(* Title: HOL/Tools/ATP/atp_problem_generate.ML
Author: Fabian Immler, TU Muenchen
Author: Makarius
Author: Jasmin Blanchette, TU Muenchen
Translation of HOL to FOL for Metis and Sledgehammer.
*)
signature ATP_PROBLEM_GENERATE =
sig
type ('a, 'b) atp_term = ('a, 'b) ATP_Problem.atp_term
type atp_connective = ATP_Problem.atp_connective
type ('a, 'b, 'c, 'd) atp_formula = ('a, 'b, 'c, 'd) ATP_Problem.atp_formula
type atp_format = ATP_Problem.atp_format
type atp_formula_role = ATP_Problem.atp_formula_role
type 'a atp_problem = 'a ATP_Problem.atp_problem
datatype mode = Metis | Sledgehammer | Sledgehammer_Completish | Exporter | Translator
datatype scope = Global | Local | Assum | Chained
datatype status =
General | Induction | Intro | Inductive | Elim | Simp | Non_Rec_Def |
Rec_Def
type stature = scope * status
datatype strictness = Strict | Non_Strict
datatype uniformity = Uniform | Non_Uniform
datatype ctr_optim = With_Ctr_Optim | Without_Ctr_Optim
datatype type_level =
All_Types |
Undercover_Types |
Nonmono_Types of strictness * uniformity |
Const_Types of ctr_optim |
No_Types
type type_enc
val no_lamsN : string
val hide_lamsN : string
val liftingN : string
val combsN : string
val combs_and_liftingN : string
val combs_or_liftingN : string
val lam_liftingN : string
val keep_lamsN : string
val schematic_var_prefix : string
val fixed_var_prefix : string
val tvar_prefix : string
val tfree_prefix : string
val const_prefix : string
val type_const_prefix : string
val class_prefix : string
val lam_lifted_prefix : string
val lam_lifted_mono_prefix : string
val lam_lifted_poly_prefix : string
val skolem_const_prefix : string
val old_skolem_const_prefix : string
val new_skolem_const_prefix : string
val combinator_prefix : string
val class_decl_prefix : string
val type_decl_prefix : string
val sym_decl_prefix : string
val datatype_decl_prefix : string
val class_memb_prefix : string
val guards_sym_formula_prefix : string
val tags_sym_formula_prefix : string
val fact_prefix : string
val conjecture_prefix : string
val helper_prefix : string
val subclass_prefix : string
val tcon_clause_prefix : string
val tfree_clause_prefix : string
val lam_fact_prefix : string
val typed_helper_suffix : string
val untyped_helper_suffix : string
val predicator_name : string
val app_op_name : string
val type_guard_name : string
val type_tag_name : string
val native_type_prefix : string
val prefixed_predicator_name : string
val prefixed_app_op_name : string
val prefixed_type_tag_name : string
val ascii_of : string -> string
val unascii_of : string -> string
val unprefix_and_unascii : string -> string -> string option
val proxy_table : (string * (string * (thm * (string * string)))) list
val proxify_const : string -> (string * string) option
val invert_const : string -> string
val unproxify_const : string -> string
val new_skolem_var_name_of_const : string -> string
val atp_logical_consts : string list
val atp_irrelevant_consts : string list
val atp_widely_irrelevant_consts : string list
val is_irrelevant_const : string -> bool
val is_widely_irrelevant_const : string -> bool
val atp_schematic_consts_of : term -> typ list Symtab.table
val is_type_enc_higher_order : type_enc -> bool
val is_type_enc_polymorphic : type_enc -> bool
val level_of_type_enc : type_enc -> type_level
val is_type_enc_sound : type_enc -> bool
val type_enc_of_string : strictness -> string -> type_enc
val adjust_type_enc : atp_format -> type_enc -> type_enc
val is_lambda_free : term -> bool
val mk_aconns :
atp_connective -> ('a, 'b, 'c, 'd) atp_formula list
-> ('a, 'b, 'c, 'd) atp_formula
val unmangled_const : string -> string * (string, 'b) atp_term list
val unmangled_const_name : string -> string list
val helper_table : ((string * bool) * (status * thm) list) list
val trans_lams_of_string :
Proof.context -> type_enc -> string -> term list -> term list * term list
val string_of_status : status -> string
val factsN : string
val prepare_atp_problem :
Proof.context -> atp_format -> atp_formula_role -> type_enc -> mode
-> string -> bool -> bool -> bool -> term list -> term
-> ((string * stature) * term) list
-> string atp_problem * string Symtab.table * (string * stature) list vector
* (string * term) list * int Symtab.table
val atp_problem_selection_weights : string atp_problem -> (string * real) list
val atp_problem_term_order_info : string atp_problem -> (string * int) list
end;
structure ATP_Problem_Generate : ATP_PROBLEM_GENERATE =
struct
open ATP_Util
open ATP_Problem
datatype mode = Metis | Sledgehammer | Sledgehammer_Completish | Exporter | Translator
datatype scope = Global | Local | Assum | Chained
datatype status =
General | Induction | Intro | Inductive | Elim | Simp | Non_Rec_Def | Rec_Def
type stature = scope * status
datatype order =
First_Order |
Higher_Order of thf_choice
datatype phantom_policy = Without_Phantom_Type_Vars | With_Phantom_Type_Vars
datatype polymorphism =
Type_Class_Polymorphic |
Raw_Polymorphic of phantom_policy |
Raw_Monomorphic |
Mangled_Monomorphic
datatype strictness = Strict | Non_Strict
datatype uniformity = Uniform | Non_Uniform
datatype ctr_optim = With_Ctr_Optim | Without_Ctr_Optim
datatype type_level =
All_Types |
Undercover_Types |
Nonmono_Types of strictness * uniformity |
Const_Types of ctr_optim |
No_Types
datatype type_enc =
Native of order * polymorphism * type_level |
Guards of polymorphism * type_level |
Tags of polymorphism * type_level
(* not clear whether ATPs prefer to have their negative variables tagged *)
val tag_neg_vars = false
fun is_type_enc_native (Native _) = true
| is_type_enc_native _ = false
fun is_type_enc_higher_order (Native (Higher_Order _, _, _)) = true
| is_type_enc_higher_order _ = false
fun polymorphism_of_type_enc (Native (_, poly, _)) = poly
| polymorphism_of_type_enc (Guards (poly, _)) = poly
| polymorphism_of_type_enc (Tags (poly, _)) = poly
fun is_type_enc_polymorphic type_enc =
case polymorphism_of_type_enc type_enc of
Raw_Polymorphic _ => true
| Type_Class_Polymorphic => true
| _ => false
fun is_type_enc_mangling type_enc =
polymorphism_of_type_enc type_enc = Mangled_Monomorphic
fun level_of_type_enc (Native (_, _, level)) = level
| level_of_type_enc (Guards (_, level)) = level
| level_of_type_enc (Tags (_, level)) = level
fun is_type_level_uniform (Nonmono_Types (_, Non_Uniform)) = false
| is_type_level_uniform Undercover_Types = false
| is_type_level_uniform _ = true
fun is_type_level_sound (Const_Types _) = false
| is_type_level_sound No_Types = false
| is_type_level_sound _ = true
val is_type_enc_sound = is_type_level_sound o level_of_type_enc
fun is_type_level_monotonicity_based (Nonmono_Types _) = true
| is_type_level_monotonicity_based _ = false
val no_lamsN = "no_lams" (* used internally; undocumented *)
val hide_lamsN = "hide_lams"
val liftingN = "lifting"
val combsN = "combs"
val combs_and_liftingN = "combs_and_lifting"
val combs_or_liftingN = "combs_or_lifting"
val keep_lamsN = "keep_lams"
val lam_liftingN = "lam_lifting" (* legacy FIXME: remove *)
val bound_var_prefix = "B_"
val all_bound_var_prefix = "A_"
val exist_bound_var_prefix = "E_"
val schematic_var_prefix = "V_"
val fixed_var_prefix = "v_"
val tvar_prefix = "T_"
val tfree_prefix = "tf_"
val const_prefix = "c_"
val type_const_prefix = "t_"
val native_type_prefix = "n_"
val class_prefix = "cl_"
(* Freshness almost guaranteed! *)
val atp_prefix = "ATP" ^ Long_Name.separator
val atp_weak_prefix = "ATP:"
val atp_weak_suffix = ":ATP"
val lam_lifted_prefix = atp_weak_prefix ^ "Lam"
val lam_lifted_mono_prefix = lam_lifted_prefix ^ "m"
val lam_lifted_poly_prefix = lam_lifted_prefix ^ "p"
val skolem_const_prefix = atp_prefix ^ "Sko"
val old_skolem_const_prefix = skolem_const_prefix ^ "o"
val new_skolem_const_prefix = skolem_const_prefix ^ "n"
val combinator_prefix = "COMB"
val class_decl_prefix = "cl_"
val type_decl_prefix = "ty_"
val sym_decl_prefix = "sy_"
val datatype_decl_prefix = "dt_"
val class_memb_prefix = "cm_"
val guards_sym_formula_prefix = "gsy_"
val tags_sym_formula_prefix = "tsy_"
val uncurried_alias_eq_prefix = "unc_"
val fact_prefix = "fact_"
val conjecture_prefix = "conj_"
val helper_prefix = "help_"
val subclass_prefix = "subcl_"
val tcon_clause_prefix = "tcon_"
val tfree_clause_prefix = "tfree_"
val lam_fact_prefix = "ATP.lambda_"
val typed_helper_suffix = "_T"
val untyped_helper_suffix = "_U"
val predicator_name = "pp"
val app_op_name = "aa"
val type_guard_name = "gg"
val type_tag_name = "tt"
val prefixed_predicator_name = const_prefix ^ predicator_name
val prefixed_app_op_name = const_prefix ^ app_op_name
val prefixed_type_tag_name = const_prefix ^ type_tag_name
(*Escaping of special characters.
Alphanumeric characters are left unchanged.
The character _ goes to __
Characters in the range ASCII space to / go to _A to _P, respectively.
Other characters go to _nnn where nnn is the decimal ASCII code.*)
val upper_a_minus_space = Char.ord #"A" - Char.ord #" "
fun ascii_of_char c =
if Char.isAlphaNum c then
String.str c
else if c = #"_" then
"__"
else if #" " <= c andalso c <= #"/" then
"_" ^ String.str (Char.chr (Char.ord c + upper_a_minus_space))
else
(* fixed width, in case more digits follow *)
"_" ^ stringN_of_int 3 (Char.ord c)
val ascii_of = String.translate ascii_of_char
(** Remove ASCII armoring from names in proof files **)
(* We don't raise error exceptions because this code can run inside a worker
thread. Also, the errors are impossible. *)
val unascii_of =
let
fun un rcs [] = String.implode (rev rcs)
| un rcs [#"_"] = un (#"_" :: rcs) [] (* ERROR *)
(* Three types of _ escapes: __, _A to _P, _nnn *)
| un rcs (#"_" :: #"_" :: cs) = un (#"_" :: rcs) cs
| un rcs (#"_" :: c :: cs) =
if #"A" <= c andalso c<= #"P" then
(* translation of #" " to #"/" *)
un (Char.chr (Char.ord c - upper_a_minus_space) :: rcs) cs
else
let val digits = List.take (c :: cs, 3) handle General.Subscript => [] in
case Int.fromString (String.implode digits) of
SOME n => un (Char.chr n :: rcs) (List.drop (cs, 2))
| NONE => un (c :: #"_" :: rcs) cs (* ERROR *)
end
| un rcs (c :: cs) = un (c :: rcs) cs
in un [] o String.explode end
(* If string s has the prefix s1, return the result of deleting it,
un-ASCII'd. *)
fun unprefix_and_unascii s1 s =
if String.isPrefix s1 s then
SOME (unascii_of (String.extract (s, size s1, NONE)))
else
NONE
val proxy_table =
[("c_False", (@{const_name False}, (@{thm fFalse_def},
("fFalse", @{const_name ATP.fFalse})))),
("c_True", (@{const_name True}, (@{thm fTrue_def},
("fTrue", @{const_name ATP.fTrue})))),
("c_Not", (@{const_name Not}, (@{thm fNot_def},
("fNot", @{const_name ATP.fNot})))),
("c_conj", (@{const_name conj}, (@{thm fconj_def},
("fconj", @{const_name ATP.fconj})))),
("c_disj", (@{const_name disj}, (@{thm fdisj_def},
("fdisj", @{const_name ATP.fdisj})))),
("c_implies", (@{const_name implies}, (@{thm fimplies_def},
("fimplies", @{const_name ATP.fimplies})))),
("equal", (@{const_name HOL.eq}, (@{thm fequal_def},
("fequal", @{const_name ATP.fequal})))),
("c_All", (@{const_name All}, (@{thm fAll_def},
("fAll", @{const_name ATP.fAll})))),
("c_Ex", (@{const_name Ex}, (@{thm fEx_def},
("fEx", @{const_name ATP.fEx}))))]
val proxify_const = AList.lookup (op =) proxy_table #> Option.map (snd o snd)
(* Readable names for the more common symbolic functions. Do not mess with the
table unless you know what you are doing. *)
val const_trans_table =
[(@{const_name False}, "False"),
(@{const_name True}, "True"),
(@{const_name Not}, "Not"),
(@{const_name conj}, "conj"),
(@{const_name disj}, "disj"),
(@{const_name implies}, "implies"),
(@{const_name HOL.eq}, "equal"),
(@{const_name All}, "All"),
(@{const_name Ex}, "Ex"),
(@{const_name If}, "If"),
(@{const_name Set.member}, "member"),
(@{const_name Meson.COMBI}, combinator_prefix ^ "I"),
(@{const_name Meson.COMBK}, combinator_prefix ^ "K"),
(@{const_name Meson.COMBB}, combinator_prefix ^ "B"),
(@{const_name Meson.COMBC}, combinator_prefix ^ "C"),
(@{const_name Meson.COMBS}, combinator_prefix ^ "S")]
