(* Title: HOL/Divides.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1999 University of Cambridge
*)
section {* The division operators div and mod *}
theory Divides
imports Parity
begin
subsection {* Syntactic division operations *}
class div = dvd +
fixes div :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70)
and mod :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70)
subsection {* Abstract division in commutative semirings. *}
class semiring_div = semidom + div +
assumes mod_div_equality: "a div b * b + a mod b = a"
and div_by_0 [simp]: "a div 0 = 0"
and div_0 [simp]: "0 div a = 0"
and div_mult_self1 [simp]: "b \<noteq> 0 \<Longrightarrow> (a + c * b) div b = c + a div b"
and div_mult_mult1 [simp]: "c \<noteq> 0 \<Longrightarrow> (c * a) div (c * b) = a div b"
begin
subclass semiring_no_zero_divisors ..
lemma power_not_zero: -- \<open>FIXME cf. @{text field_power_not_zero}\<close>
"a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0"
by (induct n) (simp_all add: no_zero_divisors)
lemma semiring_div_power_eq_0_iff: -- \<open>FIXME cf. @{text power_eq_0_iff}, @{text power_eq_0_nat_iff}\<close>
"n \<noteq> 0 \<Longrightarrow> a ^ n = 0 \<longleftrightarrow> a = 0"
using power_not_zero [of a n] by (auto simp add: zero_power)
text {* @{const div} and @{const mod} *}
lemma mod_div_equality2: "b * (a div b) + a mod b = a"
unfolding mult.commute [of b]
by (rule mod_div_equality)
lemma mod_div_equality': "a mod b + a div b * b = a"
using mod_div_equality [of a b]
by (simp only: ac_simps)
lemma div_mod_equality: "((a div b) * b + a mod b) + c = a + c"
by (simp add: mod_div_equality)
lemma div_mod_equality2: "(b * (a div b) + a mod b) + c = a + c"
by (simp add: mod_div_equality2)
lemma mod_by_0 [simp]: "a mod 0 = a"
using mod_div_equality [of a zero] by simp
lemma mod_0 [simp]: "0 mod a = 0"
using mod_div_equality [of zero a] div_0 by simp
lemma div_mult_self2 [simp]:
assumes "b \<noteq> 0"
shows "(a + b * c) div b = c + a div b"
using assms div_mult_self1 [of b a c] by (simp add: mult.commute)
lemma div_mult_self3 [simp]:
assumes "b \<noteq> 0"
shows "(c * b + a) div b = c + a div b"
using assms by (simp add: add.commute)
lemma div_mult_self4 [simp]:
assumes "b \<noteq> 0"
shows "(b * c + a) div b = c + a div b"
using assms by (simp add: add.commute)
lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b"
proof (cases "b = 0")
case True then show ?thesis by simp
next
case False
have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b"
by (simp add: mod_div_equality)
also from False div_mult_self1 [of b a c] have
"\<dots> = (c + a div b) * b + (a + c * b) mod b"
by (simp add: algebra_simps)
finally have "a = a div b * b + (a + c * b) mod b"
by (simp add: add.commute [of a] add.assoc distrib_right)
then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b"
by (simp add: mod_div_equality)
then show ?thesis by simp
qed
lemma mod_mult_self2 [simp]:
"(a + b * c) mod b = a mod b"
by (simp add: mult.commute [of b])
lemma mod_mult_self3 [simp]:
"(c * b + a) mod b = a mod b"
by (simp add: add.commute)
lemma mod_mult_self4 [simp]:
"(b * c + a) mod b = a mod b"
by (simp add: add.commute)
lemma div_mult_self1_is_id [simp]: "b \<noteq> 0 \<Longrightarrow> b * a div b = a"
using div_mult_self2 [of b 0 a] by simp
lemma div_mult_self2_is_id [simp]: "b \<noteq> 0 \<Longrightarrow> a * b div b = a"
using div_mult_self1 [of b 0 a] by simp
lemma mod_mult_self1_is_0 [simp]: "b * a mod b = 0"
using mod_mult_self2 [of 0 b a] by simp
lemma mod_mult_self2_is_0 [simp]: "a * b mod b = 0"
using mod_mult_self1 [of 0 a b] by simp
lemma div_by_1 [simp]: "a div 1 = a"
using div_mult_self2_is_id [of 1 a] zero_neq_one by simp
lemma mod_by_1 [simp]: "a mod 1 = 0"
proof -
from mod_div_equality [of a one] div_by_1 have "a + a mod 1 = a" by simp
then have "a + a mod 1 = a + 0" by simp
then show ?thesis by (rule add_left_imp_eq)
qed
lemma mod_self [simp]: "a mod a = 0"
using mod_mult_self2_is_0 [of 1] by simp
lemma div_self [simp]: "a \<noteq> 0 \<Longrightarrow> a div a = 1"
using div_mult_self2_is_id [of _ 1] by simp
lemma div_add_self1 [simp]:
assumes "b \<noteq> 0"
shows "(b + a) div b = a div b + 1"
using assms div_mult_self1 [of b a 1] by (simp add: add.commute)
lemma div_add_self2 [simp]:
assumes "b \<noteq> 0"
shows "(a + b) div b = a div b + 1"
using assms div_add_self1 [of b a] by (simp add: add.commute)
lemma mod_add_self1 [simp]:
"(b + a) mod b = a mod b"
using mod_mult_self1 [of a 1 b] by (simp add: add.commute)
lemma mod_add_self2 [simp]:
"(a + b) mod b = a mod b"
using mod_mult_self1 [of a 1 b] by simp
lemma mod_div_decomp:
fixes a b
obtains q r where "q = a div b" and "r = a mod b"
and "a = q * b + r"
proof -
from mod_div_equality have "a = a div b * b + a mod b" by simp
moreover have "a div b = a div b" ..
