(* Title: HOL/simpdata.ML
ID: $Id$
Author: Tobias Nipkow
Copyright 1991 University of Cambridge
Instantiation of the generic simplifier for HOL.
*)
(* legacy ML bindings *)
val Eq_FalseI = thm "Eq_FalseI";
val Eq_TrueI = thm "Eq_TrueI";
val all_conj_distrib = thm "all_conj_distrib";
val all_simps = thms "all_simps";
val cases_simp = thm "cases_simp";
val conj_assoc = thm "conj_assoc";
val conj_comms = thms "conj_comms";
val conj_commute = thm "conj_commute";
val conj_cong = thm "conj_cong";
val conj_disj_distribL = thm "conj_disj_distribL";
val conj_disj_distribR = thm "conj_disj_distribR";
val conj_left_commute = thm "conj_left_commute";
val de_Morgan_conj = thm "de_Morgan_conj";
val de_Morgan_disj = thm "de_Morgan_disj";
val disj_assoc = thm "disj_assoc";
val disj_comms = thms "disj_comms";
val disj_commute = thm "disj_commute";
val disj_cong = thm "disj_cong";
val disj_conj_distribL = thm "disj_conj_distribL";
val disj_conj_distribR = thm "disj_conj_distribR";
val disj_left_commute = thm "disj_left_commute";
val disj_not1 = thm "disj_not1";
val disj_not2 = thm "disj_not2";
val eq_ac = thms "eq_ac";
val eq_assoc = thm "eq_assoc";
val eq_commute = thm "eq_commute";
val eq_left_commute = thm "eq_left_commute";
val eq_sym_conv = thm "eq_sym_conv";
val eta_contract_eq = thm "eta_contract_eq";
val ex_disj_distrib = thm "ex_disj_distrib";
val ex_simps = thms "ex_simps";
val if_False = thm "if_False";
val if_P = thm "if_P";
val if_True = thm "if_True";
val if_bool_eq_conj = thm "if_bool_eq_conj";
val if_bool_eq_disj = thm "if_bool_eq_disj";
val if_cancel = thm "if_cancel";
val if_def2 = thm "if_def2";
val if_eq_cancel = thm "if_eq_cancel";
val if_not_P = thm "if_not_P";
val if_splits = thms "if_splits";
val iff_conv_conj_imp = thm "iff_conv_conj_imp";
val imp_all = thm "imp_all";
val imp_cong = thm "imp_cong";
val imp_conjL = thm "imp_conjL";
val imp_conjR = thm "imp_conjR";
val imp_conv_disj = thm "imp_conv_disj";
val imp_disj1 = thm "imp_disj1";
val imp_disj2 = thm "imp_disj2";
val imp_disjL = thm "imp_disjL";
val imp_disj_not1 = thm "imp_disj_not1";
val imp_disj_not2 = thm "imp_disj_not2";
val imp_ex = thm "imp_ex";
val meta_eq_to_obj_eq = thm "meta_eq_to_obj_eq";
val neq_commute = thm "neq_commute";
val not_all = thm "not_all";
val not_ex = thm "not_ex";
val not_iff = thm "not_iff";
val not_imp = thm "not_imp";
val not_not = thm "not_not";
val rev_conj_cong = thm "rev_conj_cong";
val simp_impliesE = thm "simp_impliesI";
val simp_impliesI = thm "simp_impliesI";
val simp_implies_cong = thm "simp_implies_cong";
val simp_implies_def = thm "simp_implies_def";
val simp_thms = thms "simp_thms";
val split_if = thm "split_if";
val split_if_asm = thm "split_if_asm";
val atomize_not = thm"atomize_not";
local
val uncurry = prove_goal (the_context()) "P --> Q --> R ==> P & Q --> R"
(fn prems => [cut_facts_tac prems 1, Blast_tac 1]);
val iff_allI = allI RS
prove_goal (the_context()) "!x. P x = Q x ==> (!x. P x) = (!x. Q x)"
(fn prems => [cut_facts_tac prems 1, Blast_tac 1])
val iff_exI = allI RS
prove_goal (the_context()) "!x. P x = Q x ==> (? x. P x) = (? x. Q x)"
(fn prems => [cut_facts_tac prems 1, Blast_tac 1])
val all_comm = prove_goal (the_context()) "(!x y. P x y) = (!y x. P x y)"
(fn _ => [Blast_tac 1])
val ex_comm = prove_goal (the_context()) "(? x y. P x y) = (? y x. P x y)"
(fn _ => [Blast_tac 1])
in
(*** make simplification procedures for quantifier elimination ***)
structure Quantifier1 = Quantifier1Fun
(struct
(*abstract syntax*)