|> Symtab.make
|> fold (Symtab.update o swap o snd o snd o snd) proxy_table
(* Invert the table of translations between Isabelle and ATPs. *)
val const_trans_table_inv =
const_trans_table |> Symtab.dest |> map swap |> Symtab.make
val const_trans_table_unprox =
Symtab.empty
|> fold (fn (_, (isa, (_, (_, atp)))) => Symtab.update (atp, isa)) proxy_table
val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
val unproxify_const = perhaps (Symtab.lookup const_trans_table_unprox)
fun lookup_const c =
case Symtab.lookup const_trans_table c of
SOME c' => c'
| NONE => ascii_of c
fun ascii_of_indexname (v, 0) = ascii_of v
| ascii_of_indexname (v, i) = ascii_of v ^ "_" ^ string_of_int i
fun make_bound_var x = bound_var_prefix ^ ascii_of x
fun make_all_bound_var x = all_bound_var_prefix ^ ascii_of x
fun make_exist_bound_var x = exist_bound_var_prefix ^ ascii_of x
fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
fun make_tvar (s, i) = tvar_prefix ^ ascii_of_indexname (unquote_tvar s, i)
fun make_tfree s = tfree_prefix ^ ascii_of (unquote_tvar s)
fun tvar_name ((x as (s, _)), _) = (make_tvar x, s)
(* "HOL.eq" and choice are mapped to the ATP's equivalents *)
local
val choice_const = (fst o dest_Const o HOLogic.choice_const) dummyT
fun default c = const_prefix ^ lookup_const c
in
fun make_fixed_const _ @{const_name HOL.eq} = tptp_old_equal
| make_fixed_const (SOME (Native (Higher_Order THF_With_Choice, _, _))) c =
if c = choice_const then tptp_choice else default c
| make_fixed_const _ c = default c
end
fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
fun make_class clas = class_prefix ^ ascii_of clas
fun new_skolem_var_name_of_const s =
let val ss = s |> space_explode Long_Name.separator in
nth ss (length ss - 2)
end
(* These are ignored anyway by the relevance filter (unless they appear in
higher-order places) but not by the monomorphizer. *)
val atp_logical_consts =
[@{const_name prop}, @{const_name Pure.conjunction}, @{const_name all}, @{const_name "==>"},
@{const_name "=="}, @{const_name Trueprop}, @{const_name All}, @{const_name Ex},
@{const_name Ex1}, @{const_name Ball}, @{const_name Bex}]
(* These are either simplified away by "Meson.presimplify" (most of the time) or
handled specially via "fFalse", "fTrue", ..., "fequal". *)
val atp_irrelevant_consts =
[@{const_name False}, @{const_name True}, @{const_name Not}, @{const_name conj},
@{const_name disj}, @{const_name implies}, @{const_name HOL.eq}, @{const_name If},
@{const_name Let}]
val atp_widely_irrelevant_consts = atp_logical_consts @ atp_irrelevant_consts
val atp_irrelevant_const_tab = Symtab.make (map (rpair ()) atp_irrelevant_consts)
val atp_widely_irrelevant_const_tab = Symtab.make (map (rpair ()) atp_widely_irrelevant_consts)
val is_irrelevant_const = Symtab.defined atp_irrelevant_const_tab
val is_widely_irrelevant_const = Symtab.defined atp_widely_irrelevant_const_tab
fun add_schematic_const (x as (_, T)) =
Monomorph.typ_has_tvars T ? Symtab.insert_list (op =) x
val add_schematic_consts_of =
Term.fold_aterms (fn Const (x as (s, _)) =>
not (member (op =) atp_widely_irrelevant_consts s)
? add_schematic_const x
| _ => I)
fun atp_schematic_consts_of t = add_schematic_consts_of t Symtab.empty
val tvar_a_str = "'a"
val tvar_a_z = ((tvar_a_str, 0), HOLogic.typeS)
val tvar_a = TVar tvar_a_z
val tvar_a_name = tvar_name tvar_a_z
val itself_name = `make_fixed_type_const @{type_name itself}
val TYPE_name = `(make_fixed_const NONE) @{const_name TYPE}
val tvar_a_atype = AType (tvar_a_name, [])
val a_itself_atype = AType (itself_name, [tvar_a_atype])
(** Definitions and functions for FOL clauses and formulas for TPTP **)
(** Type class membership **)
(* In our data structures, [] exceptionally refers to the top class, not to
the empty class. *)
val class_of_types = the_single @{sort type}
fun normalize_classes cls = if member (op =) cls class_of_types then [] else cls
(* Arity of type constructor "s :: (arg1, ..., argN) res" *)
fun make_axiom_tcon_clause (s, name, (cl, args)) =
let
val args = args |> map normalize_classes
val tvars =
1 upto length args |> map (fn j => TVar ((tvar_a_str, j), @{sort type}))
in (name, args ~~ tvars, (cl, Type (s, tvars))) end
(* Generate all pairs (tycon, class, sorts) such that tycon belongs to class in
theory thy provided its arguments have the corresponding sorts. *)
fun class_pairs thy tycons cls =
let
val alg = Sign.classes_of thy
fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
fun add_class tycon cl =
cons (cl, domain_sorts tycon cl)
handle Sorts.CLASS_ERROR _ => I
fun try_classes tycon = (tycon, fold (add_class tycon) cls [])
in map try_classes tycons end
(* Proving one (tycon, class) membership may require proving others, so
iterate. *)
fun all_class_pairs _ _ [] = ([], [])
| all_class_pairs thy tycons cls =
let
fun maybe_insert_class s =
(s <> class_of_types andalso not (member (op =) cls s))
? insert (op =) s
val pairs = class_pairs thy tycons cls
val new_cls =
[] |> fold (fold (fold (fold maybe_insert_class) o snd) o snd) pairs
val (cls', pairs') = all_class_pairs thy tycons new_cls
in (cls' @ cls, union (op =) pairs' pairs) end
fun tcon_clause _ _ [] = []
| tcon_clause seen n ((_, []) :: rest) = tcon_clause seen n rest
| tcon_clause seen n ((tcons, (ar as (cl, _)) :: ars) :: rest) =
if cl = class_of_types then
tcon_clause seen n ((tcons, ars) :: rest)
else if member (op =) seen cl then
(* multiple clauses for the same (tycon, cl) pair *)
make_axiom_tcon_clause (tcons,
lookup_const tcons ^ "___" ^ ascii_of cl ^ "_" ^ string_of_int n,
ar) ::
tcon_clause seen (n + 1) ((tcons, ars) :: rest)
else
make_axiom_tcon_clause (tcons, lookup_const tcons ^ "___" ^ ascii_of cl,
ar) ::
tcon_clause (cl :: seen) n ((tcons, ars) :: rest)
fun make_tcon_clauses thy tycons =
all_class_pairs thy tycons ##> tcon_clause [] 1
(** Isabelle class relations **)
(* Generate a list ("sub", "supers") such that "sub" is a proper subclass of all
"supers". *)
fun make_subclass_pairs thy subs supers =
let
val class_less = curry (Sorts.class_less (Sign.classes_of thy))
fun supers_of sub = (sub, filter (class_less sub) supers)
in map supers_of subs |> filter_out (null o snd) end
(* intermediate terms *)
datatype iterm =
IConst of (string * string) * typ * typ list |
IVar of (string * string) * typ |
IApp of iterm * iterm |
IAbs of ((string * string) * typ) * iterm
fun ityp_of (IConst (_, T, _)) = T
| ityp_of (IVar (_, T)) = T
| ityp_of (IApp (t1, _)) = snd (dest_funT (ityp_of t1))
| ityp_of (IAbs ((_, T), tm)) = T --> ityp_of tm
(*gets the head of a combinator application, along with the list of arguments*)
fun strip_iterm_comb u =
let
fun stripc (IApp (t, u), ts) = stripc (t, u :: ts)
| stripc x = x
in stripc (u, []) end
fun atomic_types_of T = fold_atyps (insert (op =)) T []
fun new_skolem_const_name s num_T_args =
[new_skolem_const_prefix, s, string_of_int num_T_args]
|> Long_Name.implode
val alpha_to_beta = Logic.varifyT_global @{typ "'a => 'b"}
val alpha_to_beta_to_alpha_to_beta = alpha_to_beta --> alpha_to_beta
fun robust_const_type thy s =
if s = app_op_name then
alpha_to_beta_to_alpha_to_beta
else if String.isPrefix lam_lifted_prefix s then
alpha_to_beta
else
(* Old Skolems throw a "TYPE" exception here, which will be caught. *)
s |> Sign.the_const_type thy
fun ary_of (Type (@{type_name fun}, [_, T])) = 1 + ary_of T
| ary_of _ = 0
(* This function only makes sense if "T" is as general as possible. *)
fun robust_const_type_args thy (s, T) =
if s = app_op_name then
let val (T1, T2) = T |> domain_type |> dest_funT in [T1, T2] end
else if String.isPrefix old_skolem_const_prefix s then
[] |> Term.add_tvarsT T |> rev |> map TVar
else if String.isPrefix lam_lifted_prefix s then
if String.isPrefix lam_lifted_poly_prefix s then
let val (T1, T2) = T |> dest_funT in [T1, T2] end
else
[]
else
(s, T) |> Sign.const_typargs thy
(* Converts an Isabelle/HOL term (with combinators) into an intermediate term.
Also accumulates sort infomation. *)
fun iterm_of_term thy type_enc bs (P $ Q) =
let
val (P', P_atomics_Ts) = iterm_of_term thy type_enc bs P
val (Q', Q_atomics_Ts) = iterm_of_term thy type_enc bs Q
in (IApp (P', Q'), union (op =) P_atomics_Ts Q_atomics_Ts) end
| iterm_of_term thy type_enc _ (Const (c, T)) =
(IConst (`(make_fixed_const (SOME type_enc)) c, T,
robust_const_type_args thy (c, T)),
atomic_types_of T)
| iterm_of_term _ _ _ (Free (s, T)) =
(IConst (`make_fixed_var s, T, []), atomic_types_of T)
| iterm_of_term _ type_enc _ (Var (v as (s, _), T)) =
(if String.isPrefix Meson_Clausify.new_skolem_var_prefix s then
let
val Ts = T |> strip_type |> swap |> op ::
val s' = new_skolem_const_name s (length Ts)
in IConst (`(make_fixed_const (SOME type_enc)) s', T, Ts) end
else
IVar ((make_schematic_var v, s), T), atomic_types_of T)
| iterm_of_term _ _ bs (Bound j) =
nth bs j |> (fn (_, (name, T)) => (IConst (name, T, []), atomic_types_of T))
| iterm_of_term thy type_enc bs (Abs (s, T, t)) =
let
fun vary s = s |> AList.defined (op =) bs s ? vary o Symbol.bump_string
val s = vary s
val name = `make_bound_var s
val (tm, atomic_Ts) = iterm_of_term thy type_enc ((s, (name, T)) :: bs) t
in (IAbs ((name, T), tm), union (op =) atomic_Ts (atomic_types_of T)) end
(* "_query" and "_at" are for the ASCII-challenged Metis and Mirabelle. *)
val queries = ["?", "_query"]
val ats = ["@", "_at"]
fun try_unsuffixes ss s =
fold (fn s' => fn NONE => try (unsuffix s') s | some => some) ss NONE
fun type_enc_of_string strictness s =
(case try (unprefix "tc_") s of
SOME s => (SOME Type_Class_Polymorphic, s)
| NONE =>
case try (unprefix "poly_") s of
(* It's still unclear whether all TFF1 implementations will support
type signatures such as "!>[A : $tType] : $o", with phantom type
variables. *)
SOME s => (SOME (Raw_Polymorphic With_Phantom_Type_Vars), s)
| NONE =>
case try (unprefix "raw_mono_") s of
SOME s => (SOME Raw_Monomorphic, s)
| NONE =>
case try (unprefix "mono_") s of
SOME s => (SOME Mangled_Monomorphic, s)
| NONE => (NONE, s))
||> (fn s =>
case try_unsuffixes queries s of
SOME s =>
(case try_unsuffixes queries s of
SOME s => (Nonmono_Types (strictness, Non_Uniform), s)
| NONE => (Nonmono_Types (strictness, Uniform), s))
| NONE =>
(case try_unsuffixes ats s of
SOME s => (Undercover_Types, s)
| NONE => (All_Types, s)))
|> (fn (poly, (level, core)) =>
case (core, (poly, level)) of
("native", (SOME poly, _)) =>
(case (poly, level) of
(Mangled_Monomorphic, _) =>
if is_type_level_uniform level then
Native (First_Order, Mangled_Monomorphic, level)
else
raise Same.SAME
| (Raw_Monomorphic, _) => raise Same.SAME
| (poly, All_Types) => Native (First_Order, poly, All_Types))
| ("native_higher", (SOME poly, _)) =>
(case (poly, level) of
(_, Nonmono_Types _) => raise Same.SAME
| (_, Undercover_Types) => raise Same.SAME
| (Mangled_Monomorphic, _) =>
if is_type_level_uniform level then
Native (Higher_Order THF_With_Choice, Mangled_Monomorphic,
level)
else
raise Same.SAME
| (poly as Raw_Polymorphic _, All_Types) =>
Native (Higher_Order THF_With_Choice, poly, All_Types)
| _ => raise Same.SAME)
| ("guards", (SOME poly, _)) =>
if (poly = Mangled_Monomorphic andalso
level = Undercover_Types) orelse
poly = Type_Class_Polymorphic then
raise Same.SAME
else
Guards (poly, level)
| ("tags", (SOME poly, _)) =>
if (poly = Mangled_Monomorphic andalso
level = Undercover_Types) orelse
poly = Type_Class_Polymorphic then
raise Same.SAME
else
Tags (poly, level)
| ("args", (SOME poly, All_Types (* naja *))) =>
if poly = Type_Class_Polymorphic then raise Same.SAME
else Guards (poly, Const_Types Without_Ctr_Optim)
| ("args", (SOME poly, Nonmono_Types (_, Uniform) (* naja *))) =>
if poly = Mangled_Monomorphic orelse
poly = Type_Class_Polymorphic then
raise Same.SAME
else
Guards (poly, Const_Types With_Ctr_Optim)
| ("erased", (NONE, All_Types (* naja *))) =>
Guards (Raw_Polymorphic With_Phantom_Type_Vars, No_Types)
| _ => raise Same.SAME)
handle Same.SAME => error ("Unknown type encoding: " ^ quote s ^ ".")
