ZF/func: tidied many proofs, using new definition of Pi(A,B)
ZF/func/PiI,PiE: removed
ZF/func/Pi_iff_old: new
ZF/func/Pi_memberD: new; simpler, replaces memberPiE
(*  Title: 	CCL/ex/flag.thy
    ID:         $Id$
    Author: 	Martin Coen, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge
Dutch national flag program - except that the point of Dijkstra's example was to use 
arrays and this uses lists.
*)
Flag = List + 
consts
  Colour             :: "i set"
  red, white, blue   :: "i"
  ccase              :: "[i,i,i,i]=>i"
  flag               :: "i"
rules
  Colour_def  "Colour == Unit + Unit + Unit"
  red_def        "red == inl(one)"
  white_def    "white == inr(inl(one))"
  blue_def     "blue == inr(inr(one))"
  ccase_def   "ccase(c,r,w,b) == when(c,%x.r,%wb.when(wb,%x.w,%x.b))"
  flag_def    "flag == lam l.letrec \
\      flagx l be lcase(l,<[],<[],[]>>, \
\                       %h t. split(flagx(t),%lr p.split(p,%lw lb. \
\                            ccase(h, <red$lr,<lw,lb>>, \
\                                     <lr,<white$lw,lb>>, \
\                                     <lr,<lw,blue$lb>>)))) \
\      in flagx(l)"    
  Flag_def
     "Flag(l,x) == ALL lr:List(Colour).ALL lw:List(Colour).ALL lb:List(Colour). \
\                    x = <lr,<lw,lb>> --> \
\                  (ALL c:Colour.(c mem lr = true --> c=red) & \
\                                (c mem lw = true --> c=white) & \
\                                (c mem lb = true --> c=blue)) & \
\                  Perm(l,lr @ lw @ lb)"
end