fun dest_eq((c as Const("op =",_)) $ s $ t) = SOME(c,s,t)
| dest_eq _ = NONE;
fun dest_conj((c as Const("op &",_)) $ s $ t) = SOME(c,s,t)
| dest_conj _ = NONE;
fun dest_imp((c as Const("op -->",_)) $ s $ t) = SOME(c,s,t)
| dest_imp _ = NONE;
val conj = HOLogic.conj
val imp = HOLogic.imp
(*rules*)
val iff_reflection = eq_reflection
val iffI = iffI
val iff_trans = trans
val conjI= conjI
val conjE= conjE
val impI = impI
val mp = mp
val uncurry = uncurry
val exI = exI
val exE = exE
val iff_allI = iff_allI
val iff_exI = iff_exI
val all_comm = all_comm
val ex_comm = ex_comm
end);
end;
val defEX_regroup =
Simplifier.simproc (Theory.sign_of (the_context ()))
"defined EX" ["EX x. P x"] Quantifier1.rearrange_ex;
val defALL_regroup =
Simplifier.simproc (Theory.sign_of (the_context ()))
"defined ALL" ["ALL x. P x"] Quantifier1.rearrange_all;
(*** Simproc for Let ***)
val use_let_simproc = ref true;
local
val Let_folded = thm "Let_folded";
val Let_unfold = thm "Let_unfold";
val f_Let_unfold =
let val [(_$(f$_)$_)] = prems_of Let_unfold in cterm_of (sign_of (the_context ())) f end
val f_Let_folded =
let val [(_$(f$_)$_)] = prems_of Let_folded in cterm_of (sign_of (the_context ())) f end;
val g_Let_folded =
let val [(_$_$(g$_))] = prems_of Let_folded in cterm_of (sign_of (the_context ())) g end;
in
val let_simproc =
Simplifier.simproc (Theory.sign_of (the_context ())) "let_simp" ["Let x f"]
(fn sg => fn ss => fn t =>
(case t of (Const ("Let",_)$x$f) => (* x and f are already in normal form *)
if not (!use_let_simproc) then NONE
else if is_Free x orelse is_Bound x orelse is_Const x
then SOME Let_def
else
let
val n = case f of (Abs (x,_,_)) => x | _ => "x";
val cx = cterm_of sg x;
val {T=xT,...} = rep_cterm cx;
val cf = cterm_of sg f;
val fx_g = Simplifier.rewrite ss (Thm.capply cf cx);
val (_$_$g) = prop_of fx_g;
val g' = abstract_over (x,g);
in (if (g aconv g')
then
let
val rl = cterm_instantiate [(f_Let_unfold,cf)] Let_unfold;
in SOME (rl OF [fx_g]) end
else if betapply (f,x) aconv g then NONE (* avoid identity conversion *)
else let
val abs_g'= Abs (n,xT,g');
val g'x = abs_g'$x;
val g_g'x = symmetric (beta_conversion false (cterm_of sg g'x));
val rl = cterm_instantiate
[(f_Let_folded,cterm_of sg f),
(g_Let_folded,cterm_of sg abs_g')]
Let_folded;
in SOME (rl OF [transitive fx_g g_g'x]) end)
end
| _ => NONE))
end
(*** Case splitting ***)
(*Make meta-equalities. The operator below is Trueprop*)
fun mk_meta_eq r = r RS eq_reflection;
fun safe_mk_meta_eq r = mk_meta_eq r handle Thm.THM _ => r;
fun mk_eq th = case concl_of th of
Const("==",_)$_$_ => th
| _$(Const("op =",_)$_$_) => mk_meta_eq th
| _$(Const("Not",_)$_) => th RS Eq_FalseI
| _ => th RS Eq_TrueI;
(* Expects Trueprop(.) if not == *)
fun mk_eq_True r =
SOME (r RS meta_eq_to_obj_eq RS Eq_TrueI) handle Thm.THM _ => NONE;
(* Produce theorems of the form
(P1 =simp=> ... =simp=> Pn => x == y) ==> (P1 =simp=> ... =simp=> Pn => x = y)
*)
fun lift_meta_eq_to_obj_eq i st =
let
val {sign, ...} = rep_thm st;
fun count_imp (Const ("HOL.op =simp=>", _) $ P $ Q) = 1 + count_imp Q
| count_imp _ = 0;
val j = count_imp (Logic.strip_assums_concl (List.nth (prems_of st, i - 1)))
in if j = 0 then meta_eq_to_obj_eq
else
let
val Ps = map (fn k => Free ("P" ^ string_of_int k, propT)) (1 upto j);
fun mk_simp_implies Q = foldr (fn (R, S) =>
Const ("HOL.op =simp=>", propT --> propT --> propT) $ R $ S) Q Ps
val aT = TFree ("'a", HOLogic.typeS);
val x = Free ("x", aT);
val y = Free ("y", aT)
