%
\begin{isabellebody}%
\def\isabellecontext{PDL}%
%
\isamarkupsubsection{Propositional dynmic logic---PDL}
%
\begin{isamarkuptext}%
The formulae of PDL are built up from atomic propositions via the customary
propositional connectives of negation and conjunction and the two temporal
connectives \isa{AX} and \isa{EF}. Since formulae are essentially
(syntax) trees, they are naturally modelled as a datatype:%
\end{isamarkuptext}%
\isacommand{datatype}\ pdl{\isacharunderscore}form\ {\isacharequal}\ Atom\ atom\isanewline
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ NOT\ pdl{\isacharunderscore}form\isanewline
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ And\ pdl{\isacharunderscore}form\ pdl{\isacharunderscore}form\isanewline
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ AX\ pdl{\isacharunderscore}form\isanewline
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ EF\ pdl{\isacharunderscore}form%
\begin{isamarkuptext}%
\noindent
The meaning of these formulae is given by saying which formula is true in
which state:%
\end{isamarkuptext}%
\isacommand{consts}\ valid\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}state\ {\isasymRightarrow}\ pdl{\isacharunderscore}form\ {\isasymRightarrow}\ bool{\isachardoublequote}\ {\isacharparenleft}{\isachardoublequote}{\isacharparenleft}{\isacharunderscore}\ {\isasymTurnstile}\ {\isacharunderscore}{\isacharparenright}{\isachardoublequote}\ {\isacharbrackleft}\isadigit{8}\isadigit{0}{\isacharcomma}\isadigit{8}\isadigit{0}{\isacharbrackright}\ \isadigit{8}\isadigit{0}{\isacharparenright}\isanewline
\isanewline
\isacommand{primrec}\isanewline
{\isachardoublequote}s\ {\isasymTurnstile}\ Atom\ a\ \ {\isacharequal}\ {\isacharparenleft}a\ {\isasymin}\ L\ s{\isacharparenright}{\isachardoublequote}\isanewline
{\isachardoublequote}s\ {\isasymTurnstile}\ NOT\ f\ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymnot}{\isacharparenleft}s\ {\isasymTurnstile}\ f{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
{\isachardoublequote}s\ {\isasymTurnstile}\ And\ f\ g\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymand}\ s\ {\isasymTurnstile}\ g{\isacharparenright}{\isachardoublequote}\isanewline
{\isachardoublequote}s\ {\isasymTurnstile}\ AX\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ {\isasymlongrightarrow}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}\isanewline
{\isachardoublequote}s\ {\isasymTurnstile}\ EF\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}%
\begin{isamarkuptext}%
Now we come to the model checker itself. It maps a formula into the set of
states where the formula is true and is defined by recursion over the syntax:%
\end{isamarkuptext}%
\isacommand{consts}\ mc\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}pdl{\isacharunderscore}form\ {\isasymRightarrow}\ state\ set{\isachardoublequote}\isanewline
\isacommand{primrec}\isanewline
{\isachardoublequote}mc{\isacharparenleft}Atom\ a{\isacharparenright}\ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ a\ {\isasymin}\ L\ s{\isacharbraceright}{\isachardoublequote}\isanewline
{\isachardoublequote}mc{\isacharparenleft}NOT\ f{\isacharparenright}\ \ \ {\isacharequal}\ {\isacharminus}mc\ f{\isachardoublequote}\isanewline
{\isachardoublequote}mc{\isacharparenleft}And\ f\ g{\isacharparenright}\ {\isacharequal}\ mc\ f\ {\isasyminter}\ mc\ g{\isachardoublequote}\isanewline
{\isachardoublequote}mc{\isacharparenleft}AX\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ \ {\isasymlongrightarrow}\ t\ {\isasymin}\ mc\ f{\isacharbraceright}{\isachardoublequote}\isanewline
{\isachardoublequote}mc{\isacharparenleft}EF\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ T{\isacharparenright}{\isachardoublequote}%