moreover have "a mod b = a mod b" ..
note that ultimately show thesis by blast
qed
lemma dvd_imp_mod_0 [simp]:
assumes "a dvd b"
shows "b mod a = 0"
proof -
from assms obtain c where "b = a * c" ..
then have "b mod a = a * c mod a" by simp
then show "b mod a = 0" by simp
qed
lemma mod_eq_0_iff_dvd:
"a mod b = 0 \<longleftrightarrow> b dvd a"
proof
assume "b dvd a"
then show "a mod b = 0" by simp
next
assume "a mod b = 0"
with mod_div_equality [of a b] have "a div b * b = a" by simp
then have "a = b * (a div b)" by (simp add: ac_simps)
then show "b dvd a" ..
qed
lemma dvd_eq_mod_eq_0 [code]:
"a dvd b \<longleftrightarrow> b mod a = 0"
by (simp add: mod_eq_0_iff_dvd)
lemma mod_div_trivial [simp]:
"a mod b div b = 0"
proof (cases "b = 0")
assume "b = 0"
thus ?thesis by simp
next
assume "b \<noteq> 0"
hence "a div b + a mod b div b = (a mod b + a div b * b) div b"
by (rule div_mult_self1 [symmetric])
also have "\<dots> = a div b"
by (simp only: mod_div_equality')
also have "\<dots> = a div b + 0"
by simp
finally show ?thesis
by (rule add_left_imp_eq)
qed
lemma mod_mod_trivial [simp]:
"a mod b mod b = a mod b"
proof -
have "a mod b mod b = (a mod b + a div b * b) mod b"
by (simp only: mod_mult_self1)
also have "\<dots> = a mod b"
by (simp only: mod_div_equality')
finally show ?thesis .
qed
lemma dvd_div_mult_self [simp]:
"a dvd b \<Longrightarrow> (b div a) * a = b"
using mod_div_equality [of b a, symmetric] by simp
lemma dvd_mult_div_cancel [simp]:
"a dvd b \<Longrightarrow> a * (b div a) = b"
using dvd_div_mult_self by (simp add: ac_simps)
lemma dvd_div_mult:
"a dvd b \<Longrightarrow> (b div a) * c = (b * c) div a"
by (cases "a = 0") (auto elim!: dvdE simp add: mult.assoc)
lemma div_dvd_div [simp]:
assumes "a dvd b" and "a dvd c"
shows "b div a dvd c div a \<longleftrightarrow> b dvd c"
using assms apply (cases "a = 0")
apply auto
apply (unfold dvd_def)
apply auto
apply(blast intro:mult.assoc[symmetric])
apply(fastforce simp add: mult.assoc)
done
lemma dvd_mod_imp_dvd:
assumes "k dvd m mod n" and "k dvd n"
shows "k dvd m"
proof -
from assms have "k dvd (m div n) * n + m mod n"
by (simp only: dvd_add dvd_mult)
then show ?thesis by (simp add: mod_div_equality)
qed
text {* Addition respects modular equivalence. *}
lemma mod_add_left_eq: "(a + b) mod c = (a mod c + b) mod c"
proof -
have "(a + b) mod c = (a div c * c + a mod c + b) mod c"
by (simp only: mod_div_equality)
also have "\<dots> = (a mod c + b + a div c * c) mod c"
by (simp only: ac_simps)
also have "\<dots> = (a mod c + b) mod c"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_add_right_eq: "(a + b) mod c = (a + b mod c) mod c"
proof -
have "(a + b) mod c = (a + (b div c * c + b mod c)) mod c"
by (simp only: mod_div_equality)
also have "\<dots> = (a + b mod c + b div c * c) mod c"
by (simp only: ac_simps)
also have "\<dots> = (a + b mod c) mod c"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_add_eq: "(a + b) mod c = (a mod c + b mod c) mod c"
by (rule trans [OF mod_add_left_eq mod_add_right_eq])
lemma mod_add_cong:
assumes "a mod c = a' mod c"
assumes "b mod c = b' mod c"
shows "(a + b) mod c = (a' + b') mod c"
proof -
have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c"
unfolding assms ..
