(* Title: HOL/Algebra/Finite_Extensions.thy
Author: Paulo EmÃlio de Vilhena
*)
theory Finite_Extensions
imports Embedded_Algebras Polynomials Polynomial_Divisibility
begin
section \<open>Finite Extensions\<close>
subsection \<open>Definitions\<close>
definition (in ring) transcendental :: "'a set \<Rightarrow> 'a \<Rightarrow> bool"
where "transcendental K x \<longleftrightarrow> inj_on (\<lambda>p. eval p x) (carrier (K[X]))"
abbreviation (in ring) algebraic :: "'a set \<Rightarrow> 'a \<Rightarrow> bool"
where "algebraic K x \<equiv> \<not> transcendental K x"
definition (in ring) Irr :: "'a set \<Rightarrow> 'a \<Rightarrow> 'a list"
where "Irr K x = (THE p. p \<in> carrier (K[X]) \<and> pirreducible K p \<and> eval p x = \<zero> \<and> lead_coeff p = \<one>)"
inductive_set (in ring) simple_extension :: "'a set \<Rightarrow> 'a \<Rightarrow> 'a set"
for K and x where
zero [simp, intro]: "\<zero> \<in> simple_extension K x" |
lin: "\<lbrakk> k1 \<in> simple_extension K x; k2 \<in> K \<rbrakk> \<Longrightarrow> (k1 \<otimes> x) \<oplus> k2 \<in> simple_extension K x"
fun (in ring) finite_extension :: "'a set \<Rightarrow> 'a list \<Rightarrow> 'a set"
where "finite_extension K xs = foldr (\<lambda>x K'. simple_extension K' x) xs K"
subsection \<open>Basic Properties\<close>
lemma (in ring) transcendental_consistent:
assumes "subring K R" shows "transcendental = ring.transcendental (R \<lparr> carrier := K \<rparr>)"
unfolding transcendental_def ring.transcendental_def[OF subring_is_ring[OF assms]]
univ_poly_consistent[OF assms] eval_consistent[OF assms] ..
lemma (in ring) algebraic_consistent:
assumes "subring K R" shows "algebraic = ring.algebraic (R \<lparr> carrier := K \<rparr>)"
unfolding over_def transcendental_consistent[OF assms] ..
lemma (in ring) eval_transcendental:
assumes "(transcendental over K) x" "p \<in> carrier (K[X])" "eval p x = \<zero>" shows "p = []"
proof -
have "[] \<in> carrier (K[X])" and "eval [] x = \<zero>"
by (auto simp add: univ_poly_def)
thus ?thesis
using assms unfolding over_def transcendental_def inj_on_def by auto
qed
lemma (in ring) transcendental_imp_trivial_ker:
shows "(transcendental over K) x \<Longrightarrow> a_kernel (K[X]) R (\<lambda>p. eval p x) = { [] }"
using eval_transcendental unfolding a_kernel_def' by (auto simp add: univ_poly_def)
lemma (in ring) non_trivial_ker_imp_algebraic:
shows "a_kernel (K[X]) R (\<lambda>p. eval p x) \<noteq> { [] } \<Longrightarrow> (algebraic over K) x"
using transcendental_imp_trivial_ker unfolding over_def by auto
lemma (in domain) trivial_ker_imp_transcendental:
assumes "subring K R" and "x \<in> carrier R"
shows "a_kernel (K[X]) R (\<lambda>p. eval p x) = { [] } \<Longrightarrow> (transcendental over K) x"
using ring_hom_ring.trivial_ker_imp_inj[OF eval_ring_hom[OF assms]]
unfolding transcendental_def over_def by (simp add: univ_poly_zero)
lemma (in domain) algebraic_imp_non_trivial_ker:
assumes "subring K R" and "x \<in> carrier R"
shows "(algebraic over K) x \<Longrightarrow> a_kernel (K[X]) R (\<lambda>p. eval p x) \<noteq> { [] }"
using trivial_ker_imp_transcendental[OF assms] unfolding over_def by auto
lemma (in domain) algebraicE:
assumes "subring K R" and "x \<in> carrier R" "(algebraic over K) x"
obtains p where "p \<in> carrier (K[X])" "p \<noteq> []" "eval p x = \<zero>"
proof -
have "[] \<in> a_kernel (K[X]) R (\<lambda>p. eval p x)"
unfolding a_kernel_def' univ_poly_def by auto
then obtain p where "p \<in> carrier (K[X])" "p \<noteq> []" "eval p x = \<zero>"
using algebraic_imp_non_trivial_ker[OF assms] unfolding a_kernel_def' by blast
thus thesis using that by auto
qed
lemma (in ring) algebraicI:
assumes "p \<in> carrier (K[X])" "p \<noteq> []" and "eval p x = \<zero>" shows "(algebraic over K) x"
using assms non_trivial_ker_imp_algebraic unfolding a_kernel_def' by auto
lemma (in ring) transcendental_mono:
assumes "K \<subseteq> K'" "(transcendental over K') x" shows "(transcendental over K) x"
proof -
have "carrier (K[X]) \<subseteq> carrier (K'[X])"
using assms(1) unfolding univ_poly_def polynomial_def by auto
thus ?thesis