in prove_goalw_cterm [simp_implies_def]
(cterm_of sign (Logic.mk_implies
(mk_simp_implies (Logic.mk_equals (x, y)),
mk_simp_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, y))))))
(fn hyps => [REPEAT (ares_tac (meta_eq_to_obj_eq :: hyps) 1)])
end
end;
(*Congruence rules for = (instead of ==)*)
fun mk_meta_cong rl = zero_var_indexes
(let val rl' = Seq.hd (TRYALL (fn i => fn st =>
rtac (lift_meta_eq_to_obj_eq i st) i st) rl)
in mk_meta_eq rl' handle THM _ =>
if Logic.is_equals (concl_of rl') then rl'
else error "Conclusion of congruence rules must be =-equality"
end);
(* Elimination of True from asumptions: *)
local fun rd s = read_cterm (sign_of (the_context())) (s, propT);
in val True_implies_equals = standard' (equal_intr
(implies_intr_hyps (implies_elim (assume (rd "True ==> PROP P")) TrueI))
(implies_intr_hyps (implies_intr (rd "True") (assume (rd "PROP P")))));
end;
structure SplitterData =
struct
structure Simplifier = Simplifier
val mk_eq = mk_eq
val meta_eq_to_iff = meta_eq_to_obj_eq
val iffD = iffD2
val disjE = disjE
val conjE = conjE
val exE = exE
val contrapos = contrapos_nn
val contrapos2 = contrapos_pp
val notnotD = notnotD
end;
structure Splitter = SplitterFun(SplitterData);
val split_tac = Splitter.split_tac;
val split_inside_tac = Splitter.split_inside_tac;
val split_asm_tac = Splitter.split_asm_tac;
val op addsplits = Splitter.addsplits;
val op delsplits = Splitter.delsplits;
val Addsplits = Splitter.Addsplits;
val Delsplits = Splitter.Delsplits;
val mksimps_pairs =
[("op -->", [mp]), ("op &", [conjunct1,conjunct2]),
("All", [spec]), ("True", []), ("False", []),
("HOL.If", [if_bool_eq_conj RS iffD1])];
(*
val mk_atomize: (string * thm list) list -> thm -> thm list
looks too specific to move it somewhere else
*)
fun mk_atomize pairs =
let fun atoms th =
(case concl_of th of
Const("Trueprop",_) $ p =>
(case head_of p of
Const(a,_) =>
(case assoc(pairs,a) of
SOME(rls) => List.concat (map atoms ([th] RL rls))
| NONE => [th])
| _ => [th])
| _ => [th])
in atoms end;
fun mksimps pairs =
(List.mapPartial (try mk_eq) o mk_atomize pairs o gen_all);
fun unsafe_solver_tac prems =
(fn i => REPEAT_DETERM (match_tac [simp_impliesI] i)) THEN'
FIRST'[resolve_tac(reflexive_thm::TrueI::refl::prems), atac, etac FalseE];
val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac;
(*No premature instantiation of variables during simplification*)
fun safe_solver_tac prems =
(fn i => REPEAT_DETERM (match_tac [simp_impliesI] i)) THEN'
FIRST'[match_tac(reflexive_thm::TrueI::refl::prems),
eq_assume_tac, ematch_tac [FalseE]];
val safe_solver = mk_solver "HOL safe" safe_solver_tac;
val HOL_basic_ss =
empty_ss setsubgoaler asm_simp_tac
setSSolver safe_solver
setSolver unsafe_solver
setmksimps (mksimps mksimps_pairs)
setmkeqTrue mk_eq_True
setmkcong mk_meta_cong;
fun unfold_tac ss ths =
ALLGOALS (full_simp_tac
(Simplifier.inherit_bounds ss (Simplifier.clear_ss HOL_basic_ss) addsimps ths));
(*In general it seems wrong to add distributive laws by default: they
might cause exponential blow-up. But imp_disjL has been in for a while
and cannot be removed without affecting existing proofs. Moreover,
rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
grounds that it allows simplification of R in the two cases.*)
val HOL_ss =
HOL_basic_ss addsimps
([triv_forall_equality, (* prunes params *)
True_implies_equals, (* prune asms `True' *)
eta_contract_eq, (* prunes eta-expansions *)
if_True, if_False, if_cancel, if_eq_cancel,
imp_disjL, conj_assoc, disj_assoc,