fun adjust_order THF_Without_Choice (Higher_Order _) =
Higher_Order THF_Without_Choice
| adjust_order _ type_enc = type_enc
fun no_type_classes Type_Class_Polymorphic =
Raw_Polymorphic With_Phantom_Type_Vars
| no_type_classes poly = poly
fun adjust_type_enc (THF (Polymorphic, choice)) (Native (order, poly, level)) =
Native (adjust_order choice order, no_type_classes poly, level)
| adjust_type_enc (THF (Monomorphic, choice)) (Native (order, _, level)) =
Native (adjust_order choice order, Mangled_Monomorphic, level)
| adjust_type_enc (TFF Monomorphic) (Native (_, _, level)) =
Native (First_Order, Mangled_Monomorphic, level)
| adjust_type_enc (DFG Polymorphic) (Native (_, poly, level)) =
Native (First_Order, poly, level)
| adjust_type_enc (DFG Monomorphic) (Native (_, _, level)) =
Native (First_Order, Mangled_Monomorphic, level)
| adjust_type_enc (TFF _) (Native (_, poly, level)) =
Native (First_Order, no_type_classes poly, level)
| adjust_type_enc format (Native (_, poly, level)) =
adjust_type_enc format (Guards (no_type_classes poly, level))
| adjust_type_enc CNF_UEQ (type_enc as Guards stuff) =
(if is_type_enc_sound type_enc then Tags else Guards) stuff
| adjust_type_enc _ type_enc = type_enc
fun is_lambda_free t =
case t of
@{const Not} $ t1 => is_lambda_free t1
| Const (@{const_name All}, _) $ Abs (_, _, t') => is_lambda_free t'
| Const (@{const_name All}, _) $ t1 => is_lambda_free t1
| Const (@{const_name Ex}, _) $ Abs (_, _, t') => is_lambda_free t'
| Const (@{const_name Ex}, _) $ t1 => is_lambda_free t1
| @{const HOL.conj} $ t1 $ t2 => is_lambda_free t1 andalso is_lambda_free t2
| @{const HOL.disj} $ t1 $ t2 => is_lambda_free t1 andalso is_lambda_free t2
| @{const HOL.implies} $ t1 $ t2 => is_lambda_free t1 andalso is_lambda_free t2
| Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
is_lambda_free t1 andalso is_lambda_free t2
| _ => not (exists_subterm (fn Abs _ => true | _ => false) t)
fun simple_translate_lambdas do_lambdas ctxt t =
if is_lambda_free t then
t
else
let
fun trans Ts t =
case t of
@{const Not} $ t1 => @{const Not} $ trans Ts t1
| (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
t0 $ Abs (s, T, trans (T :: Ts) t')
| (t0 as Const (@{const_name All}, _)) $ t1 =>
trans Ts (t0 $ eta_expand Ts t1 1)
| (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
t0 $ Abs (s, T, trans (T :: Ts) t')
| (t0 as Const (@{const_name Ex}, _)) $ t1 =>
trans Ts (t0 $ eta_expand Ts t1 1)
| (t0 as @{const HOL.conj}) $ t1 $ t2 =>
t0 $ trans Ts t1 $ trans Ts t2
| (t0 as @{const HOL.disj}) $ t1 $ t2 =>
t0 $ trans Ts t1 $ trans Ts t2
| (t0 as @{const HOL.implies}) $ t1 $ t2 =>
t0 $ trans Ts t1 $ trans Ts t2
| (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
$ t1 $ t2 =>
t0 $ trans Ts t1 $ trans Ts t2
| _ =>
if not (exists_subterm (fn Abs _ => true | _ => false) t) then t
else t |> Envir.eta_contract |> do_lambdas ctxt Ts
val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
in t |> trans [] |> singleton (Variable.export_terms ctxt' ctxt) end
fun do_cheaply_conceal_lambdas Ts (t1 $ t2) =
do_cheaply_conceal_lambdas Ts t1
$ do_cheaply_conceal_lambdas Ts t2
| do_cheaply_conceal_lambdas Ts (Abs (_, T, t)) =
Const (lam_lifted_poly_prefix ^ serial_string (),
T --> fastype_of1 (T :: Ts, t))
| do_cheaply_conceal_lambdas _ t = t
fun concealed_bound_name j = atp_weak_prefix ^ string_of_int j
fun conceal_bounds Ts t =
subst_bounds (map (Free o apfst concealed_bound_name)
(0 upto length Ts - 1 ~~ Ts), t)
fun reveal_bounds Ts =
subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
(0 upto length Ts - 1 ~~ Ts))
fun do_introduce_combinators ctxt Ts t =
let val thy = Proof_Context.theory_of ctxt in
t |> conceal_bounds Ts
|> cterm_of thy
|> Meson_Clausify.introduce_combinators_in_cterm
|> prop_of |> Logic.dest_equals |> snd
|> reveal_bounds Ts
end
(* A type variable of sort "{}" will make abstraction fail. *)
handle THM _ => t |> do_cheaply_conceal_lambdas Ts
val introduce_combinators = simple_translate_lambdas do_introduce_combinators
fun constify_lifted (t $ u) = constify_lifted t $ constify_lifted u
| constify_lifted (Abs (s, T, t)) = Abs (s, T, constify_lifted t)
| constify_lifted (Free (x as (s, _))) =
(if String.isPrefix lam_lifted_prefix s then Const else Free) x
| constify_lifted t = t
fun lift_lams_part_1 ctxt type_enc =
map hol_close_form #> rpair ctxt
#-> Lambda_Lifting.lift_lambdas
(SOME ((if is_type_enc_polymorphic type_enc then
lam_lifted_poly_prefix
else
lam_lifted_mono_prefix) ^ "_a"))
Lambda_Lifting.is_quantifier
#> fst
fun lift_lams_part_2 ctxt (facts, lifted) =
(facts, lifted)
(* Lambda-lifting sometimes leaves some lambdas around; we need some way to
get rid of them *)
|> pairself (map (introduce_combinators ctxt))
|> pairself (map constify_lifted)
(* Requires bound variables not to clash with any schematic variables (as
should be the case right after lambda-lifting). *)
|>> map (hol_open_form (unprefix hol_close_form_prefix))
||> map (hol_open_form I)
fun lift_lams ctxt = lift_lams_part_2 ctxt oo lift_lams_part_1 ctxt
fun intentionalize_def (Const (@{const_name All}, _) $ Abs (_, _, t)) =
intentionalize_def t
| intentionalize_def (Const (@{const_name HOL.eq}, _) $ t $ u) =
let
fun lam T t = Abs (Name.uu, T, t)
val (head, args) = strip_comb t ||> rev
val head_T = fastype_of head
val n = length args
val arg_Ts = head_T |> binder_types |> take n |> rev
val u = u |> subst_atomic (args ~~ map Bound (0 upto n - 1))
in HOLogic.eq_const head_T $ head $ fold lam arg_Ts u end
| intentionalize_def t = t
type ifact =
{name : string,
stature : stature,
role : atp_formula_role,
iformula : (string * string, typ, iterm, string * string) atp_formula,
atomic_types : typ list}
fun update_iformula f ({name, stature, role, iformula, atomic_types} : ifact) =
{name = name, stature = stature, role = role, iformula = f iformula,
atomic_types = atomic_types} : ifact
fun ifact_lift f ({iformula, ...} : ifact) = f iformula
fun insert_type thy get_T x xs =
let val T = get_T x in
if exists (type_instance thy T o get_T) xs then xs
else x :: filter_out (type_generalization thy T o get_T) xs
end
fun chop_fun 0 T = ([], T)
| chop_fun n (Type (@{type_name fun}, [dom_T, ran_T])) =
chop_fun (n - 1) ran_T |>> cons dom_T
| chop_fun _ T = ([], T)
fun filter_type_args thy ctrss type_enc s ary T_args =
let val poly = polymorphism_of_type_enc type_enc in
if s = type_tag_name then (* FIXME: why not "type_guard_name" as well? *)
T_args
else case type_enc of
Native (_, Raw_Polymorphic _, _) => T_args
| Native (_, Type_Class_Polymorphic, _) => T_args
| _ =>
let
fun gen_type_args _ _ [] = []
| gen_type_args keep strip_ty T_args =
let
val U = robust_const_type thy s
val (binder_Us, body_U) = strip_ty U
val in_U_vars = fold Term.add_tvarsT binder_Us []
val out_U_vars = Term.add_tvarsT body_U []
fun filt (U_var, T) =
if keep (member (op =) in_U_vars U_var,
member (op =) out_U_vars U_var) then
T
else
dummyT
val U_args = (s, U) |> robust_const_type_args thy
in map (filt o apfst dest_TVar) (U_args ~~ T_args) end
handle TYPE _ => T_args
fun is_always_ctr (s', T') =
s' = s andalso type_equiv thy (T', robust_const_type thy s')
val noninfer_type_args = gen_type_args (not o fst) (chop_fun ary)
val ctr_infer_type_args = gen_type_args fst strip_type
val level = level_of_type_enc type_enc
in
if level = No_Types orelse s = @{const_name HOL.eq} orelse
(case level of Const_Types _ => s = app_op_name | _ => false) then
[]
else if poly = Mangled_Monomorphic then
T_args
else if level = All_Types then
case type_enc of
Guards _ => noninfer_type_args T_args
| Tags _ => []
else if level = Undercover_Types then
noninfer_type_args T_args
else if level <> Const_Types Without_Ctr_Optim andalso
exists (exists is_always_ctr) ctrss then
ctr_infer_type_args T_args
else
T_args
end
end
val fused_infinite_type_name = "ATP.fused_inf" (* shouldn't clash *)
val fused_infinite_type = Type (fused_infinite_type_name, [])
fun raw_ho_type_of_typ type_enc =
let
fun term (Type (s, Ts)) =
AType (case (is_type_enc_higher_order type_enc, s) of
(true, @{type_name bool}) => `I tptp_bool_type
| (true, @{type_name fun}) => `I tptp_fun_type
| _ => if s = fused_infinite_type_name andalso
is_type_enc_native type_enc then
`I tptp_individual_type
else
`make_fixed_type_const s,
map term Ts)
| term (TFree (s, _)) = AType (`make_tfree s, [])
| term (TVar z) = AType (tvar_name z, [])
in term end
fun atp_term_of_ho_type (AType (name, tys)) =
ATerm ((name, []), map atp_term_of_ho_type tys)
| atp_term_of_ho_type _ = raise Fail "unexpected type"
fun ho_type_of_type_arg type_enc T =
if T = dummyT then NONE else SOME (raw_ho_type_of_typ type_enc T)
(* This shouldn't clash with anything else. *)
val uncurried_alias_sep = "\000"
val mangled_type_sep = "\001"
val ascii_of_uncurried_alias_sep = ascii_of uncurried_alias_sep
fun generic_mangled_type_name f (AType (name, [])) = f name
| generic_mangled_type_name f (AType (name, tys)) =
f name ^ "(" ^ space_implode "," (map (generic_mangled_type_name f) tys)
^ ")"
| generic_mangled_type_name _ _ = raise Fail "unexpected type"
fun mangled_type type_enc =
generic_mangled_type_name fst o raw_ho_type_of_typ type_enc
fun make_native_type s =
if s = tptp_bool_type orelse s = tptp_fun_type orelse
s = tptp_individual_type then
s
else
native_type_prefix ^ ascii_of s
fun native_ho_type_of_raw_ho_type type_enc pred_sym ary =
let
fun to_mangled_atype ty =
AType ((make_native_type (generic_mangled_type_name fst ty),
generic_mangled_type_name snd ty), [])
fun to_poly_atype (AType (name, tys)) =
AType (name, map to_poly_atype tys)
| to_poly_atype _ = raise Fail "unexpected type"
val to_atype =
if is_type_enc_polymorphic type_enc then to_poly_atype
else to_mangled_atype
fun to_afun f1 f2 tys = AFun (f1 (hd tys), f2 (nth tys 1))
fun to_fo 0 ty = if pred_sym then bool_atype else to_atype ty
| to_fo ary (AType (_, tys)) = to_afun to_atype (to_fo (ary - 1)) tys
| to_fo _ _ = raise Fail "unexpected type"
fun to_ho (ty as AType ((s, _), tys)) =
if s = tptp_fun_type then to_afun to_ho to_ho tys else to_atype ty
| to_ho _ = raise Fail "unexpected type"
in if is_type_enc_higher_order type_enc then to_ho else to_fo ary end
fun native_ho_type_of_typ type_enc pred_sym ary =
native_ho_type_of_raw_ho_type type_enc pred_sym ary
o raw_ho_type_of_typ type_enc
(* Make atoms for sorted type variables. *)
fun generic_add_sorts_on_type _ [] = I
| generic_add_sorts_on_type T (s :: ss) =
generic_add_sorts_on_type T ss
#> (if s = the_single @{sort type} then I else insert (op =) (s, T))
fun add_sorts_on_tfree (T as TFree (_, S)) = generic_add_sorts_on_type T S
| add_sorts_on_tfree _ = I
fun add_sorts_on_tvar (T as TVar (_, S)) = generic_add_sorts_on_type T S
| add_sorts_on_tvar _ = I
fun process_type_args type_enc T_args =
if is_type_enc_native type_enc then
(map (native_ho_type_of_typ type_enc false 0) T_args, [])
else
([], map_filter (Option.map atp_term_of_ho_type
o ho_type_of_type_arg type_enc) T_args)
fun class_atom type_enc (cl, T) =
let
val cl = `make_class cl
val (ty_args, tm_args) = process_type_args type_enc [T]
val tm_args =
tm_args @
(case type_enc of
Native (First_Order, Raw_Polymorphic Without_Phantom_Type_Vars, _) =>
[ATerm ((TYPE_name, ty_args), [])]
| _ => [])
in AAtom (ATerm ((cl, ty_args), tm_args)) end
fun class_atoms type_enc (cls, T) =
map (fn cl => class_atom type_enc (cl, T)) cls
fun class_membs_of_types type_enc add_sorts_on_typ Ts =
[] |> (polymorphism_of_type_enc type_enc <> Type_Class_Polymorphic andalso
level_of_type_enc type_enc <> No_Types)
? fold add_sorts_on_typ Ts
fun mk_aconns c = split_last #> uncurry (fold_rev (mk_aconn c))
fun mk_ahorn [] phi = phi
| mk_ahorn phis psi = AConn (AImplies, [mk_aconns AAnd phis, psi])
fun mk_aquant _ [] phi = phi
| mk_aquant q xs (phi as AQuant (q', xs', phi')) =
if q = q' then AQuant (q, xs @ xs', phi') else AQuant (q, xs, phi)
| mk_aquant q xs phi = AQuant (q, xs, phi)
fun mk_atyquant _ [] phi = phi
| mk_atyquant q xs (phi as ATyQuant (q', xs', phi')) =
if q = q' then ATyQuant (q, xs @ xs', phi') else ATyQuant (q, xs, phi)
| mk_atyquant q xs phi = ATyQuant (q, xs, phi)
fun close_universally add_term_vars phi =
let
fun add_formula_vars bounds (ATyQuant (_, _, phi)) =
add_formula_vars bounds phi
| add_formula_vars bounds (AQuant (_, xs, phi)) =
add_formula_vars (map fst xs @ bounds) phi
| add_formula_vars bounds (AConn (_, phis)) =
fold (add_formula_vars bounds) phis
| add_formula_vars bounds (AAtom tm) = add_term_vars bounds tm
in mk_aquant AForall (rev (add_formula_vars [] phi [])) phi end
fun add_term_vars bounds (ATerm ((name as (s, _), _), tms)) =
(if is_tptp_variable s andalso
not (String.isPrefix tvar_prefix s) andalso
not (member (op =) bounds name) then
insert (op =) (name, NONE)
else
I)
#> fold (add_term_vars bounds) tms
| add_term_vars bounds (AAbs (((name, _), tm), args)) =
add_term_vars (name :: bounds) tm #> fold (add_term_vars bounds) args
fun close_formula_universally phi = close_universally add_term_vars phi
fun add_iterm_vars bounds (IApp (tm1, tm2)) =
fold (add_iterm_vars bounds) [tm1, tm2]
| add_iterm_vars _ (IConst _) = I
| add_iterm_vars bounds (IVar (name, T)) =
not (member (op =) bounds name) ? insert (op =) (name, SOME T)
| add_iterm_vars bounds (IAbs (_, tm)) = add_iterm_vars bounds tm
fun aliased_uncurried ary (s, s') =
(s ^ ascii_of_uncurried_alias_sep ^ string_of_int ary, s' ^ string_of_int ary)
fun unaliased_uncurried (s, s') =
case space_explode uncurried_alias_sep s of
[_] => (s, s')
| [s1, s2] => (s1, unsuffix s2 s')
| _ => raise Fail "ill-formed explicit application alias"
fun raw_mangled_const_name type_name ty_args (s, s') =
let
fun type_suffix f g =
fold_rev (curry (op ^) o g o prefix mangled_type_sep o type_name f)
ty_args ""
in (s ^ type_suffix fst ascii_of, s' ^ type_suffix snd I) end
fun mangled_const_name type_enc =
map_filter (ho_type_of_type_arg type_enc)
#> raw_mangled_const_name generic_mangled_type_name
val parse_mangled_ident =
Scan.many1 (not o member (op =) ["(", ")", ","]) >> implode
fun parse_mangled_type x =
(parse_mangled_ident
-- Scan.optional ($$ "(" |-- Scan.optional parse_mangled_types [] --| $$ ")")
[] >> (ATerm o apfst (rpair []))) x
and parse_mangled_types x =