using assms unfolding over_def transcendental_def by (metis inj_on_subset)
qed
corollary (in ring) algebraic_mono:
assumes "K \<subseteq> K'" "(algebraic over K) x" shows "(algebraic over K') x"
using transcendental_mono[OF assms(1)] assms(2) unfolding over_def by blast
lemma (in domain) zero_is_algebraic:
assumes "subring K R" shows "(algebraic over K) \<zero>"
using algebraicI[OF var_closed(1)[OF assms]] unfolding var_def by auto
lemma (in domain) algebraic_self:
assumes "subring K R" and "k \<in> K" shows "(algebraic over K) k"
proof (rule algebraicI[of "[ \<one>, \<ominus> k ]"])
show "[ \<one>, \<ominus> k ] \<in> carrier (K [X])" and "[ \<one>, \<ominus> k ] \<noteq> []"
using subringE(2-3,5)[OF assms(1)] assms(2) unfolding univ_poly_def polynomial_def by auto
have "k \<in> carrier R"
using subringE(1)[OF assms(1)] assms(2) by auto
thus "eval [ \<one>, \<ominus> k ] k = \<zero>"
by (auto, algebra)
qed
lemma (in domain) ker_diff_carrier:
assumes "subring K R"
shows "a_kernel (K[X]) R (\<lambda>p. eval p x) \<noteq> carrier (K[X])"
proof -
have "eval [ \<one> ] x \<noteq> \<zero>" and "[ \<one> ] \<in> carrier (K[X])"
using subringE(3)[OF assms] unfolding univ_poly_def polynomial_def by auto
thus ?thesis
unfolding a_kernel_def' by blast
qed
subsection \<open>Minimal Polynomial\<close>
lemma (in domain) minimal_polynomial_is_unique:
assumes "subfield K R" and "x \<in> carrier R" "(algebraic over K) x"
shows "\<exists>!p \<in> carrier (K[X]). pirreducible K p \<and> eval p x = \<zero> \<and> lead_coeff p = \<one>"
(is "\<exists>!p. ?minimal_poly p")
proof -
interpret UP: principal_domain "K[X]"
using univ_poly_is_principal[OF assms(1)] .
let ?ker_gen = "\<lambda>p. p \<in> carrier (K[X]) \<and> pirreducible K p \<and> lead_coeff p = \<one> \<and>
a_kernel (K[X]) R (\<lambda>p. eval p x) = PIdl\<^bsub>K[X]\<^esub> p"
obtain p where p: "?ker_gen p" and unique: "\<And>q. ?ker_gen q \<Longrightarrow> q = p"
using exists_unique_pirreducible_gen[OF assms(1) eval_ring_hom[OF _ assms(2)]
algebraic_imp_non_trivial_ker[OF _ assms(2-3)]
ker_diff_carrier] subfieldE(1)[OF assms(1)] by auto
hence "?minimal_poly p"
using UP.cgenideal_self p unfolding a_kernel_def' by auto
moreover have "\<And>q. ?minimal_poly q \<Longrightarrow> q = p"
proof -
fix q assume q: "?minimal_poly q"
then have "q \<in> PIdl\<^bsub>K[X]\<^esub> p"
using p unfolding a_kernel_def' by auto
hence "p \<sim>\<^bsub>K[X]\<^esub> q"
using cgenideal_pirreducible[OF assms(1)] p q by simp
hence "a_kernel (K[X]) R (\<lambda>p. eval p x) = PIdl\<^bsub>K[X]\<^esub> q"
using UP.associated_iff_same_ideal q p by simp
thus "q = p"
using unique q by simp
qed
ultimately show ?thesis by blast
qed
lemma (in domain) IrrE:
assumes "subfield K R" and "x \<in> carrier R" "(algebraic over K) x"
shows "Irr K x \<in> carrier (K[X])" and "pirreducible K (Irr K x)"
and "lead_coeff (Irr K x) = \<one>" and "eval (Irr K x) x = \<zero>"
using theI'[OF minimal_polynomial_is_unique[OF assms]] unfolding Irr_def by auto
lemma (in domain) Irr_generates_ker:
assumes "subfield K R" and "x \<in> carrier R" "(algebraic over K) x"
shows "a_kernel (K[X]) R (\<lambda>p. eval p x) = PIdl\<^bsub>K[X]\<^esub> (Irr K x)"
proof -
obtain q
where q: "q \<in> carrier (K[X])" "pirreducible K q"
and ker: "a_kernel (K[X]) R (\<lambda>p. eval p x) = PIdl\<^bsub>K[X]\<^esub> q"
using exists_unique_pirreducible_gen[OF assms(1) eval_ring_hom[OF _ assms(2)]
algebraic_imp_non_trivial_ker[OF _ assms(2-3)]
ker_diff_carrier] subfieldE(1)[OF assms(1)] by auto
have "Irr K x \<in> PIdl\<^bsub>K[X]\<^esub> q"
using IrrE(1,4)[OF assms] ker unfolding a_kernel_def' by auto
thus ?thesis
using cgenideal_pirreducible[OF assms(1) q(1-2) IrrE(2)[OF assms]] q(1) IrrE(1)[OF assms]
cring.associated_iff_same_ideal[OF univ_poly_is_cring[OF subfieldE(1)[OF assms(1)]]]
unfolding ker
by simp
qed
lemma (in domain) Irr_minimal:
assumes "subfield K R" and "x \<in> carrier R" "(algebraic over K) x"
and "p \<in> carrier (K[X])" "eval p x = \<zero>" shows "(Irr K x) pdivides p"
proof -
interpret UP: principal_domain "K[X]"
using univ_poly_is_principal[OF assms(1)] .
