Update PGIP packet handling, fixing unique session identifier.
(* Title: HOLCF/Porder.thy
ID: $Id$
Author: Franz Regensburger
Definition of class porder (partial order).
Conservative extension of theory Porder0 by constant definitions.
*)
header {* Partial orders *}
theory Porder
imports Main
begin
subsection {* Type class for partial orders *}
-- {* introduce a (syntactic) class for the constant @{text "<<"} *}
axclass sq_ord < type
-- {* characteristic constant @{text "<<"} for po *}
consts
"<<" :: "['a,'a::sq_ord] => bool" (infixl 55)
syntax (xsymbols)
"op <<" :: "['a,'a::sq_ord] => bool" (infixl "\<sqsubseteq>" 55)
axclass po < sq_ord
-- {* class axioms: *}
refl_less [iff]: "x << x"
antisym_less: "[|x << y; y << x |] ==> x = y"
trans_less: "[|x << y; y << z |] ==> x << z"
text {* minimal fixes least element *}
lemma minimal2UU[OF allI] : "!x::'a::po. uu<<x ==> uu=(THE u.!y. u<<y)"
by (blast intro: theI2 antisym_less)
text {* the reverse law of anti-symmetry of @{term "op <<"} *}
lemma antisym_less_inverse: "(x::'a::po)=y ==> x << y & y << x"
apply blast
done
lemma box_less: "[| (a::'a::po) << b; c << a; b << d|] ==> c << d"
apply (erule trans_less)
apply (erule trans_less)
apply assumption
done
lemma po_eq_conv: "((x::'a::po)=y) = (x << y & y << x)"
apply (fast elim!: antisym_less_inverse intro!: antisym_less)
done
subsection {* Chains and least upper bounds *}
consts
"<|" :: "['a set,'a::po] => bool" (infixl 55)
"<<|" :: "['a set,'a::po] => bool" (infixl 55)
lub :: "'a set => 'a::po"
tord :: "'a::po set => bool"
chain :: "(nat=>'a::po) => bool"
max_in_chain :: "[nat,nat=>'a::po]=>bool"
finite_chain :: "(nat=>'a::po)=>bool"
syntax
"@LUB" :: "('b => 'a) => 'a" (binder "LUB " 10)
translations
"LUB x. t" == "lub(range(%x. t))"
syntax (xsymbols)
"LUB " :: "[idts, 'a] => 'a" ("(3\<Squnion>_./ _)"[0,10] 10)
defs
-- {* class definitions *}
is_ub_def: "S <| x == ! y. y:S --> y<<x"
is_lub_def: "S <<| x == S <| x & (!u. S <| u --> x << u)"
-- {* Arbitrary chains are total orders *}
tord_def: "tord S == !x y. x:S & y:S --> (x<<y | y<<x)"
-- {* Here we use countable chains and I prefer to code them as functions! *}
chain_def: "chain F == !i. F i << F (Suc i)"
-- {* finite chains, needed for monotony of continouous functions *}
max_in_chain_def: "max_in_chain i C == ! j. i <= j --> C(i) = C(j)"
finite_chain_def: "finite_chain C == chain(C) & (? i. max_in_chain i C)"
lub_def: "lub S == (THE x. S <<| x)"
text {* lubs are unique *}
lemma unique_lub:
"[| S <<| x ; S <<| y |] ==> x=y"
apply (unfold is_lub_def is_ub_def)
apply (blast intro: antisym_less)
done
text {* chains are monotone functions *}
lemma chain_mono [rule_format]: "chain F ==> x<y --> F x<<F y"
apply (unfold chain_def)
apply (induct_tac "y")
apply auto
prefer 2 apply (blast intro: trans_less)
apply (blast elim!: less_SucE)
done
lemma chain_mono3: "[| chain F; x <= y |] ==> F x << F y"
apply (drule le_imp_less_or_eq)
apply (blast intro: chain_mono)
done
text {* The range of a chain is a totally ordered *}
lemma chain_tord: "chain(F) ==> tord(range(F))"
apply (unfold tord_def)
apply safe
apply (rule nat_less_cases)
apply (fast intro: chain_mono)+
done
text {* technical lemmas about @{term lub} and @{term is_lub} *}
lemmas lub = lub_def [THEN meta_eq_to_obj_eq, standard]
lemma lubI[OF exI]: "EX x. M <<| x ==> M <<| lub(M)"
apply (unfold lub_def)
apply (rule theI')
apply (erule ex_ex1I)
apply (erule unique_lub)