(parse_mangled_type ::: Scan.repeat ($$ "," |-- parse_mangled_type)) x
fun unmangled_type s =
s |> suffix ")" |> raw_explode
|> Scan.finite Symbol.stopper
(Scan.error (!! (fn _ => raise Fail ("unrecognized mangled type " ^
quote s)) parse_mangled_type))
|> fst
fun unmangled_const_name s =
(s, s) |> unaliased_uncurried |> fst |> space_explode mangled_type_sep
fun unmangled_const s =
let val ss = unmangled_const_name s in
(hd ss, map unmangled_type (tl ss))
end
val unmangled_invert_const = invert_const o hd o unmangled_const_name
fun introduce_proxies_in_iterm type_enc =
let
fun tweak_ho_quant ho_quant T [IAbs _] = IConst (`I ho_quant, T, [])
| tweak_ho_quant ho_quant (T as Type (_, [p_T as Type (_, [x_T, _]), _]))
_ =
(* Eta-expand "!!" and "??", to work around LEO-II 1.2.8 parser
limitation. This works in conjuction with special code in
"ATP_Problem" that uses the syntactic sugar "!" and "?" whenever
possible. *)
IAbs ((`I "P", p_T),
IApp (IConst (`I ho_quant, T, []),
IAbs ((`I "X", x_T),
IApp (IConst (`I "P", p_T, []),
IConst (`I "X", x_T, [])))))
| tweak_ho_quant _ _ _ = raise Fail "unexpected type for quantifier"
fun intro top_level args (IApp (tm1, tm2)) =
IApp (intro top_level (tm2 :: args) tm1, intro false [] tm2)
| intro top_level args (IConst (name as (s, _), T, T_args)) =
(case proxify_const s of
SOME proxy_base =>
if top_level orelse is_type_enc_higher_order type_enc then
case (top_level, s) of
(_, "c_False") => IConst (`I tptp_false, T, [])
| (_, "c_True") => IConst (`I tptp_true, T, [])
| (false, "c_Not") => IConst (`I tptp_not, T, [])
| (false, "c_conj") => IConst (`I tptp_and, T, [])
| (false, "c_disj") => IConst (`I tptp_or, T, [])
| (false, "c_implies") => IConst (`I tptp_implies, T, [])
| (false, "c_All") => tweak_ho_quant tptp_ho_forall T args
| (false, "c_Ex") => tweak_ho_quant tptp_ho_exists T args
| (false, s) =>
if is_tptp_equal s then
if length args = 2 then
IConst (`I tptp_equal, T, [])
else
(* Eta-expand partially applied THF equality, because the
LEO-II and Satallax parsers complain about not being able to
infer the type of "=". *)
let val i_T = domain_type T in
IAbs ((`I "Y", i_T),
IAbs ((`I "Z", i_T),
IApp (IApp (IConst (`I tptp_equal, T, []),
IConst (`I "Y", i_T, [])),
IConst (`I "Z", i_T, []))))
end
else
IConst (name, T, [])
| _ => IConst (name, T, [])
else
IConst (proxy_base |>> prefix const_prefix, T, T_args)
| NONE => if s = tptp_choice then tweak_ho_quant tptp_choice T args
else IConst (name, T, T_args))
| intro _ _ (IAbs (bound, tm)) = IAbs (bound, intro false [] tm)
| intro _ _ tm = tm
in intro true [] end
fun mangle_type_args_in_const type_enc (name as (s, _)) T_args =
if String.isPrefix const_prefix s andalso is_type_enc_mangling type_enc then
(mangled_const_name type_enc T_args name, [])
else
(name, T_args)
fun mangle_type_args_in_iterm type_enc =
if is_type_enc_mangling type_enc then
let
fun mangle (IApp (tm1, tm2)) = IApp (mangle tm1, mangle tm2)
| mangle (tm as IConst (_, _, [])) = tm
| mangle (IConst (name, T, T_args)) =
mangle_type_args_in_const type_enc name T_args
|> (fn (name, T_args) => IConst (name, T, T_args))
| mangle (IAbs (bound, tm)) = IAbs (bound, mangle tm)
| mangle tm = tm
in mangle end
else
I
fun filter_type_args_in_const _ _ _ _ _ [] = []
| filter_type_args_in_const thy ctrss type_enc ary s T_args =
case unprefix_and_unascii const_prefix s of
NONE =>
if level_of_type_enc type_enc = No_Types orelse s = tptp_choice then []
else T_args
| SOME s'' =>
filter_type_args thy ctrss type_enc (unmangled_invert_const s'') ary
T_args
fun filter_type_args_in_iterm thy ctrss type_enc =
let
fun filt ary (IApp (tm1, tm2)) = IApp (filt (ary + 1) tm1, filt 0 tm2)
| filt ary (IConst (name as (s, _), T, T_args)) =
filter_type_args_in_const thy ctrss type_enc ary s T_args
|> (fn T_args => IConst (name, T, T_args))
| filt _ (IAbs (bound, tm)) = IAbs (bound, filt 0 tm)
| filt _ tm = tm
in filt 0 end
fun iformula_of_prop ctxt type_enc iff_for_eq =
let
val thy = Proof_Context.theory_of ctxt
fun do_term bs t atomic_Ts =
iterm_of_term thy type_enc bs (Envir.eta_contract t)
|>> (introduce_proxies_in_iterm type_enc
#> mangle_type_args_in_iterm type_enc #> AAtom)
||> union (op =) atomic_Ts
fun do_quant bs q pos s T t' =
let
val s = singleton (Name.variant_list (map fst bs)) s
val universal = Option.map (q = AExists ? not) pos
val name =
s |> `(case universal of
SOME true => make_all_bound_var
| SOME false => make_exist_bound_var
| NONE => make_bound_var)
in
do_formula ((s, (name, T)) :: bs) pos t'
#>> mk_aquant q [(name, SOME T)]
##> union (op =) (atomic_types_of T)
end
and do_conn bs c pos1 t1 pos2 t2 =
do_formula bs pos1 t1 ##>> do_formula bs pos2 t2 #>> uncurry (mk_aconn c)
and do_formula bs pos t =
case t of
@{const Trueprop} $ t1 => do_formula bs pos t1
| @{const Not} $ t1 => do_formula bs (Option.map not pos) t1 #>> mk_anot
| Const (@{const_name All}, _) $ Abs (s, T, t') =>
do_quant bs AForall pos s T t'
| (t0 as Const (@{const_name All}, _)) $ t1 =>
do_formula bs pos (t0 $ eta_expand (map (snd o snd) bs) t1 1)
| Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
do_quant bs AExists pos s T t'
| (t0 as Const (@{const_name Ex}, _)) $ t1 =>
do_formula bs pos (t0 $ eta_expand (map (snd o snd) bs) t1 1)
| @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd pos t1 pos t2
| @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr pos t1 pos t2
| @{const HOL.implies} $ t1 $ t2 =>
do_conn bs AImplies (Option.map not pos) t1 pos t2
| Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
if iff_for_eq then do_conn bs AIff NONE t1 NONE t2 else do_term bs t
| _ => do_term bs t
in do_formula [] end
fun presimplify_term ctxt t =
if exists_Const (member (op =) Meson.presimplified_consts o fst) t then
t |> Skip_Proof.make_thm (Proof_Context.theory_of ctxt)
|> Meson.presimplify ctxt
|> prop_of
else
t
fun preprocess_abstractions_in_terms trans_lams facts =
let
val (facts, lambda_ts) =
facts |> map (snd o snd) |> trans_lams
|>> map2 (fn (name, (role, _)) => fn t => (name, (role, t))) facts
val lam_facts =
map2 (fn t => fn j =>
((lam_fact_prefix ^ Int.toString j,
(Global, Non_Rec_Def)), (Axiom, t)))
lambda_ts (1 upto length lambda_ts)
in (facts, lam_facts) end
(* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
same in Sledgehammer to prevent the discovery of unreplayable proofs. *)
fun freeze_term t =
let
(* Freshness is desirable for completeness, but not for soundness. *)
fun indexed_name (s, i) = s ^ "_" ^ string_of_int i ^ atp_weak_suffix
fun freeze (t $ u) = freeze t $ freeze u
| freeze (Abs (s, T, t)) = Abs (s, T, freeze t)
| freeze (Var (x, T)) = Free (indexed_name x, T)
| freeze t = t
fun freeze_tvar (x, S) = TFree (indexed_name x, S)
in
t |> exists_subterm is_Var t ? freeze
|> exists_type (exists_subtype is_TVar) t
? map_types (map_type_tvar freeze_tvar)
end
fun presimp_prop ctxt type_enc t =
let
val thy = Proof_Context.theory_of ctxt
val t = t |> Envir.beta_eta_contract
|> transform_elim_prop
|> Object_Logic.atomize_term thy
val need_trueprop = (fastype_of t = @{typ bool})
val is_ho = is_type_enc_higher_order type_enc
in
t |> need_trueprop ? HOLogic.mk_Trueprop
|> (if is_ho then unextensionalize_def
else cong_extensionalize_term thy #> abs_extensionalize_term ctxt)
|> presimplify_term ctxt
|> HOLogic.dest_Trueprop
end
handle TERM _ => @{const True}
(* Satallax prefers "=" to "<=>" (for definitions) and Metis (CNF) requires "="
for technical reasons. *)
fun should_use_iff_for_eq CNF _ = false
| should_use_iff_for_eq (THF _) format = not (is_type_enc_higher_order format)
| should_use_iff_for_eq _ _ = true
fun make_formula ctxt format type_enc iff_for_eq name stature role t =
let
val iff_for_eq = iff_for_eq andalso should_use_iff_for_eq format type_enc
val (iformula, atomic_Ts) =
iformula_of_prop ctxt type_enc iff_for_eq (SOME (role <> Conjecture)) t []
|>> close_universally add_iterm_vars
in
{name = name, stature = stature, role = role, iformula = iformula,
atomic_types = atomic_Ts}
end
fun is_format_with_defs (THF _) = true
| is_format_with_defs _ = false
fun make_fact ctxt format type_enc iff_for_eq
((name, stature as (_, status)), t) =
let
val role =
if is_format_with_defs format andalso status = Non_Rec_Def andalso
is_legitimate_tptp_def t then
Definition
else
Axiom
in
case t |> make_formula ctxt format type_enc iff_for_eq name stature role of
formula as {iformula = AAtom (IConst ((s, _), _, _)), ...} =>
if s = tptp_true then NONE else SOME formula
| formula => SOME formula
end
fun s_not_prop (@{const Trueprop} $ t) = @{const Trueprop} $ s_not t
| s_not_prop (@{const "==>"} $ t $ @{prop False}) = t
| s_not_prop t = @{const "==>"} $ t $ @{prop False}
fun make_conjecture ctxt format type_enc =
map (fn ((name, stature), (role, t)) =>
let
(* FIXME: The commented-out code is a hack to get decent performance
out of LEO-II on the TPTP THF benchmarks. *)
val role =
if (* is_format_with_defs format andalso *)
role <> Conjecture andalso is_legitimate_tptp_def t then
Definition
else
role
in
t |> role = Conjecture ? s_not
|> make_formula ctxt format type_enc true name stature role
end)
(** Finite and infinite type inference **)
fun tvar_footprint thy s ary =
(case unprefix_and_unascii const_prefix s of
SOME s =>
let fun tvars_of T = [] |> Term.add_tvarsT T |> map fst in
s |> unmangled_invert_const |> robust_const_type thy |> chop_fun ary
|> fst |> map tvars_of
end
| NONE => [])
handle TYPE _ => []
fun type_arg_cover thy pos s ary =
if is_tptp_equal s then
if pos = SOME false then [] else 0 upto ary - 1
else
let
val footprint = tvar_footprint thy s ary
val eq = (s = @{const_name HOL.eq})
fun cover _ [] = []
| cover seen ((i, tvars) :: args) =
cover (union (op =) seen tvars) args
|> (eq orelse exists (fn tvar => not (member (op =) seen tvar)) tvars)
? cons i
in
if forall null footprint then
[]
else
0 upto length footprint - 1 ~~ footprint
|> sort (rev_order o list_ord Term_Ord.indexname_ord o pairself snd)
|> cover []
end
type monotonicity_info =
{maybe_finite_Ts : typ list,
surely_infinite_Ts : typ list,
maybe_nonmono_Ts : typ list}
(* These types witness that the type classes they belong to allow infinite
models and hence that any types with these type classes is monotonic. *)
val known_infinite_types =
[@{typ nat}, HOLogic.intT, HOLogic.realT, @{typ "nat => bool"}]
fun is_type_kind_of_surely_infinite ctxt strictness cached_Ts T =
strictness <> Strict andalso is_type_surely_infinite ctxt true cached_Ts T
(* Finite types such as "unit", "bool", "bool * bool", and "bool => bool" are
dangerous because their "exhaust" properties can easily lead to unsound ATP
proofs. On the other hand, all HOL infinite types can be given the same
models in first-order logic (via Loewenheim-Skolem). *)
fun should_encode_type ctxt {maybe_finite_Ts, surely_infinite_Ts,
maybe_nonmono_Ts}
(Nonmono_Types (strictness, _)) T =
let val thy = Proof_Context.theory_of ctxt in
(exists (type_intersect thy T) maybe_nonmono_Ts andalso
not (exists (type_instance thy T) surely_infinite_Ts orelse
(not (member (type_equiv thy) maybe_finite_Ts T) andalso
is_type_kind_of_surely_infinite ctxt strictness surely_infinite_Ts
T)))
end
| should_encode_type _ _ level _ =
(level = All_Types orelse level = Undercover_Types)
fun should_guard_type ctxt mono (Guards (_, level)) should_guard_var T =
should_guard_var () andalso should_encode_type ctxt mono level T
| should_guard_type _ _ _ _ _ = false
fun is_maybe_universal_name s =
String.isPrefix bound_var_prefix s orelse
String.isPrefix all_bound_var_prefix s
fun is_maybe_universal_var (IConst ((s, _), _, _)) = is_maybe_universal_name s
| is_maybe_universal_var (IVar _) = true
| is_maybe_universal_var _ = false
datatype site =
Top_Level of bool option |
Eq_Arg of bool option |
Arg of string * int * int |
Elsewhere
fun should_tag_with_type _ _ _ (Top_Level _) _ _ = false
| should_tag_with_type ctxt mono (Tags (_, level)) site u T =
let val thy = Proof_Context.theory_of ctxt in
case level of
Nonmono_Types (_, Non_Uniform) =>
(case (site, is_maybe_universal_var u) of
(Eq_Arg pos, true) =>
(pos <> SOME false orelse tag_neg_vars) andalso
should_encode_type ctxt mono level T
| _ => false)
| Undercover_Types =>
(case (site, is_maybe_universal_var u) of
(Eq_Arg pos, true) => pos <> SOME false
| (Arg (s, j, ary), true) =>
member (op =) (type_arg_cover thy NONE s ary) j
| _ => false)
| _ => should_encode_type ctxt mono level T
end
| should_tag_with_type _ _ _ _ _ _ = false
fun fused_type ctxt mono level =
let
val should_encode = should_encode_type ctxt mono level
fun fuse 0 T = if should_encode T then T else fused_infinite_type
| fuse ary (Type (@{type_name fun}, [T1, T2])) =
fuse 0 T1 --> fuse (ary - 1) T2
| fuse _ _ = raise Fail "expected function type"
in fuse end
(** predicators and application operators **)
type sym_info =
{pred_sym : bool, min_ary : int, max_ary : int, types : typ list,
in_conj : bool}
fun default_sym_tab_entries type_enc =
(make_fixed_const NONE @{const_name undefined},
{pred_sym = false, min_ary = 0, max_ary = 0, types = [],
in_conj = false}) ::
([tptp_false, tptp_true]
|> map (rpair {pred_sym = true, min_ary = 0, max_ary = 0, types = [],
in_conj = false})) @
([tptp_equal, tptp_old_equal]
|> map (rpair {pred_sym = true, min_ary = 2, max_ary = 2, types = [],
in_conj = false}))
|> not (is_type_enc_higher_order type_enc)
? cons (prefixed_predicator_name,
{pred_sym = true, min_ary = 1, max_ary = 1, types = [],
in_conj = false})
datatype app_op_level =
Min_App_Op |
Sufficient_App_Op |
Sufficient_App_Op_And_Predicator |
Full_App_Op_And_Predicator
fun add_iterm_syms_to_sym_table ctxt app_op_level conj_fact =
let
val thy = Proof_Context.theory_of ctxt
fun consider_var_ary const_T var_T max_ary =
let
fun iter ary T =
if ary = max_ary orelse type_instance thy var_T T orelse
type_instance thy T var_T then
ary
else
iter (ary + 1) (range_type T)
in iter 0 const_T end
fun add_universal_var T (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
if (app_op_level = Sufficient_App_Op andalso can dest_funT T) orelse
(app_op_level = Sufficient_App_Op_And_Predicator andalso
(can dest_funT T orelse T = @{typ bool})) then
let
val bool_vars' =
bool_vars orelse
(app_op_level = Sufficient_App_Op_And_Predicator andalso
body_type T = @{typ bool})