thus ?thesis
by (simp only: mod_add_eq [symmetric])
qed
lemma div_add [simp]: "z dvd x \<Longrightarrow> z dvd y
\<Longrightarrow> (x + y) div z = x div z + y div z"
by (cases "z = 0", simp, unfold dvd_def, auto simp add: algebra_simps)
text {* Multiplication respects modular equivalence. *}
lemma mod_mult_left_eq: "(a * b) mod c = ((a mod c) * b) mod c"
proof -
have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c"
by (simp only: mod_div_equality)
also have "\<dots> = (a mod c * b + a div c * b * c) mod c"
by (simp only: algebra_simps)
also have "\<dots> = (a mod c * b) mod c"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_mult_right_eq: "(a * b) mod c = (a * (b mod c)) mod c"
proof -
have "(a * b) mod c = (a * (b div c * c + b mod c)) mod c"
by (simp only: mod_div_equality)
also have "\<dots> = (a * (b mod c) + a * (b div c) * c) mod c"
by (simp only: algebra_simps)
also have "\<dots> = (a * (b mod c)) mod c"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_mult_eq: "(a * b) mod c = ((a mod c) * (b mod c)) mod c"
by (rule trans [OF mod_mult_left_eq mod_mult_right_eq])
lemma mod_mult_cong:
assumes "a mod c = a' mod c"
assumes "b mod c = b' mod c"
shows "(a * b) mod c = (a' * b') mod c"
proof -
have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c"
unfolding assms ..
thus ?thesis
by (simp only: mod_mult_eq [symmetric])
qed
text {* Exponentiation respects modular equivalence. *}
lemma power_mod: "(a mod b)^n mod b = a^n mod b"
apply (induct n, simp_all)
apply (rule mod_mult_right_eq [THEN trans])
apply (simp (no_asm_simp))
apply (rule mod_mult_eq [symmetric])
done
lemma mod_mod_cancel:
assumes "c dvd b"
shows "a mod b mod c = a mod c"
proof -
from `c dvd b` obtain k where "b = c * k"
by (rule dvdE)
have "a mod b mod c = a mod (c * k) mod c"
by (simp only: `b = c * k`)
also have "\<dots> = (a mod (c * k) + a div (c * k) * k * c) mod c"
by (simp only: mod_mult_self1)
also have "\<dots> = (a div (c * k) * (c * k) + a mod (c * k)) mod c"
by (simp only: ac_simps)
also have "\<dots> = a mod c"
by (simp only: mod_div_equality)
finally show ?thesis .
qed
lemma div_mult_div_if_dvd:
"y dvd x \<Longrightarrow> z dvd w \<Longrightarrow> (x div y) * (w div z) = (x * w) div (y * z)"
apply (cases "y = 0", simp)
apply (cases "z = 0", simp)
apply (auto elim!: dvdE simp add: algebra_simps)
apply (subst mult.assoc [symmetric])
apply (simp add: no_zero_divisors)
done
lemma div_mult_swap:
assumes "c dvd b"
shows "a * (b div c) = (a * b) div c"
proof -
from assms have "b div c * (a div 1) = b * a div (c * 1)"
by (simp only: div_mult_div_if_dvd one_dvd)
then show ?thesis by (simp add: mult.commute)
qed
lemma div_mult_mult2 [simp]:
"c \<noteq> 0 \<Longrightarrow> (a * c) div (b * c) = a div b"
by (drule div_mult_mult1) (simp add: mult.commute)
lemma div_mult_mult1_if [simp]:
"(c * a) div (c * b) = (if c = 0 then 0 else a div b)"
by simp_all
lemma mod_mult_mult1:
"(c * a) mod (c * b) = c * (a mod b)"
proof (cases "c = 0")
case True then show ?thesis by simp
next
case False
from mod_div_equality
have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" .