apply assumption
done
lemma thelubI: "M <<| l ==> lub(M) = l"
apply (rule unique_lub)
apply (rule lubI)
apply assumption
apply assumption
done
lemma lub_singleton [simp]: "lub{x} = x"
apply (simp (no_asm) add: thelubI is_lub_def is_ub_def)
done
text {* access to some definition as inference rule *}
lemma is_lubD1: "S <<| x ==> S <| x"
apply (unfold is_lub_def)
apply auto
done
lemma is_lub_lub: "[| S <<| x; S <| u |] ==> x << u"
apply (unfold is_lub_def)
apply auto
done
lemma is_lubI:
"[| S <| x; !!u. S <| u ==> x << u |] ==> S <<| x"
apply (unfold is_lub_def)
apply blast
done
lemma chainE: "chain F ==> F(i) << F(Suc(i))"
apply (unfold chain_def)
apply auto
done
lemma chainI: "(!!i. F i << F(Suc i)) ==> chain F"
apply (unfold chain_def)
apply blast
done
lemma chain_shift: "chain Y ==> chain (%i. Y (i + j))"
apply (rule chainI)
apply simp
apply (erule chainE)
done
text {* technical lemmas about (least) upper bounds of chains *}
lemma ub_rangeD: "range S <| x ==> S(i) << x"
apply (unfold is_ub_def)
apply blast
done
lemma ub_rangeI: "(!!i. S i << x) ==> range S <| x"
apply (unfold is_ub_def)
apply blast
done
lemmas is_ub_lub = is_lubD1 [THEN ub_rangeD, standard]
-- {* @{thm is_ub_lub} *} (* range(?S1) <<| ?x1 ==> ?S1(?x) << ?x1 *)
lemma is_ub_range_shift:
"chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <| x = range S <| x"
apply (rule iffI)
apply (rule ub_rangeI)
apply (rule_tac y="S (i + j)" in trans_less)
apply (erule chain_mono3)
apply (rule le_add1)
apply (erule ub_rangeD)
apply (rule ub_rangeI)
apply (erule ub_rangeD)
done
lemma is_lub_range_shift:
"chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <<| x = range S <<| x"
by (simp add: is_lub_def is_ub_range_shift)
text {* results about finite chains *}
lemma lub_finch1:
"[| chain C; max_in_chain i C|] ==> range C <<| C i"
apply (unfold max_in_chain_def)
apply (rule is_lubI)
apply (rule ub_rangeI)
apply (rule_tac m = "i" in nat_less_cases)
apply (rule antisym_less_inverse [THEN conjunct2])
apply (erule disjI1 [THEN less_or_eq_imp_le, THEN rev_mp])
apply (erule spec)
apply (rule antisym_less_inverse [THEN conjunct2])
apply (erule disjI2 [THEN less_or_eq_imp_le, THEN rev_mp])
apply (erule spec)
apply (erule chain_mono)
apply assumption
apply (erule ub_rangeD)
done
lemma lub_finch2:
"finite_chain(C) ==> range(C) <<| C(LEAST i. max_in_chain i C)"
apply (unfold finite_chain_def)
apply (rule lub_finch1)
prefer 2 apply (best intro: LeastI)
apply blast
done
lemma bin_chain: "x<<y ==> chain (%i. if i=0 then x else y)"
apply (rule chainI)
apply (induct_tac "i")
apply auto
done
lemma bin_chainmax:
"x<<y ==> max_in_chain (Suc 0) (%i. if (i=0) then x else y)"
apply (unfold max_in_chain_def le_def)
apply (rule allI)
apply (induct_tac "j")
apply auto
done
lemma lub_bin_chain: "x << y ==> range(%i::nat. if (i=0) then x else y) <<| y"
apply (rule_tac s = "if (Suc 0) = 0 then x else y" in subst , rule_tac [2] lub_finch1)
apply (erule_tac [2] bin_chain)
apply (erule_tac [2] bin_chainmax)
apply (simp (no_asm))
done
text {* the maximal element in a chain is its lub *}
lemma lub_chain_maxelem: "[| Y i = c; ALL i. Y i<<c |] ==> lub(range Y) = c"
apply (blast dest: ub_rangeD intro: thelubI is_lubI ub_rangeI)
done
text {* the lub of a constant chain is the constant *}
lemma lub_const: "range(%x. c) <<| c"
apply (blast dest: ub_rangeD intro: is_lubI ub_rangeI)
done
lemmas thelub_const = lub_const [THEN thelubI, standard]
end