have "p \<in> PIdl\<^bsub>K[X]\<^esub> (Irr K x)"
using Irr_generates_ker[OF assms(1-3)] assms(4-5) unfolding a_kernel_def' by auto
hence "(Irr K x) divides\<^bsub>K[X]\<^esub> p"
using UP.to_contain_is_to_divide IrrE(1)[OF assms(1-3)]
by (meson UP.cgenideal_ideal UP.cgenideal_minimal assms(4))
thus ?thesis
unfolding pdivides_iff_shell[OF assms(1) IrrE(1)[OF assms(1-3)] assms(4)] .
qed
lemma (in domain) rupture_of_Irr:
assumes "subfield K R" and "x \<in> carrier R" "(algebraic over K) x" shows "field (Rupt K (Irr K x))"
using rupture_is_field_iff_pirreducible[OF assms(1)] IrrE(1-2)[OF assms] by simp
subsection \<open>Simple Extensions\<close>
lemma (in ring) simple_extension_consistent:
assumes "subring K R" shows "ring.simple_extension (R \<lparr> carrier := K \<rparr>) = simple_extension"
proof -
interpret K: ring "R \<lparr> carrier := K \<rparr>"
using subring_is_ring[OF assms] .
have "\<And>K' x. K.simple_extension K' x \<subseteq> simple_extension K' x"
proof
fix K' x a show "a \<in> K.simple_extension K' x \<Longrightarrow> a \<in> simple_extension K' x"
by (induction rule: K.simple_extension.induct) (auto simp add: simple_extension.lin)
qed
moreover
have "\<And>K' x. simple_extension K' x \<subseteq> K.simple_extension K' x"
proof
fix K' x a assume a: "a \<in> simple_extension K' x" thus "a \<in> K.simple_extension K' x"
using K.simple_extension.zero K.simple_extension.lin
by (induction rule: simple_extension.induct) (simp)+
qed
ultimately show ?thesis by blast
qed
lemma (in ring) mono_simple_extension:
assumes "K \<subseteq> K'" shows "simple_extension K x \<subseteq> simple_extension K' x"
proof
fix a assume "a \<in> simple_extension K x" thus "a \<in> simple_extension K' x"
proof (induct a rule: simple_extension.induct, simp)
case lin thus ?case using simple_extension.lin assms by blast
qed
qed
lemma (in ring) simple_extension_incl:
assumes "K \<subseteq> carrier R" and "x \<in> carrier R" shows "K \<subseteq> simple_extension K x"
proof
fix k assume "k \<in> K" thus "k \<in> simple_extension K x"
using simple_extension.lin[OF simple_extension.zero, of k K x] assms by auto
qed
lemma (in ring) simple_extension_mem:
assumes "subring K R" and "x \<in> carrier R" shows "x \<in> simple_extension K x"
proof -
have "\<one> \<in> simple_extension K x"
using simple_extension_incl[OF _ assms(2)] subringE(1,3)[OF assms(1)] by auto
thus ?thesis
using simple_extension.lin[OF _ subringE(2)[OF assms(1)], of \<one> x] assms(2) by auto
qed
lemma (in ring) simple_extension_carrier:
assumes "x \<in> carrier R" shows "simple_extension (carrier R) x = carrier R"
proof
show "carrier R \<subseteq> simple_extension (carrier R) x"
using simple_extension_incl[OF _ assms] by auto
next
show "simple_extension (carrier R) x \<subseteq> carrier R"
proof
fix a assume "a \<in> simple_extension (carrier R) x" thus "a \<in> carrier R"
by (induct a rule: simple_extension.induct) (auto simp add: assms)
qed
qed
lemma (in ring) simple_extension_in_carrier:
assumes "K \<subseteq> carrier R" and "x \<in> carrier R" shows "simple_extension K x \<subseteq> carrier R"
using mono_simple_extension[OF assms(1), of x] simple_extension_carrier[OF assms(2)] by auto
lemma (in ring) simple_extension_subring_incl:
assumes "subring K' R" and "K \<subseteq> K'" "x \<in> K'" shows "simple_extension K x \<subseteq> K'"
using ring.simple_extension_in_carrier[OF subring_is_ring[OF assms(1)]] assms(2-3)
unfolding simple_extension_consistent[OF assms(1)] by simp
lemma (in ring) simple_extension_as_eval_img:
assumes "K \<subseteq> carrier R" "x \<in> carrier R"
shows "simple_extension K x = (\<lambda>p. eval p x) ` carrier (K[X])"
proof
show "simple_extension K x \<subseteq> (\<lambda>p. eval p x) ` carrier (K[X])"
proof
fix a assume "a \<in> simple_extension K x" thus "a \<in> (\<lambda>p. eval p x) ` carrier (K[X])"
proof (induction rule: simple_extension.induct)
case zero
have "polynomial K []" and "eval [] x = \<zero>"
unfolding polynomial_def by simp+
thus ?case
unfolding univ_poly_carrier by force
next
case (lin k1 k2)
then obtain p where p: "p \<in> carrier (K[X])" "polynomial K p" "eval p x = k1"
by (auto simp add: univ_poly_carrier)
hence "set p \<subseteq> carrier R" and "k2 \<in> carrier R"