de_Morgan_conj, de_Morgan_disj, imp_disj1, imp_disj2, not_imp,
disj_not1, not_all, not_ex, cases_simp,
thm "the_eq_trivial", the_sym_eq_trivial]
@ ex_simps @ all_simps @ simp_thms)
addsimprocs [defALL_regroup,defEX_regroup,let_simproc]
addcongs [imp_cong, simp_implies_cong]
addsplits [split_if];
fun hol_simplify rews = Simplifier.full_simplify (HOL_basic_ss addsimps rews);
(*Simplifies x assuming c and y assuming ~c*)
val prems = Goalw [if_def]
"[| b=c; c ==> x=u; ~c ==> y=v |] ==> \
\ (if b then x else y) = (if c then u else v)";
by (asm_simp_tac (HOL_ss addsimps prems) 1);
qed "if_cong";
(*Prevents simplification of x and y: faster and allows the execution
of functional programs. NOW THE DEFAULT.*)
Goal "b=c ==> (if b then x else y) = (if c then x else y)";
by (etac arg_cong 1);
qed "if_weak_cong";
(*Prevents simplification of t: much faster*)
Goal "a = b ==> (let x=a in t(x)) = (let x=b in t(x))";
by (etac arg_cong 1);
qed "let_weak_cong";
(*To tidy up the result of a simproc. Only the RHS will be simplified.*)
Goal "u = u' ==> (t==u) == (t==u')";
by (asm_simp_tac HOL_ss 1);
qed "eq_cong2";
Goal "f(if c then x else y) = (if c then f x else f y)";
by (simp_tac (HOL_ss setloop (split_tac [split_if])) 1);
qed "if_distrib";
(*For expand_case_tac*)
val prems = Goal "[| P ==> Q(True); ~P ==> Q(False) |] ==> Q(P)";
by (case_tac "P" 1);
by (ALLGOALS (asm_simp_tac (HOL_ss addsimps prems)));
qed "expand_case";
(*Used in Auth proofs. Typically P contains Vars that become instantiated
during unification.*)
fun expand_case_tac P i =
res_inst_tac [("P",P)] expand_case i THEN
Simp_tac (i+1) THEN
Simp_tac i;
(*This lemma restricts the effect of the rewrite rule u=v to the left-hand
side of an equality. Used in {Integ,Real}/simproc.ML*)
Goal "x=y ==> (x=z) = (y=z)";
by (asm_simp_tac HOL_ss 1);
qed "restrict_to_left";
(* default simpset *)
val simpsetup =
[fn thy => (simpset_ref_of thy := HOL_ss addcongs [if_weak_cong]; thy)];
(*** integration of simplifier with classical reasoner ***)
structure Clasimp = ClasimpFun
(structure Simplifier = Simplifier and Splitter = Splitter
and Classical = Classical and Blast = Blast
val iffD1 = iffD1 val iffD2 = iffD2 val notE = notE
val cla_make_elim = cla_make_elim);
open Clasimp;
val HOL_css = (HOL_cs, HOL_ss);
(*** A general refutation procedure ***)
(* Parameters:
test: term -> bool
tests if a term is at all relevant to the refutation proof;
if not, then it can be discarded. Can improve performance,
esp. if disjunctions can be discarded (no case distinction needed!).
prep_tac: int -> tactic
A preparation tactic to be applied to the goal once all relevant premises
have been moved to the conclusion.
ref_tac: int -> tactic
the actual refutation tactic. Should be able to deal with goals
[| A1; ...; An |] ==> False
where the Ai are atomic, i.e. no top-level &, | or EX
*)
local
val nnf_simps =
[imp_conv_disj,iff_conv_conj_imp,de_Morgan_disj,de_Morgan_conj,
not_all,not_ex,not_not];
val nnf_simpset =
empty_ss setmkeqTrue mk_eq_True
setmksimps (mksimps mksimps_pairs)
addsimps nnf_simps;
val prem_nnf_tac = full_simp_tac nnf_simpset
in
fun refute_tac test prep_tac ref_tac =
let val refute_prems_tac =
REPEAT_DETERM
(eresolve_tac [conjE, exE] 1 ORELSE
filter_prems_tac test 1 ORELSE
etac disjE 1) THEN
((etac notE 1 THEN eq_assume_tac 1) ORELSE
ref_tac 1);
in EVERY'[TRY o filter_prems_tac test,
REPEAT_DETERM o etac rev_mp, prep_tac, rtac ccontr, prem_nnf_tac,
SELECT_GOAL (DEPTH_SOLVE refute_prems_tac)]
end;
end;