fun repair_min_ary {pred_sym, min_ary, max_ary, types, in_conj} =
{pred_sym = pred_sym andalso not bool_vars',
min_ary = fold (fn T' => consider_var_ary T' T) types min_ary,
max_ary = max_ary, types = types, in_conj = in_conj}
val fun_var_Ts' =
fun_var_Ts |> can dest_funT T ? insert_type thy I T
in
if bool_vars' = bool_vars andalso
pointer_eq (fun_var_Ts', fun_var_Ts) then
accum
else
((bool_vars', fun_var_Ts'), Symtab.map (K repair_min_ary) sym_tab)
end
else
accum
fun add_iterm_syms top_level tm
(accum as ((bool_vars, fun_var_Ts), sym_tab)) =
let val (head, args) = strip_iterm_comb tm in
(case head of
IConst ((s, _), T, _) =>
if is_maybe_universal_name s then
add_universal_var T accum
else if String.isPrefix exist_bound_var_prefix s then
accum
else
let val ary = length args in
((bool_vars, fun_var_Ts),
case Symtab.lookup sym_tab s of
SOME {pred_sym, min_ary, max_ary, types, in_conj} =>
let
val pred_sym =
pred_sym andalso top_level andalso not bool_vars
val types' = types |> insert_type thy I T
val in_conj = in_conj orelse conj_fact
val min_ary =
if (app_op_level = Sufficient_App_Op orelse
app_op_level = Sufficient_App_Op_And_Predicator)
andalso not (pointer_eq (types', types)) then
fold (consider_var_ary T) fun_var_Ts min_ary
else
min_ary
in
Symtab.update (s, {pred_sym = pred_sym,
min_ary = Int.min (ary, min_ary),
max_ary = Int.max (ary, max_ary),
types = types', in_conj = in_conj})
sym_tab
end
| NONE =>
let
val max_ary =
case unprefix_and_unascii const_prefix s of
SOME s =>
(if String.isSubstring uncurried_alias_sep s then
ary
else case try (ary_of o robust_const_type thy
o unmangled_invert_const) s of
SOME ary0 => Int.min (ary0, ary)
| NONE => ary)
| NONE => ary
val pred_sym = top_level andalso max_ary = ary andalso not bool_vars
val min_ary =
case app_op_level of
Min_App_Op => max_ary
| Full_App_Op_And_Predicator => 0
| _ => fold (consider_var_ary T) fun_var_Ts max_ary
in
Symtab.update_new (s,
{pred_sym = pred_sym, min_ary = min_ary,
max_ary = max_ary, types = [T], in_conj = conj_fact})
sym_tab
end)
end
| IVar (_, T) => add_universal_var T accum
| IAbs ((_, T), tm) =>
accum |> add_universal_var T |> add_iterm_syms false tm
| _ => accum)
|> fold (add_iterm_syms false) args
end
in add_iterm_syms end
fun sym_table_of_facts ctxt type_enc app_op_level conjs facts =
let
fun add_iterm_syms conj_fact =
add_iterm_syms_to_sym_table ctxt app_op_level conj_fact true
fun add_fact_syms conj_fact =
ifact_lift (formula_fold NONE (K (add_iterm_syms conj_fact)))
in
((false, []), Symtab.empty)
|> fold (add_fact_syms true) conjs
|> fold (add_fact_syms false) facts
||> fold Symtab.update (default_sym_tab_entries type_enc)
end
fun min_ary_of sym_tab s =
case Symtab.lookup sym_tab s of
SOME ({min_ary, ...} : sym_info) => min_ary
| NONE =>
case unprefix_and_unascii const_prefix s of
SOME s =>
let val s = s |> unmangled_invert_const in
if s = predicator_name then 1
else if s = app_op_name then 2
else if s = type_guard_name then 1
else 0
end
| NONE => 0
(* True if the constant ever appears outside of the top-level position in
literals, or if it appears with different arities (e.g., because of different
type instantiations). If false, the constant always receives all of its
arguments and is used as a predicate. *)
fun is_pred_sym sym_tab s =
case Symtab.lookup sym_tab s of
SOME ({pred_sym, min_ary, max_ary, ...} : sym_info) =>
pred_sym andalso min_ary = max_ary
| NONE => false
val fTrue_iconst =
IConst ((const_prefix ^ "fTrue", @{const_name ATP.fTrue}), @{typ bool}, [])
val predicator_iconst =
IConst (`(make_fixed_const NONE) predicator_name, @{typ "bool => bool"}, [])
fun predicatify completish tm =
if completish then
IApp (IApp (IConst (`I tptp_equal, @{typ "bool => bool => bool"}, []), tm),
fTrue_iconst)
else
IApp (predicator_iconst, tm)
val app_op = `(make_fixed_const NONE) app_op_name
fun list_app head args = fold (curry (IApp o swap)) args head
fun mk_app_op type_enc head arg =
let
val head_T = ityp_of head
val (arg_T, res_T) = dest_funT head_T
val app =
IConst (app_op, head_T --> head_T, [arg_T, res_T])
|> mangle_type_args_in_iterm type_enc
in list_app app [head, arg] end
fun firstorderize_fact thy ctrss type_enc uncurried_aliases completish sym_tab =
let
fun do_app arg head = mk_app_op type_enc head arg
fun list_app_ops (head, args) = fold do_app args head
fun introduce_app_ops tm =
let val (head, args) = tm |> strip_iterm_comb ||> map introduce_app_ops in
case head of
IConst (name as (s, _), T, T_args) =>
let
val min_ary = min_ary_of sym_tab s
val ary =
if uncurried_aliases andalso String.isPrefix const_prefix s then
let
val ary = length args
(* In polymorphic native type encodings, it is impossible to
declare a fully polymorphic symbol that takes more
arguments than its signature (even though such concrete
instances, where a type variable is instantiated by a
function type, are possible.) *)
val official_ary =
if is_type_enc_polymorphic type_enc then
case unprefix_and_unascii const_prefix s of
SOME s' =>
(case try (ary_of o robust_const_type thy)
(invert_const s') of
SOME ary => ary
| NONE => min_ary)
| NONE => min_ary
else
1000000000 (* irrealistically big arity *)
in Int.min (ary, official_ary) end
else
min_ary
val head =
if ary = min_ary then head
else IConst (aliased_uncurried ary name, T, T_args)
in
args |> chop ary |>> list_app head |> list_app_ops
end
| _ => list_app_ops (head, args)
end
fun introduce_predicators tm =
case strip_iterm_comb tm of
(IConst ((s, _), _, _), _) =>
if is_pred_sym sym_tab s then tm else predicatify completish tm
| _ => predicatify completish tm
val do_iterm =
not (is_type_enc_higher_order type_enc)
? (introduce_app_ops #> introduce_predicators)
#> filter_type_args_in_iterm thy ctrss type_enc
in update_iformula (formula_map do_iterm) end
(** Helper facts **)
val not_ffalse = @{lemma "~ fFalse" by (unfold fFalse_def) fast}
val ftrue = @{lemma "fTrue" by (unfold fTrue_def) fast}
(* The Boolean indicates that a fairly sound type encoding is needed. *)
val base_helper_table =
[(("COMBI", false), [(Non_Rec_Def, @{thm Meson.COMBI_def})]),
(("COMBK", false), [(Non_Rec_Def, @{thm Meson.COMBK_def})]),
(("COMBB", false), [(Non_Rec_Def, @{thm Meson.COMBB_def})]),
(("COMBC", false), [(Non_Rec_Def, @{thm Meson.COMBC_def})]),
(("COMBS", false), [(Non_Rec_Def, @{thm Meson.COMBS_def})]),
((predicator_name, false), [(General, not_ffalse), (General, ftrue)]),
(("fFalse", false), [(General, not_ffalse)]),
(("fFalse", true), [(General, @{thm True_or_False})]),
(("fTrue", false), [(General, ftrue)]),
(("fTrue", true), [(General, @{thm True_or_False})]),
(("If", true),
[(Non_Rec_Def, @{thm if_True}), (Non_Rec_Def, @{thm if_False}),
(General, @{thm True_or_False})])]
val helper_table =
base_helper_table @
[(("fNot", false),
@{thms fNot_def [THEN Meson.iff_to_disjD, THEN conjunct1]
fNot_def [THEN Meson.iff_to_disjD, THEN conjunct2]}
|> map (pair Non_Rec_Def)),
(("fconj", false),
@{lemma "~ P | ~ Q | fconj P Q" "~ fconj P Q | P" "~ fconj P Q | Q"
by (unfold fconj_def) fast+}
|> map (pair General)),
(("fdisj", false),
@{lemma "~ P | fdisj P Q" "~ Q | fdisj P Q" "~ fdisj P Q | P | Q"
by (unfold fdisj_def) fast+}
|> map (pair General)),
(("fimplies", false),
@{lemma "P | fimplies P Q" "~ Q | fimplies P Q" "~ fimplies P Q | ~ P | Q"
by (unfold fimplies_def) fast+}
|> map (pair General)),
(("fequal", true),
(* This is a lie: Higher-order equality doesn't need a sound type encoding.
However, this is done so for backward compatibility: Including the
equality helpers by default in Metis breaks a few existing proofs. *)
@{thms fequal_def [THEN Meson.iff_to_disjD, THEN conjunct1]
fequal_def [THEN Meson.iff_to_disjD, THEN conjunct2]}
|> map (pair General)),
(* Partial characterization of "fAll" and "fEx". A complete characterization
would require the axiom of choice for replay with Metis. *)
(("fAll", false),
[(General, @{lemma "~ fAll P | P x" by (auto simp: fAll_def)})]),
(("fEx", false),
[(General, @{lemma "~ P x | fEx P" by (auto simp: fEx_def)})])]
|> map (apsnd (map (apsnd zero_var_indexes)))
val completish_helper_table =
helper_table @
[((predicator_name, true),
@{thms True_or_False fTrue_ne_fFalse} |> map (pair General)),
((app_op_name, true),
[(General, @{lemma "EX x. ~ f x = g x | f = g" by blast}),
(General, @{lemma "EX p. (p x <-> p y) --> x = y" by blast})]),
(("fconj", false),
@{thms fconj_table fconj_laws fdisj_laws} |> map (pair Non_Rec_Def)),
(("fdisj", false),
@{thms fdisj_table fconj_laws fdisj_laws} |> map (pair Non_Rec_Def)),
(("fimplies", false),
@{thms fimplies_table fconj_laws fdisj_laws fimplies_laws}
|> map (pair Non_Rec_Def)),
(("fequal", false),
(@{thms fequal_table} |> map (pair Non_Rec_Def)) @
(@{thms fequal_laws} |> map (pair General))),
(("fAll", false),
@{thms fAll_table fComp_law fAll_law fEx_law} |> map (pair Non_Rec_Def)),
(("fEx", false),
@{thms fEx_table fComp_law fAll_law fEx_law} |> map (pair Non_Rec_Def))]
|> map (apsnd (map (apsnd zero_var_indexes)))
fun bound_tvars type_enc sorts Ts =
case filter is_TVar Ts of
[] => I
| Ts =>
(sorts ? mk_ahorn (Ts |> class_membs_of_types type_enc add_sorts_on_tvar
|> map (class_atom type_enc)))
#> (case type_enc of
Native (_, poly, _) =>
mk_atyquant AForall
(map (fn TVar (z as (_, S)) =>
(AType (tvar_name z, []),
if poly = Type_Class_Polymorphic then
map (`make_class) (normalize_classes S)
else
[])) Ts)
| _ =>
mk_aquant AForall (map (fn TVar z => (tvar_name z, NONE)) Ts))
fun eq_formula type_enc atomic_Ts bounds pred_sym tm1 tm2 =
(if pred_sym then AConn (AIff, [AAtom tm1, AAtom tm2])
else AAtom (ATerm ((`I tptp_equal, []), [tm1, tm2])))
|> mk_aquant AForall bounds
|> close_formula_universally
|> bound_tvars type_enc true atomic_Ts
val helper_rank = default_rank
val min_rank = 9 * helper_rank div 10
val max_rank = 4 * min_rank
fun rank_of_fact_num n j = min_rank + (max_rank - min_rank) * j div n
val type_tag = `(make_fixed_const NONE) type_tag_name
fun could_specialize_helpers type_enc =
not (is_type_enc_polymorphic type_enc) andalso
level_of_type_enc type_enc <> No_Types
fun should_specialize_helper type_enc t =
could_specialize_helpers type_enc andalso
not (null (Term.hidden_polymorphism t))
fun add_helper_facts_of_sym ctxt format type_enc completish
(s, {types, ...} : sym_info) =
case unprefix_and_unascii const_prefix s of
SOME mangled_s =>
let
val thy = Proof_Context.theory_of ctxt
val unmangled_s = mangled_s |> unmangled_const_name |> hd
fun dub needs_sound j k =
ascii_of unmangled_s ^ "_" ^ string_of_int j ^ "_" ^ string_of_int k ^
(if mangled_s = unmangled_s then "" else "_" ^ ascii_of mangled_s) ^
(if needs_sound then typed_helper_suffix else untyped_helper_suffix)
fun specialize_helper t T =
if unmangled_s = app_op_name then
let
val tyenv =
Sign.typ_match thy (alpha_to_beta, domain_type T) Vartab.empty
in monomorphic_term tyenv t end
else
specialize_type thy (invert_const unmangled_s, T) t
fun dub_and_inst needs_sound ((status, t), j) =
(if should_specialize_helper type_enc t then
map_filter (try (specialize_helper t)) types
else
[t])
|> tag_list 1
|> map (fn (k, t) => ((dub needs_sound j k, (Global, status)), t))
val make_facts = map_filter (make_fact ctxt format type_enc false)
val sound = is_type_enc_sound type_enc
val could_specialize = could_specialize_helpers type_enc
in
fold (fn ((helper_s, needs_sound), ths) =>
if (needs_sound andalso not sound) orelse
(helper_s <> unmangled_s andalso
(not completish orelse could_specialize)) then
I
else
ths ~~ (1 upto length ths)
|> maps (dub_and_inst needs_sound o apfst (apsnd prop_of))
|> make_facts
|> union (op = o pairself #iformula))
(if completish then completish_helper_table else helper_table)
end
| NONE => I
fun helper_facts_of_sym_table ctxt format type_enc completish sym_tab =
Symtab.fold_rev (add_helper_facts_of_sym ctxt format type_enc completish)
sym_tab []
(***************************************************************)
(* Type Classes Present in the Axiom or Conjecture Clauses *)
(***************************************************************)
fun set_insert (x, s) = Symtab.update (x, ()) s
fun add_classes (cls, cset) = List.foldl set_insert cset (flat cls)
fun classes_of_terms get_Ts =
map (map snd o get_Ts)
#> List.foldl add_classes Symtab.empty #> Symtab.delete_safe class_of_types
#> Symtab.keys
val tfree_classes_of_terms = classes_of_terms Misc_Legacy.term_tfrees
val tvar_classes_of_terms = classes_of_terms Misc_Legacy.term_tvars
fun fold_type_ctrs f (Type (s, Ts)) x = fold (fold_type_ctrs f) Ts (f (s, x))
| fold_type_ctrs _ _ x = x
(* Type constructors used to instantiate overloaded constants are the only ones
needed. *)
fun add_type_ctrs_in_term thy =
let
fun add (Const (@{const_name Meson.skolem}, _) $ _) = I
| add (t $ u) = add t #> add u
| add (Const x) =
x |> robust_const_type_args thy |> fold (fold_type_ctrs set_insert)
| add (Abs (_, _, u)) = add u
| add _ = I
in add end
fun type_ctrs_of_terms thy ts =
Symtab.keys (fold (add_type_ctrs_in_term thy) ts Symtab.empty)
fun extract_lambda_def (Const (@{const_name HOL.eq}, _) $ t $ u) =
let val (head, args) = strip_comb t in
(head |> dest_Const |> fst,
fold_rev (fn t as Var ((s, _), T) =>
(fn u => Abs (s, T, abstract_over (t, u)))
| _ => raise Fail "expected \"Var\"") args u)
end
| extract_lambda_def _ = raise Fail "malformed lifted lambda"
fun trans_lams_of_string ctxt type_enc lam_trans =
if lam_trans = no_lamsN then
rpair []
else if lam_trans = hide_lamsN then
lift_lams ctxt type_enc ##> K []
else if lam_trans = liftingN orelse lam_trans = lam_liftingN then
lift_lams ctxt type_enc
else if lam_trans = combsN then
map (introduce_combinators ctxt) #> rpair []
else if lam_trans = combs_and_liftingN then
lift_lams_part_1 ctxt type_enc
##> maps (fn t => [t, introduce_combinators ctxt (intentionalize_def t)])
#> lift_lams_part_2 ctxt
else if lam_trans = combs_or_liftingN then
lift_lams_part_1 ctxt type_enc
##> map (fn t => case head_of (strip_qnt_body @{const_name All} t) of
@{term "op =::bool => bool => bool"} => t
| _ => introduce_combinators ctxt (intentionalize_def t))
#> lift_lams_part_2 ctxt
else if lam_trans = keep_lamsN then
map (Envir.eta_contract) #> rpair []
else
error ("Unknown lambda translation scheme: " ^ quote lam_trans ^ ".")
val pull_and_reorder_definitions =
let
fun add_consts (IApp (t, u)) = fold add_consts [t, u]
| add_consts (IAbs (_, t)) = add_consts t
| add_consts (IConst (name, _, _)) = insert (op =) name
| add_consts (IVar _) = I
fun consts_of_hs l_or_r ({iformula, ...} : ifact) =
case iformula of
AAtom (IApp (IApp (IConst _, t), u)) => add_consts (l_or_r (t, u)) []
| _ => []
(* Quadratic, but usually OK. *)
fun reorder [] [] = []
| reorder (fact :: skipped) [] =
fact :: reorder [] skipped (* break cycle *)
| reorder skipped (fact :: facts) =
let val rhs_consts = consts_of_hs snd fact in
if exists (exists (exists (member (op =) rhs_consts)
o consts_of_hs fst)) [skipped, facts] then
reorder (fact :: skipped) facts
else
fact :: reorder [] (facts @ skipped)
end
in List.partition (curry (op =) Definition o #role) #>> reorder [] #> op @ end
fun translate_formulas ctxt prem_role format type_enc lam_trans presimp hyp_ts
concl_t facts =
let
val thy = Proof_Context.theory_of ctxt
val trans_lams = trans_lams_of_string ctxt type_enc lam_trans
val fact_ts = facts |> map snd
(* Remove existing facts from the conjecture, as this can dramatically
boost an ATP's performance (for some reason). *)
val hyp_ts =
hyp_ts
|> map (fn t => if member (op aconv) fact_ts t then @{prop True} else t)
val facts = facts |> map (apsnd (pair Axiom))
val conjs =
map (pair prem_role) hyp_ts @ [(Conjecture, s_not_prop concl_t)]
|> map (apsnd freeze_term)
|> map2 (pair o rpair (Local, General) o string_of_int)
(0 upto length hyp_ts)
val ((conjs, facts), lam_facts) =
(conjs, facts)
|> presimp ? pairself (map (apsnd (apsnd (presimp_prop ctxt type_enc))))
|> (if lam_trans = no_lamsN then
rpair []
else
op @
#> preprocess_abstractions_in_terms trans_lams
#>> chop (length conjs))
val conjs =
conjs |> make_conjecture ctxt format type_enc
|> pull_and_reorder_definitions
val facts =
facts |> map_filter (fn (name, (_, t)) =>
make_fact ctxt format type_enc true (name, t))
|> pull_and_reorder_definitions
val fact_names =
facts |> map (fn {name, stature, ...} : ifact => (name, stature))
val lifted = lam_facts |> map (extract_lambda_def o snd o snd)
val lam_facts =
lam_facts |> map_filter (make_fact ctxt format type_enc true o apsnd snd)
val all_ts = concl_t :: hyp_ts @ fact_ts
val subs = tfree_classes_of_terms all_ts
val supers = tvar_classes_of_terms all_ts
val tycons = type_ctrs_of_terms thy all_ts
val (supers, tcon_clauses) =
if level_of_type_enc type_enc = No_Types then ([], [])
else make_tcon_clauses thy tycons supers
val subclass_pairs = make_subclass_pairs thy subs supers
in
(fact_names |> map single, union (op =) subs supers, conjs,
facts @ lam_facts, subclass_pairs, tcon_clauses, lifted)
end
val type_guard = `(make_fixed_const NONE) type_guard_name
fun type_guard_iterm type_enc T tm =
IApp (IConst (type_guard, T --> @{typ bool}, [T])
|> mangle_type_args_in_iterm type_enc, tm)
fun is_var_positively_naked_in_term _ (SOME false) _ accum = accum
| is_var_positively_naked_in_term name _ (ATerm (((s, _), _), tms)) accum =
accum orelse
(is_tptp_equal s andalso member (op =) tms (ATerm ((name, []), [])))
| is_var_positively_naked_in_term _ _ _ _ = true
fun is_var_undercover_in_term thy name pos tm accum =
accum orelse
let
val var = ATerm ((name, []), [])
fun is_undercover (ATerm (_, [])) = false
| is_undercover (ATerm (((s, _), _), tms)) =
let
val ary = length tms
val cover = type_arg_cover thy pos s ary
in
exists (fn (j, tm) => tm = var andalso member (op =) cover j)
(0 upto ary - 1 ~~ tms) orelse
exists is_undercover tms
end
| is_undercover _ = true
in is_undercover tm end
fun should_guard_var_in_formula thy level pos phi (SOME true) name =
(case level of
All_Types => true
| Undercover_Types =>
formula_fold pos (is_var_undercover_in_term thy name) phi false
| Nonmono_Types (_, Uniform) => true
| Nonmono_Types (_, Non_Uniform) =>
formula_fold pos (is_var_positively_naked_in_term name) phi false
| _ => false)
| should_guard_var_in_formula _ _ _ _ _ _ = true
fun always_guard_var_in_formula _ _ _ _ _ _ = true
fun should_generate_tag_bound_decl _ _ _ (SOME true) _ = false
| should_generate_tag_bound_decl ctxt mono (Tags (_, level)) _ T =
not (is_type_level_uniform level) andalso
should_encode_type ctxt mono level T
| should_generate_tag_bound_decl _ _ _ _ _ = false
fun mk_aterm type_enc name T_args args =
let val (ty_args, tm_args) = process_type_args type_enc T_args in
ATerm ((name, ty_args), tm_args @ args)
end
fun do_bound_type ctxt mono type_enc =
case type_enc of
Native (_, _, level) =>
fused_type ctxt mono level 0 #> native_ho_type_of_typ type_enc false 0
#> SOME
| _ => K NONE
fun tag_with_type ctxt mono type_enc pos T tm =
IConst (type_tag, T --> T, [T])
|> mangle_type_args_in_iterm type_enc
|> atp_term_of_iterm ctxt mono type_enc pos
|> (fn ATerm ((s, tys), tms) => ATerm ((s, tys), tms @ [tm])
| _ => raise Fail "unexpected lambda-abstraction")
and atp_term_of_iterm ctxt mono type_enc pos =
let
fun term site u =
let
val (head, args) = strip_iterm_comb u
val pos =
case site of
Top_Level pos => pos
| Eq_Arg pos => pos
| _ => NONE
val T = ityp_of u
val t =
case head of
IConst (name as (s, _), _, T_args) =>
let
val ary = length args
fun arg_site j =
if is_tptp_equal s then Eq_Arg pos else Arg (s, j, ary)
in
map2 (fn j => term (arg_site j)) (0 upto ary - 1) args
|> mk_aterm type_enc name T_args
end
| IVar (name, _) =>
map (term Elsewhere) args |> mk_aterm type_enc name []
| IAbs ((name, T), tm) =>
if is_type_enc_higher_order type_enc then
AAbs (((name, native_ho_type_of_typ type_enc true 0 T), (* FIXME? why "true"? *)
term Elsewhere tm), map (term Elsewhere) args)
else
raise Fail "unexpected lambda-abstraction"
| IApp _ => raise Fail "impossible \"IApp\""
val tag = should_tag_with_type ctxt mono type_enc site u T
in t |> tag ? tag_with_type ctxt mono type_enc pos T end
in term (Top_Level pos) end
and formula_of_iformula ctxt mono type_enc should_guard_var =
let
val thy = Proof_Context.theory_of ctxt
val level = level_of_type_enc type_enc
val do_term = atp_term_of_iterm ctxt mono type_enc
fun do_out_of_bound_type pos phi universal (name, T) =
if should_guard_type ctxt mono type_enc
(fn () => should_guard_var thy level pos phi universal name) T then
IVar (name, T)
|> type_guard_iterm type_enc T
|> do_term pos |> AAtom |> SOME
else if should_generate_tag_bound_decl ctxt mono type_enc universal T then
let
val var = ATerm ((name, []), [])
val tagged_var = tag_with_type ctxt mono type_enc pos T var
in SOME (AAtom (ATerm ((`I tptp_equal, []), [tagged_var, var]))) end
else
NONE
fun do_formula pos (ATyQuant (q, xs, phi)) =
ATyQuant (q, map (apfst (native_ho_type_of_typ type_enc false 0)) xs,
do_formula pos phi)
| do_formula pos (AQuant (q, xs, phi)) =
let
val phi = phi |> do_formula pos
val universal = Option.map (q = AExists ? not) pos
val do_bound_type = do_bound_type ctxt mono type_enc
in
AQuant (q, xs |> map (apsnd (fn NONE => NONE
| SOME T => do_bound_type T)),
(if q = AForall then mk_ahorn else fold_rev (mk_aconn AAnd))
(map_filter
(fn (_, NONE) => NONE
| (s, SOME T) =>
do_out_of_bound_type pos phi universal (s, T))
xs)
phi)
end
| do_formula pos (AConn conn) = aconn_map pos do_formula conn
| do_formula pos (AAtom tm) = AAtom (do_term pos tm)
in do_formula end
fun string_of_status General = ""
| string_of_status Induction = inductionN
| string_of_status Intro = introN
| string_of_status Inductive = inductiveN
| string_of_status Elim = elimN
| string_of_status Simp = simpN
| string_of_status Non_Rec_Def = non_rec_defN
| string_of_status Rec_Def = rec_defN
(* Each fact is given a unique fact number to avoid name clashes (e.g., because
of monomorphization). The TPTP forbids name clashes, and some of the remote
provers might care. *)
fun line_of_fact ctxt prefix encode alt freshen pos mono type_enc rank
(j, {name, stature = (_, status), role, iformula, atomic_types}) =
Formula ((prefix ^ (if freshen then string_of_int j ^ "_" else "") ^
encode name, alt name),
role,
iformula
|> formula_of_iformula ctxt mono type_enc
should_guard_var_in_formula (if pos then SOME true else NONE)
|> close_formula_universally
|> bound_tvars type_enc true atomic_types,
NONE, isabelle_info (string_of_status status) (rank j))
fun lines_of_subclass type_enc sub super =
Formula ((subclass_prefix ^ ascii_of sub ^ "___" ^ ascii_of super, ""), Axiom,
AConn (AImplies,
[sub, super] |> map (fn s => class_atom type_enc (s, tvar_a)))
|> bound_tvars type_enc false [tvar_a],
NONE, isabelle_info inductiveN helper_rank)
fun lines_of_subclass_pair type_enc (sub, supers) =
if polymorphism_of_type_enc type_enc = Type_Class_Polymorphic then
[Class_Decl (class_decl_prefix ^ ascii_of sub, `make_class sub,
map (`make_class) supers)]
else
map (lines_of_subclass type_enc sub) supers
fun line_of_tcon_clause type_enc (name, prems, (cl, T)) =
if polymorphism_of_type_enc type_enc = Type_Class_Polymorphic then
Class_Memb (class_memb_prefix ^ name,
map (fn (cls, T) =>
(T |> dest_TVar |> tvar_name, map (`make_class) cls))
prems,
native_ho_type_of_typ type_enc false 0 T, `make_class cl)
else
Formula ((tcon_clause_prefix ^ name, ""), Axiom,
mk_ahorn (maps (class_atoms type_enc) prems)
(class_atom type_enc (cl, T))
|> bound_tvars type_enc true (snd (dest_Type T)),
NONE, isabelle_info inductiveN helper_rank)
fun line_of_conjecture ctxt mono type_enc
({name, role, iformula, atomic_types, ...} : ifact) =
Formula ((conjecture_prefix ^ name, ""), role,
iformula
|> formula_of_iformula ctxt mono type_enc
should_guard_var_in_formula (SOME false)
|> close_formula_universally
|> bound_tvars type_enc true atomic_types, NONE, [])
fun lines_of_free_types type_enc (facts : ifact list) =
if is_type_enc_polymorphic type_enc then
let
val type_classes =
(polymorphism_of_type_enc type_enc = Type_Class_Polymorphic)
fun line j (cl, T) =
if type_classes then
Class_Memb (class_memb_prefix ^ string_of_int j, [],
native_ho_type_of_typ type_enc false 0 T, `make_class cl)
else
Formula ((tfree_clause_prefix ^ string_of_int j, ""), Hypothesis,
class_atom type_enc (cl, T), NONE, [])
val membs =
fold (union (op =)) (map #atomic_types facts) []
|> class_membs_of_types type_enc add_sorts_on_tfree
in map2 line (0 upto length membs - 1) membs end
else
[]
(** Symbol declarations **)
fun decl_line_of_class phantoms s =
let val name as (s, _) = `make_class s in
Sym_Decl (sym_decl_prefix ^ s, name,
APi ([tvar_a_name],
if phantoms = Without_Phantom_Type_Vars then
AFun (a_itself_atype, bool_atype)
else
bool_atype))
end
fun decl_lines_of_classes type_enc =
case type_enc of
Native (_, Raw_Polymorphic phantoms, _) =>
map (decl_line_of_class phantoms)
| _ => K []
fun sym_decl_table_of_facts thy type_enc sym_tab (conjs, facts, extra_tms) =
let
fun add_iterm_syms tm =
let val (head, args) = strip_iterm_comb tm in
(case head of
IConst ((s, s'), T, T_args) =>
let
val (pred_sym, in_conj) =
case Symtab.lookup sym_tab s of
SOME ({pred_sym, in_conj, ...} : sym_info) =>
(pred_sym, in_conj)
| NONE => (false, false)
val decl_sym =
(case type_enc of
Guards _ => not pred_sym
| _ => true) andalso
is_tptp_user_symbol s
in
if decl_sym then
Symtab.map_default (s, [])
(insert_type thy #3 (s', T_args, T, pred_sym, length args,
in_conj))
else
I
end
| IAbs (_, tm) => add_iterm_syms tm
| _ => I)
#> fold add_iterm_syms args
end
val add_fact_syms = ifact_lift (formula_fold NONE (K add_iterm_syms))
fun add_formula_var_types (ATyQuant (_, _, phi)) = add_formula_var_types phi
| add_formula_var_types (AQuant (_, xs, phi)) =
fold (fn (_, SOME T) => insert_type thy I T | _ => I) xs
#> add_formula_var_types phi
| add_formula_var_types (AConn (_, phis)) =
fold add_formula_var_types phis
| add_formula_var_types _ = I
fun var_types () =
if is_type_enc_polymorphic type_enc then [tvar_a]
else fold (ifact_lift add_formula_var_types) (conjs @ facts) []
fun add_undefined_const T =
let
(* FIXME: make sure type arguments are filtered / clean up code *)
val (s, s') =
`(make_fixed_const NONE) @{const_name undefined}
|> (is_type_enc_mangling type_enc ? mangled_const_name type_enc [T])
in
Symtab.map_default (s, [])
(insert_type thy #3 (s', [T], T, false, 0, false))
end
fun add_TYPE_const () =
let val (s, s') = TYPE_name in
Symtab.map_default (s, [])
