(* Title: HOL/Matrix_LP/FloatSparseMatrixBuilder.ML
Author: Steven Obua
*)
signature FLOAT_SPARSE_MATRIX_BUILDER =
sig
include MATRIX_BUILDER
structure cplex : CPLEX
type float = Float.float
val approx_value : int -> (float -> float) -> string -> term * term
val approx_vector : int -> (float -> float) -> vector -> term * term
val approx_matrix : int -> (float -> float) -> matrix -> term * term
val mk_spvec_entry : int -> float -> term
val mk_spvec_entry' : int -> term -> term
val mk_spmat_entry : int -> term -> term
val spvecT: typ
val spmatT: typ
val v_elem_at : vector -> int -> string option
val m_elem_at : matrix -> int -> vector option
val v_only_elem : vector -> int option
val v_fold : (int * string -> 'a -> 'a) -> vector -> 'a -> 'a
val m_fold : (int * vector -> 'a -> 'a) -> matrix -> 'a -> 'a
val transpose_matrix : matrix -> matrix
val cut_vector : int -> vector -> vector
val cut_matrix : vector -> int option -> matrix -> matrix
val delete_matrix : int list -> matrix -> matrix
val cut_matrix' : int list -> matrix -> matrix
val delete_vector : int list -> vector -> vector
val cut_vector' : int list -> vector -> vector
val indices_of_matrix : matrix -> int list
val indices_of_vector : vector -> int list
(* cplexProg c A b *)
val cplexProg : vector -> matrix -> vector -> cplex.cplexProg * (string -> int)
(* dual_cplexProg c A b *)
val dual_cplexProg : vector -> matrix -> vector -> cplex.cplexProg * (string -> int)
end;
structure FloatSparseMatrixBuilder : FLOAT_SPARSE_MATRIX_BUILDER =
struct
type float = Float.float
structure Inttab = Table(type key = int val ord = rev_order o int_ord);
type vector = string Inttab.table
type matrix = vector Inttab.table
val spvec_elemT = HOLogic.mk_prodT (HOLogic.natT, HOLogic.realT);
val spvecT = HOLogic.listT spvec_elemT;
val spmat_elemT = HOLogic.mk_prodT (HOLogic.natT, spvecT);
val spmatT = HOLogic.listT spmat_elemT;
fun approx_value prec f =
FloatArith.approx_float prec (fn (x, y) => (f x, f y));
fun mk_spvec_entry i f =
HOLogic.mk_prod (HOLogic.mk_number HOLogic.natT i, FloatArith.mk_float f);
fun mk_spvec_entry' i x =
HOLogic.mk_prod (HOLogic.mk_number HOLogic.natT i, x);
fun mk_spmat_entry i e =
HOLogic.mk_prod (HOLogic.mk_number HOLogic.natT i, e);
fun approx_vector prec pprt vector =
let
fun app (index, s) (lower, upper) =
let
val (flower, fupper) = approx_value prec pprt s
val index = HOLogic.mk_number HOLogic.natT index
val elower = HOLogic.mk_prod (index, flower)
val eupper = HOLogic.mk_prod (index, fupper)
in (elower :: lower, eupper :: upper) end;
in
pairself (HOLogic.mk_list spvec_elemT) (Inttab.fold app vector ([], []))
end;
fun approx_matrix prec pprt vector =
let
fun app (index, v) (lower, upper) =
let
val (flower, fupper) = approx_vector prec pprt v
val index = HOLogic.mk_number HOLogic.natT index
val elower = HOLogic.mk_prod (index, flower)
val eupper = HOLogic.mk_prod (index, fupper)
in (elower :: lower, eupper :: upper) end;
in
pairself (HOLogic.mk_list spmat_elemT) (Inttab.fold app vector ([], []))
end;
exception Nat_expected of int;
val zero_interval = approx_value 1 I "0"
fun set_elem vector index str =
if index < 0 then
raise (Nat_expected index)
else if (approx_value 1 I str) = zero_interval then
vector
else
Inttab.update (index, str) vector
fun set_vector matrix index vector =
if index < 0 then
raise (Nat_expected index)
else if Inttab.is_empty vector then
matrix
else
Inttab.update (index, vector) matrix
val empty_matrix = Inttab.empty
val empty_vector = Inttab.empty
(* dual stuff *)
structure cplex = Cplex
fun transpose_matrix matrix =
let
fun upd j (i, s) =
Inttab.map_default (i, Inttab.empty) (Inttab.update (j, s));
fun updm (j, v) = Inttab.fold (upd j) v;
in Inttab.fold updm matrix empty_matrix end;
exception No_name of string;
exception Superfluous_constr_right_hand_sides
fun cplexProg c A b =
let
val ytable = Unsynchronized.ref Inttab.empty
fun indexof s =
if String.size s = 0 then raise (No_name s)
else case Int.fromString (String.extract(s, 1, NONE)) of
SOME i => i | NONE => raise (No_name s)