using assms(1) lin(2) unfolding polynomial_def by auto
hence "eval (normalize (p @ [ k2 ])) x = k1 \<otimes> x \<oplus> k2"
using eval_append_aux[of p k2 x] eval_normalize[of "p @ [ k2 ]" x] assms(2) p(3) by auto
moreover have "set (p @ [k2]) \<subseteq> K"
using polynomial_incl[OF p(2)] \<open>k2 \<in> K\<close> by auto
then have "local.normalize (p @ [k2]) \<in> carrier (K [X])"
using normalize_gives_polynomial univ_poly_carrier by blast
ultimately show ?case
unfolding univ_poly_carrier by force
qed
qed
next
show "(\<lambda>p. eval p x) ` carrier (K[X]) \<subseteq> simple_extension K x"
proof
fix a assume "a \<in> (\<lambda>p. eval p x) ` carrier (K[X])"
then obtain p where p: "set p \<subseteq> K" "eval p x = a"
using polynomial_incl unfolding univ_poly_def by auto
thus "a \<in> simple_extension K x"
proof (induct "length p" arbitrary: p a)
case 0 thus ?case
using simple_extension.zero by simp
next
case (Suc n)
obtain p' k where p: "p = p' @ [ k ]"
using Suc(2) by (metis list.size(3) nat.simps(3) rev_exhaust)
hence "a = (eval p' x) \<otimes> x \<oplus> k"
using eval_append_aux[of p' k x] Suc(3-4) assms unfolding p by auto
moreover have "eval p' x \<in> simple_extension K x"
using Suc(1-3) unfolding p by auto
ultimately show ?case
using simple_extension.lin Suc(3) unfolding p by auto
qed
qed
qed
corollary (in domain) simple_extension_is_subring:
assumes "subring K R" "x \<in> carrier R" shows "subring (simple_extension K x) R"
using ring_hom_ring.img_is_subring[OF eval_ring_hom[OF assms]
ring.carrier_is_subring[OF univ_poly_is_ring[OF assms(1)]]]
simple_extension_as_eval_img[OF subringE(1)[OF assms(1)] assms(2)]
by simp
corollary (in domain) simple_extension_minimal:
assumes "subring K R" "x \<in> carrier R"
shows "simple_extension K x = \<Inter> { K'. subring K' R \<and> K \<subseteq> K' \<and> x \<in> K' }"
using simple_extension_is_subring[OF assms] simple_extension_mem[OF assms]
simple_extension_incl[OF subringE(1)[OF assms(1)] assms(2)] simple_extension_subring_incl
by blast
corollary (in domain) simple_extension_isomorphism:
assumes "subring K R" "x \<in> carrier R"
shows "(K[X]) Quot (a_kernel (K[X]) R (\<lambda>p. eval p x)) \<simeq> R \<lparr> carrier := simple_extension K x \<rparr>"
using ring_hom_ring.FactRing_iso_set_aux[OF eval_ring_hom[OF assms]]
simple_extension_as_eval_img[OF subringE(1)[OF assms(1)] assms(2)]
unfolding is_ring_iso_def by auto
corollary (in domain) simple_extension_of_algebraic:
assumes "subfield K R" and "x \<in> carrier R" "(algebraic over K) x"
shows "Rupt K (Irr K x) \<simeq> R \<lparr> carrier := simple_extension K x \<rparr>"
using simple_extension_isomorphism[OF subfieldE(1)[OF assms(1)] assms(2)]
unfolding Irr_generates_ker[OF assms] rupture_def by simp
corollary (in domain) simple_extension_of_transcendental:
assumes "subring K R" and "x \<in> carrier R" "(transcendental over K) x"
shows "K[X] \<simeq> R \<lparr> carrier := simple_extension K x \<rparr>"
using simple_extension_isomorphism[OF _ assms(2), of K] assms(1)
ring_iso_trans[OF ring.FactRing_zeroideal(2)[OF univ_poly_is_ring]]
unfolding transcendental_imp_trivial_ker[OF assms(3)] univ_poly_zero
by auto
proposition (in domain) simple_extension_subfield_imp_algebraic:
assumes "subring K R" "x \<in> carrier R"
shows "subfield (simple_extension K x) R \<Longrightarrow> (algebraic over K) x"
proof -
assume simple_ext: "subfield (simple_extension K x) R" show "(algebraic over K) x"
proof (rule ccontr)
assume "\<not> (algebraic over K) x" then have "(transcendental over K) x"
unfolding over_def by simp
then obtain h where h: "h \<in> ring_iso (R \<lparr> carrier := simple_extension K x \<rparr>) (K[X])"
using ring_iso_sym[OF univ_poly_is_ring simple_extension_of_transcendental] assms
unfolding is_ring_iso_def by blast
then interpret Hom: ring_hom_ring "R \<lparr> carrier := simple_extension K x \<rparr>" "K[X]" h
using subring_is_ring[OF simple_extension_is_subring[OF assms]]
univ_poly_is_ring[OF assms(1)] assms h
by (auto simp add: ring_hom_ring_def ring_hom_ring_axioms_def ring_iso_def)
have "field (K[X])"
using field.ring_iso_imp_img_field[OF subfield_iff(2)[OF simple_ext] h]
unfolding Hom.hom_one Hom.hom_zero by simp
moreover have "\<not> field (K[X])"
using univ_poly_not_field[OF assms(1)] .
