(* Title: TFL/usyntax.ML ID: $Id$ Author: Konrad Slind, Cambridge University Computer Laboratory Copyright 1997 University of CambridgeEmulation of HOL's abstract syntax functions.*)signature USYNTAX =sig datatype lambda = VAR of {Name : string, Ty : typ} | CONST of {Name : string, Ty : typ} | COMB of {Rator: term, Rand : term} | LAMB of {Bvar : term, Body : term} val alpha : typ (* Types *) val type_vars : typ -> typ list val type_varsl : typ list -> typ list val mk_vartype : string -> typ val is_vartype : typ -> bool val strip_prod_type : typ -> typ list (* Terms *) val free_vars_lr : term -> term list val type_vars_in_term : term -> typ list val dest_term : term -> lambda (* Prelogic *) val inst : (typ*typ) list -> term -> term (* Construction routines *) val mk_abs :{Bvar : term, Body : term} -> term val mk_imp :{ant : term, conseq : term} -> term val mk_select :{Bvar : term, Body : term} -> term val mk_forall :{Bvar : term, Body : term} -> term val mk_exists :{Bvar : term, Body : term} -> term val mk_conj :{conj1 : term, conj2 : term} -> term val mk_disj :{disj1 : term, disj2 : term} -> term val mk_pabs :{varstruct : term, body : term} -> term (* Destruction routines *) val dest_const: term -> {Name : string, Ty : typ} val dest_comb : term -> {Rator : term, Rand : term} val dest_abs : string list -> term -> {Bvar : term, Body : term} * string list val dest_eq : term -> {lhs : term, rhs : term} val dest_imp : term -> {ant : term, conseq : term} val dest_forall : term -> {Bvar : term, Body : term} val dest_exists : term -> {Bvar : term, Body : term} val dest_neg : term -> term val dest_conj : term -> {conj1 : term, conj2 : term} val dest_disj : term -> {disj1 : term, disj2 : term} val dest_pair : term -> {fst : term, snd : term} val dest_pabs : string list -> term -> {varstruct : term, body : term, used : string list} val lhs : term -> term val rhs : term -> term val rand : term -> term (* Query routines *) val is_imp : term -> bool val is_forall : term -> bool val is_exists : term -> bool val is_neg : term -> bool val is_conj : term -> bool val is_disj : term -> bool val is_pair : term -> bool val is_pabs : term -> bool (* Construction of a term from a list of Preterms *) val list_mk_abs : (term list * term) -> term val list_mk_imp : (term list * term) -> term val list_mk_forall : (term list * term) -> term val list_mk_conj : term list -> term (* Destructing a term to a list of Preterms *) val strip_comb : term -> (term * term list) val strip_abs : term -> (term list * term) val strip_imp : term -> (term list * term) val strip_forall : term -> (term list * term) val strip_exists : term -> (term list * term) val strip_disj : term -> term list (* Miscellaneous *) val mk_vstruct : typ -> term list -> term val gen_all : term -> term val find_term : (term -> bool) -> term -> term option val dest_relation : term -> term * term * term val is_WFR : term -> bool val ARB : typ -> termend;structure USyntax: USYNTAX =structinfix 4 ##;fun USYN_ERR func mesg = Utils.ERR {module = "USyntax", func = func, mesg = mesg};(*--------------------------------------------------------------------------- * * Types * *---------------------------------------------------------------------------*)val mk_prim_vartype = TVar;fun mk_vartype s = mk_prim_vartype ((s, 0), HOLogic.typeS);(* But internally, it's useful *)fun dest_vtype (TVar x) = x | dest_vtype _ = raise USYN_ERR "dest_vtype" "not a flexible type variable";val is_vartype = can dest_vtype;val type_vars = map mk_prim_vartype o typ_tvarsfun type_varsl L = distinct (op =) (fold (curry op @ o type_vars) L []);val alpha = mk_vartype "'a"val beta = mk_vartype "'b"val strip_prod_type = HOLogic.prodT_factors;(*--------------------------------------------------------------------------- * * Terms * *---------------------------------------------------------------------------*)(* Free variables, in order of occurrence, from left to right in the * syntax tree. *)fun free_vars_lr tm = let fun memb x = let fun m[] = false | m(y::rst) = (x=y)orelse m rst in m end fun add (t, frees) = case t of Free _ => if (memb t frees) then frees else t::frees | Abs (_,_,body) => add(body,frees) | f$t => add(t, add(f, frees)) | _ => frees in rev(add(tm,[])) end;val type_vars_in_term = map mk_prim_vartype o term_tvars;(* Prelogic *)fun dest_tybinding (v,ty) = (#1(dest_vtype v),ty)fun inst theta = subst_vars (map dest_tybinding theta,[])(* Construction routines *)fun mk_abs{Bvar as Var((s,_),ty),Body} = Abs(s,ty,abstract_over(Bvar,Body)) | mk_abs{Bvar as Free(s,ty),Body} = Abs(s,ty,abstract_over(Bvar,Body)) | mk_abs _ = raise USYN_ERR "mk_abs" "Bvar is not a variable";fun mk_imp{ant,conseq} = let val c = Const("op -->",HOLogic.boolT --> HOLogic.boolT --> HOLogic.boolT) in list_comb(c,[ant,conseq]) end;fun mk_select (r as {Bvar,Body}) = let val ty = type_of Bvar val c = Const("Hilbert_Choice.Eps",(ty --> HOLogic.boolT) --> ty) in list_comb(c,[mk_abs r]) end;fun mk_forall (r as {Bvar,Body}) = let val ty = type_of Bvar val c = Const("All",(ty --> HOLogic.boolT) --> HOLogic.boolT) in list_comb(c,[mk_abs r]) end;fun mk_exists (r as {Bvar,Body}) = let val ty = type_of Bvar val c = Const("Ex",(ty --> HOLogic.boolT) --> HOLogic.boolT) in list_comb(c,[mk_abs r]) end;fun mk_conj{conj1,conj2} = let val c = Const("op &",HOLogic.boolT --> HOLogic.boolT --> HOLogic.boolT) in list_comb(c,[conj1,conj2]) end;fun mk_disj{disj1,disj2} = let val c = Const("op |",HOLogic.boolT --> HOLogic.boolT --> HOLogic.boolT) in list_comb(c,[disj1,disj2]) end;fun prod_ty ty1 ty2 = HOLogic.mk_prodT (ty1,ty2);localfun mk_uncurry(xt,yt,zt) = Const("split",(xt --> yt --> zt) --> prod_ty xt yt --> zt)fun dest_pair(Const("Pair",_) $ M $ N) = {fst=M, snd=N} | dest_pair _ = raise USYN_ERR "dest_pair" "not a pair"fun is_var (Var _) = true | is_var (Free _) = true | is_var _ = falseinfun mk_pabs{varstruct,body} = let fun mpa (varstruct, body) = if is_var varstruct then mk_abs {Bvar = varstruct, Body = body} else let val {fst, snd} = dest_pair varstruct in mk_uncurry (type_of fst, type_of snd, type_of body) $ mpa (fst, mpa (snd, body)) end in mpa (varstruct, body) end handle TYPE _ => raise USYN_ERR "mk_pabs" "";end;(* Destruction routines *)datatype lambda = VAR of {Name : string, Ty : typ} | CONST of {Name : string, Ty : typ} | COMB of {Rator: term, Rand : term} | LAMB of {Bvar : term, Body : term};fun dest_term(Var((s,i),ty)) = VAR{Name = s, Ty = ty} | dest_term(Free(s,ty)) = VAR{Name = s, Ty = ty} | dest_term(Const(s,ty)) = CONST{Name = s, Ty = ty} | dest_term(M$N) = COMB{Rator=M,Rand=N} | dest_term(Abs(s,ty,M)) = let val v = Free(s,ty) in LAMB{Bvar = v, Body = Term.betapply (M,v)} end | dest_term(Bound _) = raise USYN_ERR "dest_term" "Bound";fun dest_const(Const(s,ty)) = {Name = s, Ty = ty} | dest_const _ = raise USYN_ERR "dest_const" "not a constant";fun dest_comb(t1 $ t2) = {Rator = t1, Rand = t2} | dest_comb _ = raise USYN_ERR "dest_comb" "not a comb";fun dest_abs used (a as Abs(s, ty, M)) = let val s' = Name.variant used s; val v = Free(s', ty); in ({Bvar = v, Body = Term.betapply (a,v)}, s'::used) end | dest_abs _ _ = raise USYN_ERR "dest_abs" "not an abstraction";fun dest_eq(Const("op =",_) $ M $ N) = {lhs=M, rhs=N} | dest_eq _ = raise USYN_ERR "dest_eq" "not an equality";fun dest_imp(Const("op -->",_) $ M $ N) = {ant=M, conseq=N} | dest_imp _ = raise USYN_ERR "dest_imp" "not an implication";fun dest_forall(Const("All",_) $ (a as Abs _)) = fst (dest_abs [] a) | dest_forall _ = raise USYN_ERR "dest_forall" "not a forall";fun dest_exists(Const("Ex",_) $ (a as Abs _)) = fst (dest_abs [] a) | dest_exists _ = raise USYN_ERR "dest_exists" "not an existential";fun dest_neg(Const("not",_) $ M) = M | dest_neg _ = raise USYN_ERR "dest_neg" "not a negation";fun dest_conj(Const("op &",_) $ M $ N) = {conj1=M, conj2=N} | dest_conj _ = raise USYN_ERR "dest_conj" "not a conjunction";fun dest_disj(Const("op |",_) $ M $ N) = {disj1=M, disj2=N} | dest_disj _ = raise USYN_ERR "dest_disj" "not a disjunction";fun mk_pair{fst,snd} = let val ty1 = type_of fst val ty2 = type_of snd val c = Const("Pair",ty1 --> ty2 --> prod_ty ty1 ty2) in list_comb(c,[fst,snd]) end;fun dest_pair(Const("Pair",_) $ M $ N) = {fst=M, snd=N} | dest_pair _ = raise USYN_ERR "dest_pair" "not a pair";local fun ucheck t = (if #Name(dest_const t) = "split" then t else raise Match)infun dest_pabs used tm = let val ({Bvar,Body}, used') = dest_abs used tm in {varstruct = Bvar, body = Body, used = used'} end handle Utils.ERR _ => let val {Rator,Rand} = dest_comb tm val _ = ucheck Rator val {varstruct = lv, body, used = used'} = dest_pabs used Rand val {varstruct = rv, body, used = used''} = dest_pabs used' body in {varstruct = mk_pair {fst = lv, snd = rv}, body = body, used = used''} endend;val lhs = #lhs o dest_eqval rhs = #rhs o dest_eqval rand = #Rand o dest_comb(* Query routines *)val is_imp = can dest_impval is_forall = can dest_forallval is_exists = can dest_existsval is_neg = can dest_negval is_conj = can dest_conjval is_disj = can dest_disjval is_pair = can dest_pairval is_pabs = can (dest_pabs [])(* Construction of a cterm from a list of Terms *)fun list_mk_abs(L,tm) = fold_rev (fn v => fn M => mk_abs{Bvar=v, Body=M}) L tm;(* These others are almost never used *)fun list_mk_imp(A,c) = fold_rev (fn a => fn tm => mk_imp{ant=a,conseq=tm}) A c;fun list_mk_forall(V,t) = fold_rev (fn v => fn b => mk_forall{Bvar=v, Body=b})V t;val list_mk_conj = Utils.end_itlist(fn c1 => fn tm => mk_conj{conj1=c1, conj2=tm})(* Need to reverse? *)fun gen_all tm = list_mk_forall(term_frees tm, tm);(* Destructing a cterm to a list of Terms *)fun strip_comb tm = let fun dest(M$N, A) = dest(M, N::A) | dest x = x in dest(tm,[]) end;fun strip_abs(tm as Abs _) = let val ({Bvar,Body}, _) = dest_abs [] tm val (bvs, core) = strip_abs Body in (Bvar::bvs, core) end | strip_abs M = ([],M);fun strip_imp fm = if (is_imp fm) then let val {ant,conseq} = dest_imp fm val (was,wb) = strip_imp conseq in ((ant::was), wb) end else ([],fm);fun strip_forall fm = if (is_forall fm) then let val {Bvar,Body} = dest_forall fm val (bvs,core) = strip_forall Body in ((Bvar::bvs), core) end else ([],fm);fun strip_exists fm = if (is_exists fm) then let val {Bvar, Body} = dest_exists fm val (bvs,core) = strip_exists Body in (Bvar::bvs, core) end else ([],fm);fun strip_disj w = if (is_disj w) then let val {disj1,disj2} = dest_disj w in (strip_disj disj1@strip_disj disj2) end else [w];(* Miscellaneous *)fun mk_vstruct ty V = let fun follow_prod_type (Type("*",[ty1,ty2])) vs = let val (ltm,vs1) = follow_prod_type ty1 vs val (rtm,vs2) = follow_prod_type ty2 vs1 in (mk_pair{fst=ltm, snd=rtm}, vs2) end | follow_prod_type _ (v::vs) = (v,vs) in #1 (follow_prod_type ty V) end;(* Search a term for a sub-term satisfying the predicate p. *)fun find_term p = let fun find tm = if (p tm) then SOME tm else case tm of Abs(_,_,body) => find body | (t$u) => (case find t of NONE => find u | some => some) | _ => NONE in find end;fun dest_relation tm = if (type_of tm = HOLogic.boolT) then let val (Const("op :",_) $ (Const("Pair",_)$y$x) $ R) = tm in (R,y,x) end handle Bind => raise USYN_ERR "dest_relation" "unexpected term structure" else raise USYN_ERR "dest_relation" "not a boolean term";fun is_WFR (Const("Wellfounded_Recursion.wf",_)$_) = true | is_WFR _ = false;fun ARB ty = mk_select{Bvar=Free("v",ty), Body=Const("True",HOLogic.boolT)};end;