fun nameof i =
let
val s = "x" ^ string_of_int i
val _ = Unsynchronized.change ytable (Inttab.update (i, s))
in
s
end
fun split_numstr s =
if String.isPrefix "-" s then (false,String.extract(s, 1, NONE))
else if String.isPrefix "+" s then (true, String.extract(s, 1, NONE))
else (true, s)
fun mk_term index s =
let
val (p, s) = split_numstr s
val prod = cplex.cplexProd (cplex.cplexNum s, cplex.cplexVar (nameof index))
in
if p then prod else cplex.cplexNeg prod
end
fun vec2sum vector =
cplex.cplexSum (Inttab.fold (fn (index, s) => fn list => (mk_term index s) :: list) vector [])
fun mk_constr index vector c =
let
val s = case Inttab.lookup c index of SOME s => s | NONE => "0"
val (p, s) = split_numstr s
val num = if p then cplex.cplexNum s else cplex.cplexNeg (cplex.cplexNum s)
in
(NONE, cplex.cplexConstr (cplex.cplexLeq, (vec2sum vector, num)))
end
fun delete index c = Inttab.delete index c handle Inttab.UNDEF _ => c
val (list, b) = Inttab.fold
(fn (index, v) => fn (list, c) => ((mk_constr index v c)::list, delete index c))
A ([], b)
val _ = if Inttab.is_empty b then () else raise Superfluous_constr_right_hand_sides
fun mk_free y = cplex.cplexBounds (cplex.cplexNeg cplex.cplexInf, cplex.cplexLeq,
cplex.cplexVar y, cplex.cplexLeq,
cplex.cplexInf)
val yvars = Inttab.fold (fn (_, y) => fn l => (mk_free y)::l) (!ytable) []
val prog = cplex.cplexProg ("original", cplex.cplexMaximize (vec2sum c), list, yvars)
in
(prog, indexof)
end
fun dual_cplexProg c A b =
let
fun indexof s =
if String.size s = 0 then raise (No_name s)
else case Int.fromString (String.extract(s, 1, NONE)) of
SOME i => i | NONE => raise (No_name s)
fun nameof i = "y" ^ string_of_int i
fun split_numstr s =
if String.isPrefix "-" s then (false,String.extract(s, 1, NONE))
else if String.isPrefix "+" s then (true, String.extract(s, 1, NONE))
else (true, s)
fun mk_term index s =
let
val (p, s) = split_numstr s
val prod = cplex.cplexProd (cplex.cplexNum s, cplex.cplexVar (nameof index))
in
if p then prod else cplex.cplexNeg prod
end
fun vec2sum vector =
cplex.cplexSum (Inttab.fold (fn (index, s) => fn list => (mk_term index s)::list) vector [])
fun mk_constr index vector c =
let
val s = case Inttab.lookup c index of SOME s => s | NONE => "0"
val (p, s) = split_numstr s
val num = if p then cplex.cplexNum s else cplex.cplexNeg (cplex.cplexNum s)
in
(NONE, cplex.cplexConstr (cplex.cplexEq, (vec2sum vector, num)))
end
fun delete index c = Inttab.delete index c handle Inttab.UNDEF _ => c
val (list, c) = Inttab.fold
(fn (index, v) => fn (list, c) => ((mk_constr index v c)::list, delete index c))
(transpose_matrix A) ([], c)
val _ = if Inttab.is_empty c then () else raise Superfluous_constr_right_hand_sides
val prog = cplex.cplexProg ("dual", cplex.cplexMinimize (vec2sum b), list, [])
in
(prog, indexof)
end
fun cut_vector size v =
let
val count = Unsynchronized.ref 0;
fun app (i, s) = if (!count < size) then
(count := !count +1 ; Inttab.update (i, s))
else I
in
Inttab.fold app v empty_vector
end
fun cut_matrix vfilter vsize m =
let
fun app (i, v) =
if is_none (Inttab.lookup vfilter i) then I
else case vsize
of NONE => Inttab.update (i, v)
| SOME s => Inttab.update (i, cut_vector s v)
in Inttab.fold app m empty_matrix end
fun v_elem_at v i = Inttab.lookup v i
fun m_elem_at m i = Inttab.lookup m i
fun v_only_elem v =
case Inttab.min_key v of
NONE => NONE
| SOME vmin => (case Inttab.max_key v of
NONE => SOME vmin
| SOME vmax => if vmin = vmax then SOME vmin else NONE)
fun v_fold f = Inttab.fold f;
fun m_fold f = Inttab.fold f;
fun indices_of_vector v = Inttab.keys v
fun indices_of_matrix m = Inttab.keys m
fun delete_vector indices v = fold Inttab.delete indices v
fun delete_matrix indices m = fold Inttab.delete indices m
fun cut_matrix' indices _ = fold (fn i => fn m => (case Inttab.lookup m i of NONE => m | SOME v => Inttab.update (i, v) m)) indices Inttab.empty
fun cut_vector' indices _ = fold (fn i => fn v => (case Inttab.lookup v i of NONE => v | SOME x => Inttab.update (i, x) v)) indices Inttab.empty
end;