\begin{isamarkuptext}%
Only the equation for \isa{EF} deserves a comment: the postfix \isa{{\isacharcircum}{\isacharminus}\isadigit{1}}
and the infix \isa{{\isacharcircum}{\isacharcircum}} are predefined and denote the converse of a
relation and the application of a relation to a set. Thus \isa{M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ T}
is the set of all predecessors of \isa{T} and \isa{mc\ {\isacharparenleft}EF\ f{\isacharparenright}} is the least
set \isa{T} containing \isa{mc\ f} and all predecessors of \isa{T}.%
\end{isamarkuptext}%
\isacommand{lemma}\ mono{\isacharunderscore}lemma{\isacharcolon}\ {\isachardoublequote}mono{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ T{\isacharparenright}{\isachardoublequote}\isanewline
\isacommand{apply}{\isacharparenleft}rule\ monoI{\isacharparenright}\isanewline
\isacommand{by}{\isacharparenleft}blast{\isacharparenright}\isanewline
\isanewline
\isacommand{lemma}\ lfp{\isacharunderscore}conv{\isacharunderscore}EF{\isacharcolon}\isanewline
{\isachardoublequote}lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ T{\isacharparenright}\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isachardoublequote}\isanewline
\isacommand{apply}{\isacharparenleft}rule\ equalityI{\isacharparenright}\isanewline
\ \isacommand{apply}{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline
\ \isacommand{apply}{\isacharparenleft}simp{\isacharparenright}\isanewline
\ \isacommand{apply}{\isacharparenleft}erule\ Lfp{\isachardot}induct{\isacharparenright}\isanewline
\ \ \isacommand{apply}{\isacharparenleft}rule\ mono{\isacharunderscore}lemma{\isacharparenright}\isanewline
\ \isacommand{apply}{\isacharparenleft}simp{\isacharparenright}\isanewline
\ \isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ r{\isacharunderscore}into{\isacharunderscore}rtrancl\ rtrancl{\isacharunderscore}trans{\isacharparenright}\isanewline
\isacommand{apply}{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline
\isacommand{apply}{\isacharparenleft}simp{\isacharparenright}\isanewline
\isacommand{apply}{\isacharparenleft}erule\ exE{\isacharparenright}\isanewline
\isacommand{apply}{\isacharparenleft}erule\ conjE{\isacharparenright}\isanewline
\isacommand{apply}{\isacharparenleft}erule{\isacharunderscore}tac\ P\ {\isacharequal}\ {\isachardoublequote}t{\isasymin}A{\isachardoublequote}\ \isakeyword{in}\ rev{\isacharunderscore}mp{\isacharparenright}\isanewline
\isacommand{apply}{\isacharparenleft}erule\ converse{\isacharunderscore}rtrancl{\isacharunderscore}induct{\isacharparenright}\isanewline
\ \isacommand{apply}{\isacharparenleft}rule\ ssubst{\isacharbrackleft}OF\ lfp{\isacharunderscore}Tarski{\isacharbrackleft}OF\ mono{\isacharunderscore}lemma{\isacharbrackright}{\isacharbrackright}{\isacharparenright}\isanewline
\ \isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
\isacommand{apply}{\isacharparenleft}rule\ ssubst{\isacharbrackleft}OF\ lfp{\isacharunderscore}Tarski{\isacharbrackleft}OF\ mono{\isacharunderscore}lemma{\isacharbrackright}{\isacharbrackright}{\isacharparenright}\isanewline
\isacommand{by}{\isacharparenleft}blast{\isacharparenright}\isanewline
\isanewline
\isacommand{theorem}\ {\isachardoublequote}mc\ f\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ s\ {\isasymTurnstile}\ f{\isacharbraceright}{\isachardoublequote}\isanewline
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ f{\isacharparenright}\isanewline
\isacommand{by}{\isacharparenleft}auto\ simp\ add{\isacharcolon}lfp{\isacharunderscore}conv{\isacharunderscore}EF{\isacharparenright}\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
%%% End: