(* Title: HOL/Hoare/Pointers0.thy
Author: Tobias Nipkow
Copyright 2002 TUM
This is like Pointers.thy, but instead of a type constructor 'a ref
that adjoins Null to a type, Null is simply a distinguished element of
the address type. This avoids the Ref constructor and thus simplifies
specifications (a bit). However, the proofs don't seem to get simpler
- in fact in some case they appear to get (a bit) more complicated.
*)
theory Pointers0 imports Hoare_Logic begin
subsection "References"
class ref =
fixes Null :: 'a
subsection "Field access and update"
syntax
"_fassign" :: "'a::ref => id => 'v => 's com"
("(2_^._ :=/ _)" [70,1000,65] 61)
"_faccess" :: "'a::ref => ('a::ref \<Rightarrow> 'v) => 'v"
("_^._" [65,1000] 65)
translations
"p^.f := e" => "f := CONST fun_upd f p e"
"p^.f" => "f p"
text "An example due to Suzuki:"
lemma "VARS v n
{distinct[w,x,y,z]}
w^.v := (1::int); w^.n := x;
x^.v := 2; x^.n := y;
y^.v := 3; y^.n := z;
z^.v := 4; x^.n := z
{w^.n^.n^.v = 4}"
by vcg_simp
section "The heap"
subsection "Paths in the heap"
primrec Path :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> 'a \<Rightarrow> bool"
where
"Path h x [] y = (x = y)"
| "Path h x (a#as) y = (x \<noteq> Null \<and> x = a \<and> Path h (h a) as y)"
lemma [iff]: "Path h Null xs y = (xs = [] \<and> y = Null)"
apply(case_tac xs)
apply fastforce
apply fastforce
done
lemma [simp]: "a \<noteq> Null \<Longrightarrow> Path h a as z =
(as = [] \<and> z = a \<or> (\<exists>bs. as = a#bs \<and> Path h (h a) bs z))"
apply(case_tac as)
apply fastforce
apply fastforce
done
lemma [simp]: "\<And>x. Path f x (as@bs) z = (\<exists>y. Path f x as y \<and> Path f y bs z)"
by(induct as, simp+)
lemma [simp]: "\<And>x. u \<notin> set as \<Longrightarrow> Path (f(u := v)) x as y = Path f x as y"
by(induct as, simp, simp add:eq_sym_conv)
subsection "Lists on the heap"
subsubsection "Relational abstraction"
definition List :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> bool"
where "List h x as = Path h x as Null"
lemma [simp]: "List h x [] = (x = Null)"
by(simp add:List_def)
lemma [simp]: "List h x (a#as) = (x \<noteq> Null \<and> x = a \<and> List h (h a) as)"
by(simp add:List_def)
lemma [simp]: "List h Null as = (as = [])"
by(case_tac as, simp_all)
lemma List_Ref[simp]:
"a \<noteq> Null \<Longrightarrow> List h a as = (\<exists>bs. as = a#bs \<and> List h (h a) bs)"
by(case_tac as, simp_all, fast)
theorem notin_List_update[simp]:
"\<And>x. a \<notin> set as \<Longrightarrow> List (h(a := y)) x as = List h x as"
apply(induct as)
apply simp
apply(clarsimp simp add:fun_upd_apply)
done
declare fun_upd_apply[simp del]fun_upd_same[simp] fun_upd_other[simp]
lemma List_unique: "\<And>x bs. List h x as \<Longrightarrow> List h x bs \<Longrightarrow> as = bs"
by(induct as, simp, clarsimp)
lemma List_unique1: "List h p as \<Longrightarrow> \<exists>!as. List h p as"
by(blast intro:List_unique)
lemma List_app: "\<And>x. List h x (as@bs) = (\<exists>y. Path h x as y \<and> List h y bs)"
by(induct as, simp, clarsimp)
lemma List_hd_not_in_tl[simp]: "List h (h a) as \<Longrightarrow> a \<notin> set as"
apply (clarsimp simp add:in_set_conv_decomp)
apply(frule List_app[THEN iffD1])
apply(fastforce dest: List_unique)
done
lemma List_distinct[simp]: "\<And>x. List h x as \<Longrightarrow> distinct as"
apply(induct as, simp)
apply(fastforce dest:List_hd_not_in_tl)
done
subsection "Functional abstraction"
definition islist :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> bool"
where "islist h p \<longleftrightarrow> (\<exists>as. List h p as)"
definition list :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a list"
where "list h p = (SOME as. List h p as)"
lemma List_conv_islist_list: "List h p as = (islist h p \<and> as = list h p)"
apply(simp add:islist_def list_def)
apply(rule iffI)
apply(rule conjI)
apply blast
apply(subst some1_equality)
apply(erule List_unique1)
apply assumption
apply(rule refl)
apply simp
apply(rule someI_ex)
apply fast
done
lemma [simp]: "islist h Null"
by(simp add:islist_def)
lemma [simp]: "a \<noteq> Null \<Longrightarrow> islist h a = islist h (h a)"
by(simp add:islist_def)
lemma [simp]: "list h Null = []"
by(simp add:list_def)
lemma list_Ref_conv[simp]:
"\<lbrakk> a \<noteq> Null; islist h (h a) \<rbrakk> \<Longrightarrow> list h a = a # list h (h a)"
apply(insert List_Ref[of _ h])
apply(fastforce simp:List_conv_islist_list)
done
lemma [simp]: "islist h (h a) \<Longrightarrow> a \<notin> set(list h (h a))"
apply(insert List_hd_not_in_tl[of h])
apply(simp add:List_conv_islist_list)
done
lemma list_upd_conv[simp]:
"islist h p \<Longrightarrow> y \<notin> set(list h p) \<Longrightarrow> list (h(y := q)) p = list h p"
apply(drule notin_List_update[of _ _ h q p])
apply(simp add:List_conv_islist_list)
done
lemma islist_upd[simp]:
"islist h p \<Longrightarrow> y \<notin> set(list h p) \<Longrightarrow> islist (h(y := q)) p"
apply(frule notin_List_update[of _ _ h q p])
apply(simp add:List_conv_islist_list)
done
section "Verifications"
subsection "List reversal"
text "A short but unreadable proof:"
lemma "VARS tl p q r
{List tl p Ps \<and> List tl q Qs \<and> set Ps \<inter> set Qs = {}}
WHILE p \<noteq> Null
INV {\<exists>ps qs. List tl p ps \<and> List tl q qs \<and> set ps \<inter> set qs = {} \<and>
rev ps @ qs = rev Ps @ Qs}
DO r := p; p := p^.tl; r^.tl := q; q := r OD
{List tl q (rev Ps @ Qs)}"
apply vcg_simp
apply fastforce
apply(fastforce intro:notin_List_update[THEN iffD2])
\<comment> \<open>explicit:\<close>
\<^cancel>\<open>apply clarify\<close>
\<^cancel>\<open>apply(rename_tac ps qs)\<close>
\<^cancel>\<open>apply clarsimp\<close>
\<^cancel>\<open>apply(rename_tac ps')\<close>
\<^cancel>\<open>apply(rule_tac x = ps' in exI)\<close>
\<^cancel>\<open>apply simp\<close>
\<^cancel>\<open>apply(rule_tac x = "p#qs" in exI)\<close>
\<^cancel>\<open>apply simp\<close>
done
text "A longer readable version:"
lemma "VARS tl p q r
{List tl p Ps \<and> List tl q Qs \<and> set Ps \<inter> set Qs = {}}
WHILE p \<noteq> Null
INV {\<exists>ps qs. List tl p ps \<and> List tl q qs \<and> set ps \<inter> set qs = {} \<and>
rev ps @ qs = rev Ps @ Qs}
DO r := p; p := p^.tl; r^.tl := q; q := r OD
{List tl q (rev Ps @ Qs)}"
proof vcg
fix tl p q r
assume "List tl p Ps \<and> List tl q Qs \<and> set Ps \<inter> set Qs = {}"
thus "\<exists>ps qs. List tl p ps \<and> List tl q qs \<and> set ps \<inter> set qs = {} \<and>
rev ps @ qs = rev Ps @ Qs" by fastforce
next
fix tl p q r
assume "(\<exists>ps qs. List tl p ps \<and> List tl q qs \<and> set ps \<inter> set qs = {} \<and>
rev ps @ qs = rev Ps @ Qs) \<and> p \<noteq> Null"
(is "(\<exists>ps qs. ?I ps qs) \<and> _")
then obtain ps qs where I: "?I ps qs \<and> p \<noteq> Null" by fast
then obtain ps' where "ps = p # ps'" by fastforce
hence "List (tl(p := q)) (p^.tl) ps' \<and>
List (tl(p := q)) p (p#qs) \<and>
set ps' \<inter> set (p#qs) = {} \<and>
rev ps' @ (p#qs) = rev Ps @ Qs"
using I by fastforce
thus "\<exists>ps' qs'. List (tl(p := q)) (p^.tl) ps' \<and>
List (tl(p := q)) p qs' \<and>
set ps' \<inter> set qs' = {} \<and>
rev ps' @ qs' = rev Ps @ Qs" by fast
next
fix tl p q r
assume "(\<exists>ps qs. List tl p ps \<and> List tl q qs \<and> set ps \<inter> set qs = {} \<and>
rev ps @ qs = rev Ps @ Qs) \<and> \<not> p \<noteq> Null"
thus "List tl q (rev Ps @ Qs)" by fastforce
qed
text\<open>Finaly, the functional version. A bit more verbose, but automatic!\<close>
lemma "VARS tl p q r
{islist tl p \<and> islist tl q \<and>
Ps = list tl p \<and> Qs = list tl q \<and> set Ps \<inter> set Qs = {}}
WHILE p \<noteq> Null
INV {islist tl p \<and> islist tl q \<and>
set(list tl p) \<inter> set(list tl q) = {} \<and>
rev(list tl p) @ (list tl q) = rev Ps @ Qs}
DO r := p; p := p^.tl; r^.tl := q; q := r OD
{islist tl q \<and> list tl q = rev Ps @ Qs}"
apply vcg_simp
apply clarsimp
apply clarsimp
done
subsection "Searching in a list"
text\<open>What follows is a sequence of successively more intelligent proofs that
a simple loop finds an element in a linked list.
We start with a proof based on the \<^term>\<open>List\<close> predicate. This means it only
works for acyclic lists.\<close>
lemma "VARS tl p
{List tl p Ps \<and> X \<in> set Ps}
WHILE p \<noteq> Null \<and> p \<noteq> X
INV {p \<noteq> Null \<and> (\<exists>ps. List tl p ps \<and> X \<in> set ps)}
DO p := p^.tl OD
{p = X}"
apply vcg_simp
apply(case_tac "p = Null")
apply clarsimp
apply fastforce
apply clarsimp
apply fastforce
apply clarsimp
done
text\<open>Using \<^term>\<open>Path\<close> instead of \<^term>\<open>List\<close> generalizes the correctness
statement to cyclic lists as well:\<close>
lemma "VARS tl p
{Path tl p Ps X}
WHILE p \<noteq> Null \<and> p \<noteq> X
INV {\<exists>ps. Path tl p ps X}
DO p := p^.tl OD
{p = X}"
apply vcg_simp
apply blast
apply fastforce
apply clarsimp
done
text\<open>Now it dawns on us that we do not need the list witness at all --- it
suffices to talk about reachability, i.e.\ we can use relations directly.\<close>
lemma "VARS tl p
{(p,X) \<in> {(x,y). y = tl x & x \<noteq> Null}\<^sup>*}
WHILE p \<noteq> Null \<and> p \<noteq> X
INV {(p,X) \<in> {(x,y). y = tl x & x \<noteq> Null}\<^sup>*}
DO p := p^.tl OD
{p = X}"
apply vcg_simp
apply clarsimp
apply(erule converse_rtranclE)
apply simp
apply(simp)
apply(fastforce elim:converse_rtranclE)
done
subsection "Merging two lists"
text"This is still a bit rough, especially the proof."
fun merge :: "'a list * 'a list * ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list" where
"merge(x#xs,y#ys,f) = (if f x y then x # merge(xs,y#ys,f)
else y # merge(x#xs,ys,f))" |
"merge(x#xs,[],f) = x # merge(xs,[],f)" |
"merge([],y#ys,f) = y # merge([],ys,f)" |
"merge([],[],f) = []"
lemma imp_disjCL: "(P|Q \<longrightarrow> R) = ((P \<longrightarrow> R) \<and> (~P \<longrightarrow> Q \<longrightarrow> R))"
by blast
declare disj_not1[simp del] imp_disjL[simp del] imp_disjCL[simp]
lemma "VARS hd tl p q r s
{List tl p Ps \<and> List tl q Qs \<and> set Ps \<inter> set Qs = {} \<and>
(p \<noteq> Null \<or> q \<noteq> Null)}
IF if q = Null then True else p ~= Null & p^.hd \<le> q^.hd
THEN r := p; p := p^.tl ELSE r := q; q := q^.tl FI;
s := r;
WHILE p \<noteq> Null \<or> q \<noteq> Null
INV {\<exists>rs ps qs. Path tl r rs s \<and> List tl p ps \<and> List tl q qs \<and>
distinct(s # ps @ qs @ rs) \<and> s \<noteq> Null \<and>
merge(Ps,Qs,\<lambda>x y. hd x \<le> hd y) =
rs @ s # merge(ps,qs,\<lambda>x y. hd x \<le> hd y) \<and>
(tl s = p \<or> tl s = q)}
DO IF if q = Null then True else p \<noteq> Null \<and> p^.hd \<le> q^.hd
THEN s^.tl := p; p := p^.tl ELSE s^.tl := q; q := q^.tl FI;
s := s^.tl
OD
{List tl r (merge(Ps,Qs,\<lambda>x y. hd x \<le> hd y))}"
apply vcg_simp
apply (fastforce)
apply clarsimp
apply(rule conjI)
apply clarsimp
apply(simp add:eq_sym_conv)
apply(rule_tac x = "rs @ [s]" in exI)
apply simp
apply(rule_tac x = "bs" in exI)
apply (fastforce simp:eq_sym_conv)
apply clarsimp
apply(rule conjI)
apply clarsimp
apply(rule_tac x = "rs @ [s]" in exI)
apply simp
apply(rule_tac x = "bsa" in exI)
apply(rule conjI)
apply (simp add:eq_sym_conv)
apply(rule exI)
apply(rule conjI)
apply(rule_tac x = bs in exI)
apply(rule conjI)
apply(rule refl)
apply (simp add:eq_sym_conv)
apply (simp add:eq_sym_conv)
apply(rule conjI)
apply clarsimp
apply(rule_tac x = "rs @ [s]" in exI)
apply simp
apply(rule_tac x = bs in exI)
apply (simp add:eq_sym_conv)
apply clarsimp
apply(rule_tac x = "rs @ [s]" in exI)
apply (simp add:eq_sym_conv)
apply(rule exI)
apply(rule conjI)
apply(rule_tac x = bsa in exI)
apply(rule conjI)
apply(rule refl)
apply (simp add:eq_sym_conv)
apply(rule_tac x = bs in exI)
apply (simp add:eq_sym_conv)
apply(clarsimp simp add:List_app)
done
(* TODO: merging with islist/list instead of List: an improvement?
needs (is)path, which is not so easy to prove either. *)
subsection "Storage allocation"
definition new :: "'a set \<Rightarrow> 'a::ref"
where "new A = (SOME a. a \<notin> A & a \<noteq> Null)"
lemma new_notin:
"\<lbrakk> ~finite(UNIV::('a::ref)set); finite(A::'a set); B \<subseteq> A \<rbrakk> \<Longrightarrow>
new (A) \<notin> B & new A \<noteq> Null"
apply(unfold new_def)
apply(rule someI2_ex)
apply (fast dest:ex_new_if_finite[of "insert Null A"])
apply (fast)
done
lemma "~finite(UNIV::('a::ref)set) \<Longrightarrow>
VARS xs elem next alloc p q
{Xs = xs \<and> p = (Null::'a)}
WHILE xs \<noteq> []
INV {islist next p \<and> set(list next p) \<subseteq> set alloc \<and>
map elem (rev(list next p)) @ xs = Xs}
DO q := new(set alloc); alloc := q#alloc;
q^.next := p; q^.elem := hd xs; xs := tl xs; p := q
OD
{islist next p \<and> map elem (rev(list next p)) = Xs}"
apply vcg_simp
apply (clarsimp simp: subset_insert_iff neq_Nil_conv fun_upd_apply new_notin)
done
end