ultimately show False by simp
qed
qed
proposition (in domain) simple_extension_is_subfield:
assumes "subfield K R" "x \<in> carrier R"
shows "subfield (simple_extension K x) R \<longleftrightarrow> (algebraic over K) x"
proof
assume alg: "(algebraic over K) x"
then obtain h where h: "h \<in> ring_iso (Rupt K (Irr K x)) (R \<lparr> carrier := simple_extension K x \<rparr>)"
using simple_extension_of_algebraic[OF assms] unfolding is_ring_iso_def by blast
have rupt_field: "field (Rupt K (Irr K x))" and "ring (R \<lparr> carrier := simple_extension K x \<rparr>)"
using subring_is_ring[OF simple_extension_is_subring[OF subfieldE(1)]]
rupture_of_Irr[OF assms alg] assms by simp+
then interpret Hom: ring_hom_ring "Rupt K (Irr K x)" "R \<lparr> carrier := simple_extension K x \<rparr>" h
using h cring.axioms(1)[OF domain.axioms(1)[OF field.axioms(1)]]
by (auto simp add: ring_hom_ring_def ring_hom_ring_axioms_def ring_iso_def)
show "subfield (simple_extension K x) R"
using field.ring_iso_imp_img_field[OF rupt_field h] subfield_iff(1)[OF _
simple_extension_in_carrier[OF subfieldE(3)[OF assms(1)] assms(2)]]
by simp
next
assume simple_ext: "subfield (simple_extension K x) R" thus "(algebraic over K) x"
using simple_extension_subfield_imp_algebraic[OF subfieldE(1)[OF assms(1)] assms(2)] by simp
qed
subsection \<open>Link between dimension of K-algebras and algebraic extensions\<close>
lemma (in domain) exp_base_independent:
assumes "subfield K R" "x \<in> carrier R" "(algebraic over K) x"
shows "independent K (exp_base x (degree (Irr K x)))"
proof -
have "\<And>n. n \<le> degree (Irr K x) \<Longrightarrow> independent K (exp_base x n)"
proof -
fix n show "n \<le> degree (Irr K x) \<Longrightarrow> independent K (exp_base x n)"
proof (induct n, simp add: exp_base_def)
case (Suc n)
have "x [^] n \<notin> Span K (exp_base x n)"
proof (rule ccontr)
assume "\<not> x [^] n \<notin> Span K (exp_base x n)"
then obtain a Ks
where Ks: "a \<in> K - { \<zero> }" "set Ks \<subseteq> K" "length Ks = n" "combine (a # Ks) (exp_base x (Suc n)) = \<zero>"
using Span_mem_imp_non_trivial_combine[OF assms(1) exp_base_closed[OF assms(2), of n]]
by (auto simp add: exp_base_def)
hence "eval (a # Ks) x = \<zero>"
using combine_eq_eval by (auto simp add: exp_base_def)
moreover have "(a # Ks) \<in> carrier (K[X]) - { [] }"
unfolding univ_poly_def polynomial_def using Ks(1-2) by auto
ultimately have "degree (Irr K x) \<le> n"
using pdivides_imp_degree_le[OF subfieldE(1)[OF assms(1)]
IrrE(1)[OF assms] _ _ Irr_minimal[OF assms, of "a # Ks"]] Ks(3) by auto
from \<open>Suc n \<le> degree (Irr K x)\<close> and this show False by simp
qed
thus ?case
using independent.li_Cons assms(2) Suc by (auto simp add: exp_base_def)
qed
qed
thus ?thesis
by simp
qed
lemma (in ring) Span_eq_eval_img:
assumes "subfield K R" "x \<in> carrier R"
shows "Span K (exp_base x n) = (\<lambda>p. eval p x) ` { p \<in> carrier (K[X]). length p \<le> n }"
(is "?Span = ?eval_img")
proof
show "?Span \<subseteq> ?eval_img"
proof
fix u assume "u \<in> Span K (exp_base x n)"
then obtain Ks where Ks: "set Ks \<subseteq> K" "length Ks = n" "u = combine Ks (exp_base x n)"
using Span_eq_combine_set_length_version[OF assms(1) exp_base_closed[OF assms(2)]]
by (auto simp add: exp_base_def)
hence "u = eval (normalize Ks) x"
using combine_eq_eval eval_normalize[OF _ assms(2)] subfieldE(3)[OF assms(1)] by auto
moreover have "normalize Ks \<in> carrier (K[X])"
using normalize_gives_polynomial[OF Ks(1)] unfolding univ_poly_def by auto
moreover have "length (normalize Ks) \<le> n"
using normalize_length_le[of Ks] Ks(2) by auto
ultimately show "u \<in> ?eval_img" by auto
qed
next
show "?eval_img \<subseteq> ?Span"
proof
fix u assume "u \<in> ?eval_img"
then obtain p where p: "p \<in> carrier (K[X])" "length p \<le> n" "u = eval p x"
by blast
hence "combine p (exp_base x (length p)) = u"
using combine_eq_eval by auto
moreover have set_p: "set p \<subseteq> K"
using polynomial_incl[of K p] p(1) unfolding univ_poly_carrier by auto
hence "set p \<subseteq> carrier R"
using subfieldE(3)[OF assms(1)] by auto
moreover have "drop (n - length p) (exp_base x n) = exp_base x (length p)"
using p(2) drop_exp_base by auto
ultimately have "combine ((replicate (n - length p) \<zero>) @ p) (exp_base x n) = u"
using combine_prepend_replicate[OF _ exp_base_closed[OF assms(2), of n]] by auto
moreover have "set ((replicate (n - length p) \<zero>) @ p) \<subseteq> K"
using subringE(2)[OF subfieldE(1)[OF assms(1)]] set_p by auto
ultimately show "u \<in> ?Span"
using Span_eq_combine_set[OF assms(1) exp_base_closed[OF assms(2), of n]] by blast
qed
qed
lemma (in domain) Span_exp_base:
assumes "subfield K R" "x \<in> carrier R" "(algebraic over K) x"
shows "Span K (exp_base x (degree (Irr K x))) = simple_extension K x"
unfolding simple_extension_as_eval_img[OF subfieldE(3)[OF assms(1)] assms(2)]
Span_eq_eval_img[OF assms(1-2)]
proof (auto)
interpret UP: principal_domain "K[X]"
using univ_poly_is_principal[OF assms(1)] .
note hom_simps = ring_hom_memE[OF eval_is_hom[OF subfieldE(1)[OF assms(1)] assms(2)]]
fix p assume p: "p \<in> carrier (K[X])"
have Irr: "Irr K x \<in> carrier (K[X])" "Irr K x \<noteq> []"
using IrrE(1-2)[OF assms] unfolding ring_irreducible_def univ_poly_zero by auto
then obtain q r
where q: "q \<in> carrier (K[X])" and r: "r \<in> carrier (K[X])"
and dvd: "p = Irr K x \<otimes>\<^bsub>K [X]\<^esub> q \<oplus>\<^bsub>K [X]\<^esub> r" "r = [] \<or> degree r < degree (Irr K x)"
using subfield_long_division_theorem_shell[OF assms(1) p Irr(1)] unfolding univ_poly_zero by auto
hence "eval p x = (eval (Irr K x) x) \<otimes> (eval q x) \<oplus> (eval r x)"
using hom_simps(2-3) Irr(1) by simp
hence "eval p x = eval r x"
using hom_simps(1) q r unfolding IrrE(4)[OF assms] by simp
moreover have "length r < length (Irr K x)"
using dvd(2) Irr(2) by auto
ultimately
show "eval p x \<in> (\<lambda>p. local.eval p x) ` { p \<in> carrier (K [X]). length p \<le> length (Irr K x) - Suc 0 }"
using r by auto
qed
corollary (in domain) dimension_simple_extension:
assumes "subfield K R" "x \<in> carrier R" "(algebraic over K) x"
shows "dimension (degree (Irr K x)) K (simple_extension K x)"
using dimension_independent[OF exp_base_independent[OF assms]] Span_exp_base[OF assms]
by (simp add: exp_base_def)
lemma (in ring) finite_dimension_imp_algebraic:
assumes "subfield K R" "subring F R" and "finite_dimension K F"
shows "x \<in> F \<Longrightarrow> (algebraic over K) x"
proof -
let ?Us = "\<lambda>n. map (\<lambda>i. x [^] i) (rev [0..< Suc n])"
assume x: "x \<in> F" then have in_carrier: "x \<in> carrier R"
using subringE[OF assms(2)] by auto
obtain n where n: "dimension n K F"
using assms(3) by auto
have set_Us: "set (?Us n) \<subseteq> F"
using x subringE(3,6)[OF assms(2)] by (induct n) (auto)
hence "set (?Us n) \<subseteq> carrier R"
using subringE(1)[OF assms(2)] by auto
moreover have "dependent K (?Us n)"
using independent_length_le_dimension[OF assms(1) n _ set_Us] by auto
ultimately
obtain Ks where Ks: "length Ks = Suc n" "combine Ks (?Us n) = \<zero>" "set Ks \<subseteq> K" "set Ks \<noteq> { \<zero> }"
using dependent_imp_non_trivial_combine[OF assms(1), of "?Us n"] by auto
have "set Ks \<subseteq> carrier R"
using subring_props(1)[OF assms(1)] Ks(3) by auto
hence "eval (normalize Ks) x = \<zero>"
using combine_eq_eval[of Ks] eval_normalize[OF _ in_carrier] Ks(1-2) by (simp add: exp_base_def)
moreover have "normalize Ks = [] \<Longrightarrow> set Ks \<subseteq> { \<zero> }"
by (induct Ks) (auto, meson list.discI,
metis all_not_in_conv list.discI list.sel(3) singletonD subset_singletonD)
hence "normalize Ks \<noteq> []"
using Ks(1,4) by (metis list.size(3) nat.distinct(1) set_empty subset_singleton_iff)
moreover have "normalize Ks \<in> carrier (K[X])"
using normalize_gives_polynomial[OF Ks(3)] unfolding univ_poly_def by auto
ultimately show ?thesis
using algebraicI by auto
qed
corollary (in domain) simple_extension_dim:
assumes "subfield K R" "x \<in> carrier R" "(algebraic over K) x"
shows "(dim over K) (simple_extension K x) = degree (Irr K x)"
using dimI[OF assms(1) dimension_simple_extension[OF assms]] .
corollary (in domain) finite_dimension_simple_extension:
assumes "subfield K R" "x \<in> carrier R"
shows "finite_dimension K (simple_extension K x) \<longleftrightarrow> (algebraic over K) x"
using finite_dimensionI[OF dimension_simple_extension[OF assms]]
finite_dimension_imp_algebraic[OF _ simple_extension_is_subring[OF subfieldE(1)]]
simple_extension_mem[OF subfieldE(1)] assms
by auto
subsection \<open>Finite Extensions\<close>
lemma (in ring) finite_extension_consistent:
assumes "subring K R" shows "ring.finite_extension (R \<lparr> carrier := K \<rparr>) = finite_extension"
proof -
have "\<And>K' xs. ring.finite_extension (R \<lparr> carrier := K \<rparr>) K' xs = finite_extension K' xs"
proof -
fix K' xs show "ring.finite_extension (R \<lparr> carrier := K \<rparr>) K' xs = finite_extension K' xs"
using ring.finite_extension.simps[OF subring_is_ring[OF assms]]
simple_extension_consistent[OF assms] by (induct xs) (auto)
qed
thus ?thesis by blast
qed
lemma (in ring) mono_finite_extension:
assumes "K \<subseteq> K'" shows "finite_extension K xs \<subseteq> finite_extension K' xs"
using mono_simple_extension assms by (induct xs) (auto)
lemma (in ring) finite_extension_carrier:
assumes "set xs \<subseteq> carrier R" shows "finite_extension (carrier R) xs = carrier R"
using assms simple_extension_carrier by (induct xs) (auto)
lemma (in ring) finite_extension_in_carrier:
assumes "K \<subseteq> carrier R" and "set xs \<subseteq> carrier R" shows "finite_extension K xs \<subseteq> carrier R"
using assms simple_extension_in_carrier by (induct xs) (auto)
lemma (in ring) finite_extension_subring_incl:
assumes "subring K' R" and "K \<subseteq> K'" "set xs \<subseteq> K'" shows "finite_extension K xs \<subseteq> K'"
using ring.finite_extension_in_carrier[OF subring_is_ring[OF assms(1)]] assms(2-3)
unfolding finite_extension_consistent[OF assms(1)] by simp
lemma (in ring) finite_extension_incl_aux:
assumes "K \<subseteq> carrier R" and "x \<in> carrier R" "set xs \<subseteq> carrier R"
shows "finite_extension K xs \<subseteq> finite_extension K (x # xs)"
using simple_extension_incl[OF finite_extension_in_carrier[OF assms(1,3)] assms(2)] by simp
lemma (in ring) finite_extension_incl:
assumes "K \<subseteq> carrier R" and "set xs \<subseteq> carrier R" shows "K \<subseteq> finite_extension K xs"
using finite_extension_incl_aux[OF assms(1)] assms(2) by (induct xs) (auto)
lemma (in ring) finite_extension_as_eval_img:
assumes "K \<subseteq> carrier R" and "x \<in> carrier R" "set xs \<subseteq> carrier R"
shows "finite_extension K (x # xs) = (\<lambda>p. eval p x) ` carrier ((finite_extension K xs) [X])"
using simple_extension_as_eval_img[OF finite_extension_in_carrier[OF assms(1,3)] assms(2)] by simp
lemma (in domain) finite_extension_is_subring:
assumes "subring K R" "set xs \<subseteq> carrier R" shows "subring (finite_extension K xs) R"
using assms simple_extension_is_subring by (induct xs) (auto)
corollary (in domain) finite_extension_mem:
assumes "subring K R" "set xs \<subseteq> carrier R" shows "set xs \<subseteq> finite_extension K xs"
proof -
{ fix x xs assume "x \<in> carrier R" "set xs \<subseteq> carrier R"
hence "x \<in> finite_extension K (x # xs)"
using simple_extension_mem[OF finite_extension_is_subring[OF assms(1), of xs]] by simp }
note aux_lemma = this
show ?thesis
using aux_lemma finite_extension_incl_aux[OF subringE(1)[OF assms(1)]] assms(2)
by (induct xs) (simp, smt insert_subset list.simps(15) subset_trans)
qed
corollary (in domain) finite_extension_minimal:
assumes "subring K R" "set xs \<subseteq> carrier R"
shows "finite_extension K xs = \<Inter> { K'. subring K' R \<and> K \<subseteq> K' \<and> set xs \<subseteq> K' }"
using finite_extension_is_subring[OF assms] finite_extension_mem[OF assms]
finite_extension_incl[OF subringE(1)[OF assms(1)] assms(2)] finite_extension_subring_incl
by blast
corollary (in domain) finite_extension_same_set:
assumes "subring K R" "set xs \<subseteq> carrier R" "set xs = set ys"
shows "finite_extension K xs = finite_extension K ys"
using finite_extension_minimal[OF assms(1)] assms(2-3) by auto
text \<open>The reciprocal is also true, but it is more subtle.\<close>
proposition (in domain) finite_extension_is_subfield:
assumes "subfield K R" "set xs \<subseteq> carrier R"
shows "(\<And>x. x \<in> set xs \<Longrightarrow> (algebraic over K) x) \<Longrightarrow> subfield (finite_extension K xs) R"
using simple_extension_is_subfield algebraic_mono assms
by (induct xs) (auto, metis finite_extension.simps finite_extension_incl subring_props(1))
proposition (in domain) finite_extension_finite_dimension:
assumes "subfield K R" "set xs \<subseteq> carrier R"
shows "(\<And>x. x \<in> set xs \<Longrightarrow> (algebraic over K) x) \<Longrightarrow> finite_dimension K (finite_extension K xs)"
and "finite_dimension K (finite_extension K xs) \<Longrightarrow> (\<And>x. x \<in> set xs \<Longrightarrow> (algebraic over K) x)"
proof -
show "finite_dimension K (finite_extension K xs) \<Longrightarrow> (\<And>x. x \<in> set xs \<Longrightarrow> (algebraic over K) x)"
using finite_dimension_imp_algebraic[OF assms(1)
finite_extension_is_subring[OF subfieldE(1)[OF assms(1)] assms(2)]]
finite_extension_mem[OF subfieldE(1)[OF assms(1)] assms(2)] by auto
next
show "(\<And>x. x \<in> set xs \<Longrightarrow> (algebraic over K) x) \<Longrightarrow> finite_dimension K (finite_extension K xs)"
using assms(2)
proof (induct xs, simp add: finite_dimensionI[OF dimension_one[OF assms(1)]])
case (Cons x xs)
hence "finite_dimension K (finite_extension K xs)"
by auto
moreover have "(algebraic over (finite_extension K xs)) x"
using algebraic_mono[OF finite_extension_incl[OF subfieldE(3)[OF assms(1)]]] Cons(2-3) by auto
moreover have "subfield (finite_extension K xs) R"
using finite_extension_is_subfield[OF assms(1)] Cons(2-3) by auto
ultimately show ?case
using telescopic_base_dim(1)[OF assms(1) _ _
finite_dimensionI[OF dimension_simple_extension, of _ x]] Cons(3) by auto
qed
qed
corollary (in domain) finite_extesion_mem_imp_algebraic:
assumes "subfield K R" "set xs \<subseteq> carrier R" and "\<And>x. x \<in> set xs \<Longrightarrow> (algebraic over K) x"
shows "y \<in> finite_extension K xs \<Longrightarrow> (algebraic over K) y"
using finite_dimension_imp_algebraic[OF assms(1)
finite_extension_is_subring[OF subfieldE(1)[OF assms(1)] assms(2)]]
finite_extension_finite_dimension(1)[OF assms(1-2)] assms(3) by auto
corollary (in domain) simple_extesion_mem_imp_algebraic:
assumes "subfield K R" "x \<in> carrier R" "(algebraic over K) x"
shows "y \<in> simple_extension K x \<Longrightarrow> (algebraic over K) y"
using finite_extesion_mem_imp_algebraic[OF assms(1), of "[ x ]"] assms(2-3) by auto
subsection \<open>Arithmetic of algebraic numbers\<close>
text \<open>We show that the set of algebraic numbers of a field
over a subfield K is a subfield itself.\<close>
lemma (in field) subfield_of_algebraics:
assumes "subfield K R" shows "subfield { x \<in> carrier R. (algebraic over K) x } R"
proof -
let ?set_of_algebraics = "{ x \<in> carrier R. (algebraic over K) x }"
show ?thesis
proof (rule subfieldI'[OF subringI])
show "?set_of_algebraics \<subseteq> carrier R" and "\<one> \<in> ?set_of_algebraics"
using algebraic_self[OF _ subringE(3)] subfieldE(1)[OF assms(1)] by auto
next
fix x y assume x: "x \<in> ?set_of_algebraics" and y: "y \<in> ?set_of_algebraics"
have "\<ominus> x \<in> simple_extension K x"
using subringE(5)[OF simple_extension_is_subring[OF subfieldE(1)]]
simple_extension_mem[OF subfieldE(1)] assms(1) x by auto
thus "\<ominus> x \<in> ?set_of_algebraics"
using simple_extesion_mem_imp_algebraic[OF assms] x by auto
have "x \<oplus> y \<in> finite_extension K [ x, y ]" and "x \<otimes> y \<in> finite_extension K [ x, y ]"
using subringE(6-7)[OF finite_extension_is_subring[OF subfieldE(1)[OF assms(1)]], of "[ x, y ]"]
finite_extension_mem[OF subfieldE(1)[OF assms(1)], of "[ x, y ]"] x y by auto
thus "x \<oplus> y \<in> ?set_of_algebraics" and "x \<otimes> y \<in> ?set_of_algebraics"
using finite_extesion_mem_imp_algebraic[OF assms, of "[ x, y ]"] x y by auto
next
fix z assume z: "z \<in> ?set_of_algebraics - { \<zero> }"
have "inv z \<in> simple_extension K z"
using subfield_m_inv(1)[of "simple_extension K z"]
simple_extension_is_subfield[OF assms, of z]
simple_extension_mem[OF subfieldE(1)] assms(1) z by auto
thus "inv z \<in> ?set_of_algebraics"
using simple_extesion_mem_imp_algebraic[OF assms] field_Units z by auto
qed
qed
end