \<open>Elimination of \<open>True\<close> from assumptions:\<close>
lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P"
proof
assume "True \<Longrightarrow> PROP P"
from this and TrueI show "PROP P" .
next
assume "PROP P"
then show "PROP P" .
qed
lemma uncurry: "P \<longrightarrow> Q \<longrightarrow> R \<Longrightarrow> P \<and> Q \<longrightarrow> R"
by blast
lemma iff_allI: "(\<And>x. P(x) \<longleftrightarrow> Q(x)) \<Longrightarrow> (\<forall>x. P(x)) \<longleftrightarrow> (\<forall>x. Q(x))"
by blast
lemma iff_exI: "(\<And>x. P(x) \<longleftrightarrow> Q(x)) \<Longrightarrow> (\<exists>x. P(x)) \<longleftrightarrow> (\<exists>x. Q(x))"
by blast
lemma all_comm: "(\<forall>x y. P(x,y)) \<longleftrightarrow> (\<forall>y x. P(x,y))"
by blast
lemma ex_comm: "(\<exists>x y. P(x,y)) \<longleftrightarrow> (\<exists>y x. P(x,y))"
by blast
subsection \<open>Classical simplification rules\<close>
text \<open>
Avoids duplication of subgoals after \<open>expand_if\<close>, when the true and
false cases boil down to the same thing.
\<close>
lemma cases_simp: "(P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> Q) \<longleftrightarrow> Q"
by blast
subsubsection \<open>Miniscoping: pushing quantifiers in\<close>
text \<open>
We do NOT distribute of \<open>\<forall>\<close> over \<open>\<and>\<close>, or dually that of
\<open>\<exists>\<close> over \<open>\<or>\<close>.
Baaz and Leitsch, On Skolemization and Proof Complexity (1994) show that
this step can increase proof length!
\<close>
text \<open>Existential miniscoping.\<close>
lemma int_ex_simps:
"\<And>P Q. (\<exists>x. P(x) \<and> Q) \<longleftrightarrow> (\<exists>x. P(x)) \<and> Q"
"\<And>P Q. (\<exists>x. P \<and> Q(x)) \<longleftrightarrow> P \<and> (\<exists>x. Q(x))"
"\<And>P Q. (\<exists>x. P(x) \<or> Q) \<longleftrightarrow> (\<exists>x. P(x)) \<or> Q"
"\<And>P Q. (\<exists>x. P \<or> Q(x)) \<longleftrightarrow> P \<or> (\<exists>x. Q(x))"
by iprover+
text \<open>Classical rules.\<close>
lemma cla_ex_simps:
"\<And>P Q. (\<exists>x. P(x) \<longrightarrow> Q) \<longleftrightarrow> (\<forall>x. P(x)) \<longrightarrow> Q"
"\<And>P Q. (\<exists>x. P \<longrightarrow> Q(x)) \<longleftrightarrow> P \<longrightarrow> (\<exists>x. Q(x))"
by blast+
lemmas ex_simps = int_ex_simps cla_ex_simps
text \<open>Universal miniscoping.\<close>
lemma int_all_simps:
"\<And>P Q. (\<forall>x. P(x) \<and> Q) \<longleftrightarrow> (\<forall>x. P(x)) \<and> Q"
"\<And>P Q. (\<forall>x. P \<and> Q(x)) \<longleftrightarrow> P \<and> (\<forall>x. Q(x))"
"\<And>P Q. (\<forall>x. P(x) \<longrightarrow> Q) \<longleftrightarrow> (\<exists> x. P(x)) \<longrightarrow> Q"
"\<And>P Q. (\<forall>x. P \<longrightarrow> Q(x)) \<longleftrightarrow> P \<longrightarrow> (\<forall>x. Q(x))"
by iprover+
text \<open>Classical rules.\<close>
lemma cla_all_simps:
"\<And>P Q. (\<forall>x. P(x) \<or> Q) \<longleftrightarrow> (\<forall>x. P(x)) \<or> Q"
"\<And>P Q. (\<forall>x. P \<or> Q(x)) \<longleftrightarrow> P \<or> (\<forall>x. Q(x))"
by blast+
lemmas all_simps = int_all_simps cla_all_simps
subsubsection \<open>Named rewrite rules proved for IFOL\<close>
lemma imp_disj1: "(P \<longrightarrow> Q) \<or> R \<longleftrightarrow> (P \<longrightarrow> Q \<or> R)" by blast
lemma imp_disj2: "Q \<or> (P \<longrightarrow> R) \<longleftrightarrow> (P \<longrightarrow> Q \<or> R)" by blast
lemma de_Morgan_conj: "(\<not> (P \<and> Q)) \<longleftrightarrow> (\<not> P \<or> \<not> Q)" by blast
lemma not_imp: "\<not> (P \<longrightarrow> Q) \<longleftrightarrow> (P \<and> \<not> Q)" by blast
lemma not_iff: "\<not> (P \<longleftrightarrow> Q) \<longleftrightarrow> (P \<longleftrightarrow> \<not> Q)" by blast
lemma not_all: "(\<not> (\<forall>x. P(x))) \<longleftrightarrow> (\<exists>x. \<not> P(x))" by blast
lemma imp_all: "((\<forall>x. P(x)) \<longrightarrow> Q) \<longleftrightarrow> (\<exists>x. P(x) \<longrightarrow> Q)" by blast
lemmas meta_simps =
triv_forall_equality \<comment> \<open>prunes params\<close>
True_implies_equals \<comment> \<open>prune asms \<open>True\<close>\<close>
lemmas IFOL_simps =
refl [THEN P_iff_T] conj_simps disj_simps not_simps
imp_simps iff_simps quant_simps
lemma notFalseI: "\<not> False" by iprover
lemma cla_simps_misc:
"\<not> (P \<and> Q) \<longleftrightarrow> \<not> P \<or> \<not> Q"
"P \<or> \<not> P"
"\<not> P \<or> P"
"\<not> \<not> P \<longleftrightarrow> P"
"(\<not> P \<longrightarrow> P) \<longleftrightarrow> P"
"(\<not> P \<longleftrightarrow> \<not> Q) \<longleftrightarrow> (P \<longleftrightarrow> Q)" by blast+
lemmas cla_simps =
de_Morgan_conj de_Morgan_disj imp_disj1 imp_disj2
not_imp not_all not_ex cases_simp cla_simps_misc
ML_file "simpdata.ML"
simproc_setup defined_Ex ("\<exists>x. P(x)") = \<open>fn _ => Quantifier1.rearrange_ex\<close>
simproc_setup defined_All ("\<forall>x. P(x)") = \<open>fn _ => Quantifier1.rearrange_all\<close>
ML \<open>
(*intuitionistic simprules only*)
val IFOL_ss =
put_simpset FOL_basic_ss @{context}
addsimps @{thms meta_simps IFOL_simps int_ex_simps int_all_simps}
addsimprocs [@{simproc defined_All}, @{simproc defined_Ex}]
|> Simplifier.add_cong @{thm imp_cong}
|> simpset_of;
(*classical simprules too*)
val FOL_ss =
put_simpset IFOL_ss @{context}
addsimps @{thms cla_simps cla_ex_simps cla_all_simps}
|> simpset_of;
\<close>
setup \<open>
map_theory_simpset (put_simpset FOL_ss) #>
Simplifier.method_setup Splitter.split_modifiers
\<close>
ML_file "~~/src/Tools/eqsubst.ML"
subsection \<open>Other simple lemmas\<close>
lemma [simp]: "((P \<longrightarrow> R) \<longleftrightarrow> (Q \<longrightarrow> R)) \<longleftrightarrow> ((P \<longleftrightarrow> Q) \<or> R)"
by blast
lemma [simp]: "((P \<longrightarrow> Q) \<longleftrightarrow> (P \<longrightarrow> R)) \<longleftrightarrow> (P \<longrightarrow> (Q \<longleftrightarrow> R))"
by blast
lemma not_disj_iff_imp: "\<not> P \<or> Q \<longleftrightarrow> (P \<longrightarrow> Q)"
by blast
subsubsection \<open>Monotonicity of implications\<close>
lemma conj_mono: "\<lbrakk>P1 \<longrightarrow> Q1; P2 \<longrightarrow> Q2\<rbrakk> \<Longrightarrow> (P1 \<and> P2) \<longrightarrow> (Q1 \<and> Q2)"
by fast (*or (IntPr.fast_tac 1)*)
lemma disj_mono: "\<lbrakk>P1 \<longrightarrow> Q1; P2 \<longrightarrow> Q2\<rbrakk> \<Longrightarrow> (P1 \<or> P2) \<longrightarrow> (Q1 \<or> Q2)"
by fast (*or (IntPr.fast_tac 1)*)
lemma imp_mono: "\<lbrakk>Q1 \<longrightarrow> P1; P2 \<longrightarrow> Q2\<rbrakk> \<Longrightarrow> (P1 \<longrightarrow> P2) \<longrightarrow> (Q1 \<longrightarrow> Q2)"
by fast (*or (IntPr.fast_tac 1)*)
lemma imp_refl: "P \<longrightarrow> P"
by (rule impI)
text \<open>The quantifier monotonicity rules are also intuitionistically valid.\<close>
lemma ex_mono: "(\<And>x. P(x) \<longrightarrow> Q(x)) \<Longrightarrow> (\<exists>x. P(x)) \<longrightarrow> (\<exists>x. Q(x))"
by blast
lemma all_mono: "(\<And>x. P(x) \<longrightarrow> Q(x)) \<Longrightarrow> (\<forall>x. P(x)) \<longrightarrow> (\<forall>x. Q(x))"
by blast
subsection \<open>Proof by cases and induction\<close>
text \<open>Proper handling of non-atomic rule statements.\<close>
context
begin
qualified definition "induct_forall(P) \<equiv> \<forall>x. P(x)"
qualified definition "induct_implies(A, B) \<equiv> A \<longrightarrow> B"
qualified definition "induct_equal(x, y) \<equiv> x = y"
qualified definition "induct_conj(A, B) \<equiv> A \<and> B"
lemma induct_forall_eq: "(\<And>x. P(x)) \<equiv> Trueprop(induct_forall(\<lambda>x. P(x)))"
unfolding atomize_all induct_forall_def .
lemma induct_implies_eq: "(A \<Longrightarrow> B) \<equiv> Trueprop(induct_implies(A, B))"
unfolding atomize_imp induct_implies_def .
lemma induct_equal_eq: "(x \<equiv> y) \<equiv> Trueprop(induct_equal(x, y))"
unfolding atomize_eq induct_equal_def .
lemma induct_conj_eq: "(A &&& B) \<equiv> Trueprop(induct_conj(A, B))"
unfolding atomize_conj induct_conj_def .
lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq
lemmas induct_rulify [symmetric] = induct_atomize
lemmas induct_rulify_fallback =
induct_forall_def induct_implies_def induct_equal_def induct_conj_def
text \<open>Method setup.\<close>
ML_file "~~/src/Tools/induct.ML"
ML \<open>
structure Induct = Induct
(
val cases_default = @{thm case_split}
val atomize = @{thms induct_atomize}
val rulify = @{thms induct_rulify}
val rulify_fallback = @{thms induct_rulify_fallback}
val equal_def = @{thm induct_equal_def}
fun dest_def _ = NONE
fun trivial_tac _ _ = no_tac
);
\<close>
declare case_split [cases type: o]
end
ML_file "~~/src/Tools/case_product.ML"
hide_const (open) eq
end