(insert_type thy #3
(s', [tvar_a], @{typ "'a itself"}, false, 0, false))
end
in
Symtab.empty
|> is_type_enc_sound type_enc
? (fold (fold add_fact_syms) [conjs, facts]
#> fold add_iterm_syms extra_tms
#> (case type_enc of
Native (First_Order, Raw_Polymorphic phantoms, _) =>
phantoms = Without_Phantom_Type_Vars ? add_TYPE_const ()
| Native _ => I
| _ => fold add_undefined_const (var_types ())))
end
(* We add "bool" in case the helper "True_or_False" is included later. *)
fun default_mono level completish =
{maybe_finite_Ts = [@{typ bool}],
surely_infinite_Ts =
case level of
Nonmono_Types (Strict, _) => []
| _ => known_infinite_types,
maybe_nonmono_Ts = [if completish then tvar_a else @{typ bool}]}
(* This inference is described in section 4 of Blanchette et al., "Encoding
monomorphic and polymorphic types", TACAS 2013. *)
fun add_iterm_mononotonicity_info _ _ (SOME false) _ mono = mono
| add_iterm_mononotonicity_info ctxt level _
(IApp (IApp (IConst ((s, _), Type (_, [T, _]), _), tm1), tm2))
(mono as {maybe_finite_Ts, surely_infinite_Ts, maybe_nonmono_Ts}) =
let val thy = Proof_Context.theory_of ctxt in
if is_tptp_equal s andalso exists is_maybe_universal_var [tm1, tm2] then
case level of
Nonmono_Types (strictness, _) =>
if exists (type_instance thy T) surely_infinite_Ts orelse
member (type_equiv thy) maybe_finite_Ts T then
mono
else if is_type_kind_of_surely_infinite ctxt strictness
surely_infinite_Ts T then
{maybe_finite_Ts = maybe_finite_Ts,
surely_infinite_Ts = surely_infinite_Ts |> insert_type thy I T,
maybe_nonmono_Ts = maybe_nonmono_Ts}
else
{maybe_finite_Ts = maybe_finite_Ts |> insert (type_equiv thy) T,
surely_infinite_Ts = surely_infinite_Ts,
maybe_nonmono_Ts = maybe_nonmono_Ts |> insert_type thy I T}
| _ => mono
else
mono
end
| add_iterm_mononotonicity_info _ _ _ _ mono = mono
fun add_fact_mononotonicity_info ctxt level ({role, iformula, ...} : ifact) =
formula_fold (SOME (role <> Conjecture))
(add_iterm_mononotonicity_info ctxt level) iformula
fun mononotonicity_info_of_facts ctxt type_enc completish facts =
let val level = level_of_type_enc type_enc in
default_mono level completish
|> is_type_level_monotonicity_based level
? fold (add_fact_mononotonicity_info ctxt level) facts
end
fun fold_arg_types f (IApp (tm1, tm2)) =
fold_arg_types f tm1 #> fold_term_types f tm2
| fold_arg_types _ _ = I
and fold_term_types f tm = f (ityp_of tm) #> fold_arg_types f tm
fun add_iformula_monotonic_types ctxt mono type_enc =
let
val thy = Proof_Context.theory_of ctxt
val level = level_of_type_enc type_enc
val should_encode = should_encode_type ctxt mono level
fun add_type T = not (should_encode T) ? insert_type thy I T
in formula_fold NONE (K (fold_term_types add_type)) end
fun add_fact_monotonic_types ctxt mono type_enc =
ifact_lift (add_iformula_monotonic_types ctxt mono type_enc)
fun monotonic_types_of_facts ctxt mono type_enc facts =
let val level = level_of_type_enc type_enc in
[] |> (is_type_enc_polymorphic type_enc andalso
is_type_level_monotonicity_based level)
? fold (add_fact_monotonic_types ctxt mono type_enc) facts
end
fun line_of_guards_mono_type ctxt mono type_enc T =
Formula ((guards_sym_formula_prefix ^ ascii_of (mangled_type type_enc T), ""),
Axiom,
IConst (`make_bound_var "X", T, [])
|> type_guard_iterm type_enc T
|> AAtom
|> formula_of_iformula ctxt mono type_enc always_guard_var_in_formula
(SOME true)
|> close_formula_universally
|> bound_tvars type_enc true (atomic_types_of T),
NONE, isabelle_info inductiveN helper_rank)
fun line_of_tags_mono_type ctxt mono type_enc T =
let val x_var = ATerm ((`make_bound_var "X", []), []) in
Formula ((tags_sym_formula_prefix ^ ascii_of (mangled_type type_enc T), ""),
Axiom,
eq_formula type_enc (atomic_types_of T) [] false
(tag_with_type ctxt mono type_enc NONE T x_var) x_var,
NONE, isabelle_info non_rec_defN helper_rank)
end
fun lines_of_mono_types ctxt mono type_enc =
case type_enc of
Native _ => K []
| Guards _ => map (line_of_guards_mono_type ctxt mono type_enc)
| Tags _ => map (line_of_tags_mono_type ctxt mono type_enc)
fun decl_line_of_sym ctxt mono type_enc s (s', T_args, T, pred_sym, ary, _) =
let
val thy = Proof_Context.theory_of ctxt
val (T, T_args) =
if null T_args then
(T, [])
else case unprefix_and_unascii const_prefix s of
SOME s' =>
let
val s' = s' |> unmangled_invert_const
val T = s' |> robust_const_type thy
in (T, robust_const_type_args thy (s', T)) end
| NONE => raise Fail "unexpected type arguments"
in
Sym_Decl (sym_decl_prefix ^ s, (s, s'),
T |> fused_type ctxt mono (level_of_type_enc type_enc) ary
|> native_ho_type_of_typ type_enc pred_sym ary
|> not (null T_args)
? curry APi (map (tvar_name o dest_TVar) T_args))
end
fun honor_conj_sym_role in_conj = (if in_conj then Hypothesis else Axiom, I)
fun line_of_guards_sym_decl ctxt mono type_enc n s j
(s', T_args, T, _, ary, in_conj) =
let
val thy = Proof_Context.theory_of ctxt
val (role, maybe_negate) = honor_conj_sym_role in_conj
val (arg_Ts, res_T) = chop_fun ary T
val bound_names = 1 upto ary |> map (`I o make_bound_var o string_of_int)
val bounds =
bound_names ~~ arg_Ts |> map (fn (name, T) => IConst (name, T, []))
val bound_Ts =
case level_of_type_enc type_enc of
All_Types => if null T_args then replicate ary NONE else map SOME arg_Ts
| Undercover_Types =>
let val cover = type_arg_cover thy NONE s ary in
map2 (fn j => if member (op =) cover j then SOME else K NONE)
(0 upto ary - 1) arg_Ts
end
| _ => replicate ary NONE
in
Formula ((guards_sym_formula_prefix ^ s ^
(if n > 1 then "_" ^ string_of_int j else ""), ""),
role,
IConst ((s, s'), T, T_args)
|> fold (curry (IApp o swap)) bounds
|> type_guard_iterm type_enc res_T
|> AAtom |> mk_aquant AForall (bound_names ~~ bound_Ts)
|> formula_of_iformula ctxt mono type_enc
always_guard_var_in_formula (SOME true)
|> close_formula_universally
|> bound_tvars type_enc (n > 1) (atomic_types_of T)
|> maybe_negate,
NONE, isabelle_info inductiveN helper_rank)
end
fun lines_of_tags_sym_decl ctxt mono type_enc n s
(j, (s', T_args, T, pred_sym, ary, in_conj)) =
let
val thy = Proof_Context.theory_of ctxt
val level = level_of_type_enc type_enc
val ident =
tags_sym_formula_prefix ^ s ^
(if n > 1 then "_" ^ string_of_int j else "")
val (role, maybe_negate) = honor_conj_sym_role in_conj
val (arg_Ts, res_T) = chop_fun ary T
val bound_names = 1 upto ary |> map (`I o make_bound_var o string_of_int)
val bounds = bound_names |> map (fn name => ATerm ((name, []), []))
val cst = mk_aterm type_enc (s, s') T_args
val eq = maybe_negate oo eq_formula type_enc (atomic_types_of T) [] pred_sym
val tag_with = tag_with_type ctxt mono type_enc NONE
fun formula c =
[Formula ((ident, ""), role, eq (tag_with res_T c) c, NONE,
isabelle_info non_rec_defN helper_rank)]
in
if pred_sym orelse not (should_encode_type ctxt mono level res_T) then
[]
else if level = Undercover_Types then
let
val cover = type_arg_cover thy NONE s ary
fun maybe_tag (j, arg_T) = member (op =) cover j ? tag_with arg_T
val bounds = bounds |> map2 maybe_tag (0 upto ary - 1 ~~ arg_Ts)
in formula (cst bounds) end
else
formula (cst bounds)
end
fun result_type_of_decl (_, _, T, _, ary, _) = chop_fun ary T |> snd
fun rationalize_decls thy (decls as decl :: (decls' as _ :: _)) =
let
val T = result_type_of_decl decl
|> map_type_tvar (fn (z, _) => TVar (z, HOLogic.typeS))
in
if forall (type_generalization thy T o result_type_of_decl) decls' then
[decl]
else
decls
end
| rationalize_decls _ decls = decls
fun lines_of_sym_decls ctxt mono type_enc (s, decls) =
case type_enc of
Native _ => [decl_line_of_sym ctxt mono type_enc s (hd decls)]
| Guards (_, level) =>
let
val thy = Proof_Context.theory_of ctxt
val decls = decls |> rationalize_decls thy
val n = length decls
val decls =
decls |> filter (should_encode_type ctxt mono level
o result_type_of_decl)
in
(0 upto length decls - 1, decls)
|-> map2 (line_of_guards_sym_decl ctxt mono type_enc n s)
end
| Tags (_, level) =>
if is_type_level_uniform level then
[]
else
let val n = length decls in
(0 upto n - 1 ~~ decls)
|> maps (lines_of_tags_sym_decl ctxt mono type_enc n s)
end
fun lines_of_sym_decl_table ctxt mono type_enc mono_Ts sym_decl_tab =
let
val syms = sym_decl_tab |> Symtab.dest |> sort_wrt fst
val mono_lines = lines_of_mono_types ctxt mono type_enc mono_Ts
val decl_lines = maps (lines_of_sym_decls ctxt mono type_enc) syms
in mono_lines @ decl_lines end
fun datatypes_of_sym_table ctxt ctrss (DFG Polymorphic) (type_enc as Native _)
uncurried_aliases sym_tab =
if is_type_enc_polymorphic type_enc then
let
val thy = Proof_Context.theory_of ctxt
fun do_ctr (s, T) =
let
val s' = make_fixed_const (SOME type_enc) s
val ary = ary_of T
fun mk name =
mk_aterm type_enc name (robust_const_type_args thy (s, T)) []
in
case Symtab.lookup sym_tab s' of
NONE => NONE
| SOME ({min_ary, ...} : sym_info) =>
if ary = min_ary then
SOME (mk (s', s))
else if uncurried_aliases then
SOME (mk (aliased_uncurried ary (s', s)))
else
NONE
end
fun datatype_of_ctrs (ctrs as (_, T1) :: _) =
let val ctrs' = map do_ctr ctrs in
(native_ho_type_of_typ type_enc false 0 (body_type T1),
map_filter I ctrs', forall is_some ctrs')
end
in ctrss |> map datatype_of_ctrs |> filter_out (null o #2) end
else
[]
| datatypes_of_sym_table _ _ _ _ _ _ = []
fun decl_line_of_datatype (ty as AType ((_, s'), ty_args), ctrs, exhaust) =
let val xs = map (fn AType (name, []) => name) ty_args in
Datatype_Decl (datatype_decl_prefix ^ ascii_of s', map (rpair []) xs, ty,
ctrs, exhaust)
end
fun pair_append (xs1, xs2) (ys1, ys2) = (xs1 @ ys1, xs2 @ ys2)
fun do_uncurried_alias_lines_of_sym ctxt ctrss mono type_enc sym_tab0 sym_tab
base_s0 types in_conj =
let
fun do_alias ary =
let
val thy = Proof_Context.theory_of ctxt
val (role, maybe_negate) = honor_conj_sym_role in_conj
val base_name = base_s0 |> `(make_fixed_const (SOME type_enc))
val T = case types of [T] => T | _ => robust_const_type thy base_s0
val T_args = robust_const_type_args thy (base_s0, T)
val (base_name as (base_s, _), T_args) =
mangle_type_args_in_const type_enc base_name T_args
val base_ary = min_ary_of sym_tab0 base_s
fun do_const name = IConst (name, T, T_args)
val filter_ty_args = filter_type_args_in_iterm thy ctrss type_enc
val atp_term_of = atp_term_of_iterm ctxt mono type_enc (SOME true)
val name1 as (s1, _) =
base_name |> ary - 1 > base_ary ? aliased_uncurried (ary - 1)
val name2 as (s2, _) = base_name |> aliased_uncurried ary
val (arg_Ts, _) = chop_fun ary T
val bound_names =
1 upto ary |> map (`I o make_bound_var o string_of_int)
val bounds = bound_names ~~ arg_Ts
val (first_bounds, last_bound) =
bounds |> map (fn (name, T) => IConst (name, T, [])) |> split_last
val tm1 =
mk_app_op type_enc (list_app (do_const name1) first_bounds) last_bound
|> filter_ty_args
val tm2 =
list_app (do_const name2) (first_bounds @ [last_bound])
|> filter_ty_args
val do_bound_type = do_bound_type ctxt mono type_enc
val eq =
eq_formula type_enc (atomic_types_of T)
(map (apsnd do_bound_type) bounds) false
(atp_term_of tm1) (atp_term_of tm2)
in
([tm1, tm2],
[Formula ((uncurried_alias_eq_prefix ^ s2, ""), role,
eq |> maybe_negate, NONE,
isabelle_info non_rec_defN helper_rank)])
|> (if ary - 1 = base_ary orelse Symtab.defined sym_tab s1 then I
else pair_append (do_alias (ary - 1)))
end
in do_alias end
fun uncurried_alias_lines_of_sym ctxt ctrss mono type_enc sym_tab0 sym_tab
(s, {min_ary, types, in_conj, ...} : sym_info) =
case unprefix_and_unascii const_prefix s of
SOME mangled_s =>
if String.isSubstring uncurried_alias_sep mangled_s then
let
val base_s0 = mangled_s |> unmangled_invert_const
in
do_uncurried_alias_lines_of_sym ctxt ctrss mono type_enc sym_tab0
sym_tab base_s0 types in_conj min_ary
end
else
([], [])
| NONE => ([], [])
fun uncurried_alias_lines_of_sym_table ctxt ctrss mono type_enc
uncurried_aliases sym_tab0 sym_tab =
([], [])
|> uncurried_aliases
? Symtab.fold_rev
(pair_append
o uncurried_alias_lines_of_sym ctxt ctrss mono type_enc sym_tab0
sym_tab) sym_tab
val implicit_declsN = "Could-be-implicit typings"
val explicit_declsN = "Explicit typings"
val uncurried_alias_eqsN = "Uncurried aliases"
val factsN = "Relevant facts"
val subclassesN = "Subclasses"
val tconsN = "Type constructors"
val helpersN = "Helper facts"
