(* Title: Provers/Arith/cancel_div_mod.ML
Author: Tobias Nipkow, TU Muenchen
Cancel div and mod terms:
A + n*(m div n) + B + (m mod n) + C == A + B + C + m
FIXME: Is parameterized but assumes for simplicity that + and * are named
as in HOL
*)
signature CANCEL_DIV_MOD_DATA =
sig
(*abstract syntax*)
val div_name: string
val mod_name: string
val mk_binop: string -> term * term -> term
val mk_sum: typ -> term list -> term
val dest_sum: term -> term list
(*logic*)
val div_mod_eqs: thm list
(* (n*(m div n) + m mod n) + k == m + k and
((m div n)*n + m mod n) + k == m + k *)
val prove_eq_sums: Proof.context -> term * term -> thm
(* must prove ac0-equivalence of sums *)
end;
signature CANCEL_DIV_MOD =
sig
val proc: Simplifier.proc
end;
functor Cancel_Div_Mod(Data: CANCEL_DIV_MOD_DATA): CANCEL_DIV_MOD =
struct
fun coll_div_mod (Const (\<^const_name>\<open>Groups.plus\<close>, _) $ s $ t) dms =
coll_div_mod t (coll_div_mod s dms)
| coll_div_mod (Const (\<^const_name>\<open>Groups.times\<close>, _) $ m $ (Const (d, _) $ s $ n))
(dms as (divs, mods)) =
if d = Data.div_name andalso m = n then ((s, n) :: divs, mods) else dms
| coll_div_mod (Const (\<^const_name>\<open>Groups.times\<close>, _) $ (Const (d, _) $ s $ n) $ m)
(dms as (divs, mods)) =
if d = Data.div_name andalso m = n then ((s, n) :: divs, mods) else dms
| coll_div_mod (Const (m, _) $ s $ n) (dms as (divs, mods)) =
if m = Data.mod_name then (divs, (s, n) :: mods) else dms
| coll_div_mod _ dms = dms;
(* Proof principle:
1. (...div...)+(...mod...) == (div + mod) + rest
in function rearrange
2. (div + mod) + ?x = d + ?x
Data.div_mod_eq
==> thesis by transitivity
*)
val mk_plus = Data.mk_binop \<^const_name>\<open>Groups.plus\<close>;
val mk_times = Data.mk_binop \<^const_name>\<open>Groups.times\<close>;
fun rearrange T t pq =
let
val ts = Data.dest_sum t;
val dpq = Data.mk_binop Data.div_name pq;
val d1 = mk_times (snd pq, dpq) and d2 = mk_times (dpq, snd pq);
val d = if member (op =) ts d1 then d1 else d2;
val m = Data.mk_binop Data.mod_name pq;
in mk_plus (mk_plus (d, m), Data.mk_sum T (ts |> remove (op =) d |> remove (op =) m)) end
fun cancel ctxt t pq =
let
val teqt' = Data.prove_eq_sums ctxt (t, rearrange (fastype_of t) t pq);
in hd (Data.div_mod_eqs RL [teqt' RS transitive_thm]) end;
fun proc ctxt ct =
let
val t = Thm.term_of ct;
val (divs, mods) = coll_div_mod t ([], []);
in
if null divs orelse null mods then NONE
else
(case inter (op =) mods divs of
pq :: _ => SOME (cancel ctxt t pq)
| [] => NONE)
end;
end