importing of polymorphic introduction rules with different schematic variable names
(* Title: Pure/interpretation.ML
Author: Florian Haftmann and Makarius
Generic interpretation of theory data.
*)
signature INTERPRETATION =
sig
type T
val result: theory -> T list
val interpretation: (T -> theory -> theory) -> theory -> theory
val data: T -> theory -> theory
val init: theory -> theory
end;
functor InterpretationFun(type T val eq: T * T -> bool): INTERPRETATION =
struct
type T = T;
structure Interp = TheoryDataFun
(
type T = T list * (((T -> theory -> theory) * stamp) * T list) list;
val empty = ([], []);
val extend = I;
val copy = I;
fun merge _ ((data1, interps1), (data2, interps2)) : T =
(Library.merge eq (data1, data2),
AList.join (eq_snd (op =)) (K (Library.merge eq)) (interps1, interps2));
);
val result = #1 o Interp.get;
fun consolidate thy =
let
val (data, interps) = Interp.get thy;
val unfinished = interps |> map (fn ((f, _), xs) =>
(f, if eq_list eq (xs, data) then [] else subtract eq xs data));
val finished = interps |> map (fn (interp, _) => (interp, data));
in
if forall (null o #2) unfinished then NONE
else SOME (thy |> fold_rev (uncurry fold_rev) unfinished |> Interp.put (data, finished))
end;
fun interpretation f = Interp.map (apsnd (cons ((f, stamp ()), []))) #> perhaps consolidate;
fun data x = Interp.map (apfst (cons x)) #> perhaps consolidate;
val init = Theory.at_begin consolidate;
end;