| author | immler | 
| Wed, 14 Nov 2018 01:31:55 +0000 | |
| changeset 69295 | b8b33ef47f40 | 
| parent 67613 | ce654b0e6d69 | 
| permissions | -rw-r--r-- | 
(*<*) theory Plus imports Main begin (*>*) text\<open>\noindent Define the following addition function\<close> primrec add :: "nat \<Rightarrow> nat \<Rightarrow> nat" where "add m 0 = m" | "add m (Suc n) = add (Suc m) n" text\<open>\noindent and prove\<close> (*<*) lemma [simp]: "\<forall>m. add m n = m+n" apply(induct_tac n) by(auto) (*>*) lemma "add m n = m+n" (*<*) by(simp) end (*>*)