val conjsN = "Conjectures"
val free_typesN = "Free types"
(* TFF allows implicit declarations of types, function symbols, and predicate
symbols (with "$i" as the type of individuals), but some provers (e.g.,
SNARK) require explicit declarations. The situation is similar for THF. *)
fun default_type pred_sym =
let
fun typ 0 0 = if pred_sym then bool_atype else individual_atype
| typ 0 tm_ary = AFun (individual_atype, typ 0 (tm_ary - 1))
| typ ty_ary tm_ary = APi (replicate ty_ary tvar_a_name, typ 0 tm_ary)
in typ end
fun undeclared_in_problem problem =
let
fun do_sym (name as (s, _)) value =
if is_tptp_user_symbol s then Symtab.default (s, (name, value)) else I
fun do_class name = apfst (apfst (do_sym name ()))
val do_bound_tvars = fold do_class o snd
fun do_type (AType (name, tys)) =
apfst (apsnd (do_sym name (length tys))) #> fold do_type tys
| do_type (AFun (ty1, ty2)) = do_type ty1 #> do_type ty2
| do_type (APi (_, ty)) = do_type ty
fun do_term pred_sym (ATerm ((name, tys), tms)) =
apsnd (do_sym name
(fn _ => default_type pred_sym (length tys) (length tms)))
#> fold do_type tys #> fold (do_term false) tms
| do_term _ (AAbs (((_, ty), tm), args)) =
do_type ty #> do_term false tm #> fold (do_term false) args
fun do_formula (ATyQuant (_, xs, phi)) =
fold (do_type o fst) xs #> fold (fold do_class o snd) xs
#> do_formula phi
| do_formula (AQuant (_, xs, phi)) =
fold do_type (map_filter snd xs) #> do_formula phi
| do_formula (AConn (_, phis)) = fold do_formula phis
| do_formula (AAtom tm) = do_term true tm
fun do_line (Class_Decl (_, _, cls)) = fold do_class cls
| do_line (Type_Decl _) = I
| do_line (Sym_Decl (_, _, ty)) = do_type ty
| do_line (Datatype_Decl (_, xs, ty, tms, _)) =
fold do_bound_tvars xs #> do_type ty #> fold (do_term false) tms
| do_line (Class_Memb (_, xs, ty, cl)) =
fold do_bound_tvars xs #> do_type ty #> do_class cl
| do_line (Formula (_, _, phi, _, _)) = do_formula phi
val ((cls, tys), syms) = declared_in_atp_problem problem
in
((Symtab.empty, Symtab.empty), Symtab.empty)
|>> apfst (fold (fn (s, _) => Symtab.default (s, (("", ""), ()))) cls)
|>> apsnd (fold (fn (s, _) => Symtab.default (s, (("", ""), 0))) tys)
||> fold (fn (s, _) => Symtab.default (s, (("", ""), K tvar_a_atype))) syms
|> fold (fold do_line o snd) problem
end
fun declare_undeclared_in_problem heading problem =
let
val ((cls, tys), syms) = undeclared_in_problem problem
val decls =
Symtab.fold (fn (_, (("", ""), _)) => I (* already declared *)
| (s, (cls, ())) =>
cons (Class_Decl (class_decl_prefix ^ s, cls, [])))
cls [] @
Symtab.fold (fn (_, (("", ""), _)) => I (* already declared *)
| (s, (ty, ary)) =>
cons (Type_Decl (type_decl_prefix ^ s, ty, ary)))
tys [] @
Symtab.fold (fn (_, (("", ""), _)) => I (* already declared *)
| (s, (sym, ty)) =>
cons (Sym_Decl (sym_decl_prefix ^ s, sym, ty ())))
syms []
in (heading, decls) :: problem end
fun all_ctrss_of_datatypes ctxt =
map (map_filter (try dest_Const) o #ctrs) (Ctr_Sugar.ctr_sugars_of ctxt)
val app_op_and_predicator_threshold = 45
fun prepare_atp_problem ctxt format prem_role type_enc mode lam_trans
uncurried_aliases readable_names presimp hyp_ts concl_t
facts =
let
val thy = Proof_Context.theory_of ctxt
val type_enc = type_enc |> adjust_type_enc format
val completish = (mode = Sledgehammer_Completish)
(* Forcing explicit applications is expensive for polymorphic encodings,
because it takes only one existential variable ranging over "'a => 'b" to
ruin everything. Hence we do it only if there are few facts (which is
normally the case for "metis" and the minimizer). *)
val app_op_level =
if completish then
Full_App_Op_And_Predicator
else if length facts + length hyp_ts >= app_op_and_predicator_threshold then
if is_type_enc_polymorphic type_enc then Min_App_Op else Sufficient_App_Op
else
Sufficient_App_Op_And_Predicator
val lam_trans =
if lam_trans = keep_lamsN andalso not (is_type_enc_higher_order type_enc) then liftingN
else lam_trans
val (fact_names, classes, conjs, facts, subclass_pairs, tcon_clauses, lifted) =
translate_formulas ctxt prem_role format type_enc lam_trans presimp hyp_ts concl_t facts
val (_, sym_tab0) = sym_table_of_facts ctxt type_enc app_op_level conjs facts
val mono = conjs @ facts |> mononotonicity_info_of_facts ctxt type_enc completish
val ctrss = all_ctrss_of_datatypes ctxt
fun firstorderize in_helper =
firstorderize_fact thy ctrss type_enc
(uncurried_aliases andalso not in_helper) completish sym_tab0
val (conjs, facts) = (conjs, facts) |> pairself (map (firstorderize false))
val (ho_stuff, sym_tab) =
sym_table_of_facts ctxt type_enc Min_App_Op conjs facts
val (uncurried_alias_eq_tms, uncurried_alias_eq_lines) =
uncurried_alias_lines_of_sym_table ctxt ctrss mono type_enc
uncurried_aliases sym_tab0 sym_tab
val (_, sym_tab) =
(ho_stuff, sym_tab)
|> fold (add_iterm_syms_to_sym_table ctxt Min_App_Op false false)
uncurried_alias_eq_tms
val helpers =
sym_tab |> helper_facts_of_sym_table ctxt format type_enc completish
|> map (firstorderize true)
val all_facts = helpers @ conjs @ facts
val mono_Ts = monotonic_types_of_facts ctxt mono type_enc all_facts
val datatypes =
datatypes_of_sym_table ctxt ctrss format type_enc uncurried_aliases
sym_tab
val class_decl_lines = decl_lines_of_classes type_enc classes
val sym_decl_lines =
(conjs, helpers @ facts, uncurried_alias_eq_tms)
|> sym_decl_table_of_facts thy type_enc sym_tab
|> lines_of_sym_decl_table ctxt mono type_enc mono_Ts
val datatype_decl_lines = map decl_line_of_datatype datatypes
val decl_lines = class_decl_lines @ sym_decl_lines @ datatype_decl_lines
val num_facts = length facts
val freshen = mode <> Exporter andalso mode <> Translator
val pos = mode <> Exporter
val rank_of = rank_of_fact_num num_facts
val fact_lines =
map (line_of_fact ctxt fact_prefix ascii_of I freshen pos mono type_enc rank_of)
(0 upto num_facts - 1 ~~ facts)
val subclass_lines = maps (lines_of_subclass_pair type_enc) subclass_pairs
val tcon_lines = map (line_of_tcon_clause type_enc) tcon_clauses
val helper_lines =
0 upto length helpers - 1 ~~ helpers
|> map (line_of_fact ctxt helper_prefix I (K "") false true mono type_enc
(K default_rank))
val free_type_lines = lines_of_free_types type_enc (facts @ conjs)
val conj_lines = map (line_of_conjecture ctxt mono type_enc) conjs
(* Reordering these might confuse the proof reconstruction code. *)
val problem =
[(explicit_declsN, decl_lines),
(uncurried_alias_eqsN, uncurried_alias_eq_lines),
(factsN, fact_lines),
(subclassesN, subclass_lines),
(tconsN, tcon_lines),
(helpersN, helper_lines),
(free_typesN, free_type_lines),
(conjsN, conj_lines)]
val problem =
problem |> (case format of
CNF => ensure_cnf_problem
| CNF_UEQ => filter_cnf_ueq_problem
| FOF => I
| _ => declare_undeclared_in_problem implicit_declsN)
val (problem, pool) = problem |> nice_atp_problem readable_names format
fun add_sym_ary (s, {min_ary, ...} : sym_info) =
min_ary > 0 ? Symtab.insert (op =) (s, min_ary)
in
(problem, pool |> Option.map snd |> the_default Symtab.empty,
fact_names |> Vector.fromList, lifted,
Symtab.empty |> Symtab.fold add_sym_ary sym_tab)
end
(* FUDGE *)
val conj_weight = 0.0
val hyp_weight = 0.1
val fact_min_weight = 0.2
val fact_max_weight = 1.0
val type_info_default_weight = 0.8
(* Weights are from 0.0 (most important) to 1.0 (least important). *)
fun atp_problem_selection_weights problem =
let
fun add_term_weights weight (ATerm ((s, _), tms)) =
is_tptp_user_symbol s ? Symtab.default (s, weight)
#> fold (add_term_weights weight) tms
| add_term_weights weight (AAbs ((_, tm), args)) =
add_term_weights weight tm #> fold (add_term_weights weight) args
fun add_line_weights weight (Formula (_, _, phi, _, _)) =
formula_fold NONE (K (add_term_weights weight)) phi
| add_line_weights _ _ = I
fun add_conjectures_weights [] = I
| add_conjectures_weights conjs =
let val (hyps, conj) = split_last conjs in
add_line_weights conj_weight conj
#> fold (add_line_weights hyp_weight) hyps
end
fun add_facts_weights facts =
let
val num_facts = length facts
fun weight_of j =
fact_min_weight + (fact_max_weight - fact_min_weight) * Real.fromInt j
/ Real.fromInt num_facts
in
map weight_of (0 upto num_facts - 1) ~~ facts
|> fold (uncurry add_line_weights)
end
val get = these o AList.lookup (op =) problem
in
Symtab.empty
|> add_conjectures_weights (get free_typesN @ get conjsN)
|> add_facts_weights (get factsN)
|> fold (fold (add_line_weights type_info_default_weight) o get)
[explicit_declsN, subclassesN, tconsN]
|> Symtab.dest
|> sort (prod_ord Real.compare string_ord o pairself swap)
end
(* Ugly hack: may make innocent victims (collateral damage) *)
fun may_be_app s args = String.isPrefix app_op_name s andalso length args = 2
fun may_be_predicator s =
member (op =) [predicator_name, prefixed_predicator_name] s
fun strip_predicator (tm as ATerm ((s, _), [tm'])) =
if may_be_predicator s then tm' else tm
| strip_predicator tm = tm
fun make_head_roll (ATerm ((s, _), tms)) =
if may_be_app s tms then make_head_roll (hd tms) ||> append (tl tms)
else (s, tms)
| make_head_roll _ = ("", [])
fun strip_up_to_predicator (ATyQuant (_, _, phi)) = strip_up_to_predicator phi
| strip_up_to_predicator (AQuant (_, _, phi)) = strip_up_to_predicator phi
| strip_up_to_predicator (AConn (_, phis)) = maps strip_up_to_predicator phis
| strip_up_to_predicator (AAtom tm) = [strip_predicator tm]
fun strip_ahorn_etc (ATyQuant (_, _, phi)) = strip_ahorn_etc phi
| strip_ahorn_etc (AQuant (_, _, phi)) = strip_ahorn_etc phi
| strip_ahorn_etc (AConn (AImplies, [phi1, phi2])) =
strip_ahorn_etc phi2 |>> append (strip_up_to_predicator phi1)
| strip_ahorn_etc phi = ([], hd (strip_up_to_predicator phi))
fun strip_iff_etc (ATyQuant (_, _, phi)) = strip_iff_etc phi
| strip_iff_etc (AQuant (_, _, phi)) = strip_iff_etc phi
| strip_iff_etc (AConn (AIff, [phi1, phi2])) =
pairself strip_up_to_predicator (phi1, phi2)
| strip_iff_etc _ = ([], [])
val max_term_order_weight = 2147483647
fun atp_problem_term_order_info problem =
let
fun add_edge s s' =
Graph.default_node (s, ())
#> Graph.default_node (s', ())
#> Graph.add_edge_acyclic (s, s')
fun add_term_deps head (ATerm ((s, _), args)) =
if is_tptp_user_symbol head then
(if is_tptp_user_symbol s then perhaps (try (add_edge s head)) else I)
#> fold (add_term_deps head) args
else
I
| add_term_deps head (AAbs ((_, tm), args)) =
add_term_deps head tm #> fold (add_term_deps head) args
fun add_intro_deps pred (Formula (_, role, phi, _, info)) =
if pred (role, info) then
let val (hyps, concl) = strip_ahorn_etc phi in
case make_head_roll concl of
(head, args as _ :: _) => fold (add_term_deps head) (hyps @ args)
| _ => I
end
else
I
| add_intro_deps _ _ = I
fun add_atom_eq_deps (SOME true) (ATerm ((s, _), [lhs as _, rhs])) =
if is_tptp_equal s then
case make_head_roll lhs of
(head, args as _ :: _) => fold (add_term_deps head) (rhs :: args)
| _ => I
else
I
| add_atom_eq_deps _ _ = I
fun add_eq_deps pred (Formula (_, role, phi, _, info)) =
if pred (role, info) then
case strip_iff_etc phi of
([lhs], rhs) =>
(case make_head_roll lhs of
(head, args as _ :: _) => fold (add_term_deps head) (rhs @ args)
| _ => I)
| _ => formula_fold (SOME (role <> Conjecture)) add_atom_eq_deps phi
else
I
| add_eq_deps _ _ = I
fun has_status status (_, info) = extract_isabelle_status info = SOME status
fun is_conj (role, _) = (role = Conjecture orelse role = Hypothesis)
val graph =
Graph.empty
|> fold (fold (add_eq_deps (has_status non_rec_defN)) o snd) problem
|> fold (fold (add_eq_deps (has_status rec_defN orf has_status simpN
orf is_conj)) o snd) problem
|> fold (fold (add_intro_deps (has_status inductiveN)) o snd) problem
|> fold (fold (add_intro_deps (has_status introN)) o snd) problem
fun next_weight w = if w + w <= max_term_order_weight then w + w else w + 1
fun add_weights _ [] = I
| add_weights weight syms =
fold (AList.update (op =) o rpair weight) syms
#> add_weights (next_weight weight)
(fold (union (op =) o Graph.immediate_succs graph) syms [])
in
(* Sorting is not just for aesthetics: It specifies the precedence order for
the term ordering (KBO or LPO), from smaller to larger values. *)
[] |> add_weights 1 (Graph.minimals graph) |> sort (int_ord o pairself snd)
end
end;