with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b)
= c * a + c * (a mod b)" by (simp add: algebra_simps)
with mod_div_equality show ?thesis by simp
qed
lemma mod_mult_mult2:
"(a * c) mod (b * c) = (a mod b) * c"
using mod_mult_mult1 [of c a b] by (simp add: mult.commute)
lemma mult_mod_left: "(a mod b) * c = (a * c) mod (b * c)"
by (fact mod_mult_mult2 [symmetric])
lemma mult_mod_right: "c * (a mod b) = (c * a) mod (c * b)"
by (fact mod_mult_mult1 [symmetric])
lemma dvd_times_left_cancel_iff [simp]: -- \<open>FIXME generalize\<close>
assumes "c \<noteq> 0"
shows "c * a dvd c * b \<longleftrightarrow> a dvd b"
proof -
have "(c * b) mod (c * a) = 0 \<longleftrightarrow> b mod a = 0" (is "?P \<longleftrightarrow> ?Q")
using assms by (simp add: mod_mult_mult1)
then show ?thesis by (simp add: mod_eq_0_iff_dvd)
qed
lemma dvd_times_right_cancel_iff [simp]: -- \<open>FIXME generalize\<close>
assumes "c \<noteq> 0"
shows "a * c dvd b * c \<longleftrightarrow> a dvd b"
using assms dvd_times_left_cancel_iff [of c a b] by (simp add: ac_simps)
lemma dvd_mod: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m mod n)"
unfolding dvd_def by (auto simp add: mod_mult_mult1)
lemma dvd_mod_iff: "k dvd n \<Longrightarrow> k dvd (m mod n) \<longleftrightarrow> k dvd m"
by (blast intro: dvd_mod_imp_dvd dvd_mod)
lemma div_power:
"y dvd x \<Longrightarrow> (x div y) ^ n = x ^ n div y ^ n"
apply (induct n)
apply simp
apply(simp add: div_mult_div_if_dvd dvd_power_same)
done
lemma dvd_div_eq_mult:
assumes "a \<noteq> 0" and "a dvd b"
shows "b div a = c \<longleftrightarrow> b = c * a"
proof
assume "b = c * a"
then show "b div a = c" by (simp add: assms)
next
assume "b div a = c"
then have "b div a * a = c * a" by simp
moreover from `a dvd b` have "b div a * a = b" by (simp add: dvd_div_mult_self)
ultimately show "b = c * a" by simp
qed
lemma dvd_div_div_eq_mult:
assumes "a \<noteq> 0" "c \<noteq> 0" and "a dvd b" "c dvd d"
shows "b div a = d div c \<longleftrightarrow> b * c = a * d"
using assms by (auto simp add: mult.commute [of _ a] dvd_div_mult_self dvd_div_eq_mult div_mult_swap intro: sym)
end
class ring_div = comm_ring_1 + semiring_div
begin
subclass idom ..
text {* Negation respects modular equivalence. *}
lemma mod_minus_eq: "(- a) mod b = (- (a mod b)) mod b"
proof -
have "(- a) mod b = (- (a div b * b + a mod b)) mod b"
by (simp only: mod_div_equality)
also have "\<dots> = (- (a mod b) + - (a div b) * b) mod b"
by (simp add: ac_simps)
also have "\<dots> = (- (a mod b)) mod b"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_minus_cong:
assumes "a mod b = a' mod b"
shows "(- a) mod b = (- a') mod b"
proof -
have "(- (a mod b)) mod b = (- (a' mod b)) mod b"
unfolding assms ..
thus ?thesis
by (simp only: mod_minus_eq [symmetric])
qed
text {* Subtraction respects modular equivalence. *}
lemma mod_diff_left_eq:
"(a - b) mod c = (a mod c - b) mod c"
using mod_add_cong [of a c "a mod c" "- b" "- b"] by simp
lemma mod_diff_right_eq:
"(a - b) mod c = (a - b mod c) mod c"
using mod_add_cong [of a c a "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] by simp
lemma mod_diff_eq:
"(a - b) mod c = (a mod c - b mod c) mod c"
using mod_add_cong [of a c "a mod c" "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] by simp
lemma mod_diff_cong:
assumes "a mod c = a' mod c"
assumes "b mod c = b' mod c"
shows "(a - b) mod c = (a' - b') mod c"
using assms mod_add_cong [of a c a' "- b" "- b'"] mod_minus_cong [of b c "b'"] by simp
lemma dvd_neg_div: "y dvd x \<Longrightarrow> -x div y = - (x div y)"
apply (case_tac "y = 0") apply simp
apply (auto simp add: dvd_def)
apply (subgoal_tac "-(y * k) = y * - k")
apply (simp only:)
apply (erule div_mult_self1_is_id)
apply simp
done
lemma dvd_div_neg: "y dvd x \<Longrightarrow> x div -y = - (x div y)"
apply (case_tac "y = 0") apply simp
apply (auto simp add: dvd_def)
apply (subgoal_tac "y * k = -y * -k")
apply (erule ssubst, rule div_mult_self1_is_id)
apply simp
apply simp
done
lemma div_diff[simp]:
"\<lbrakk> z dvd x; z dvd y\<rbrakk> \<Longrightarrow> (x - y) div z = x div z - y div z"
using div_add[where y = "- z" for z]
by (simp add: dvd_neg_div)
lemma div_minus_minus [simp]: "(-a) div (-b) = a div b"
using div_mult_mult1 [of "- 1" a b]
unfolding neg_equal_0_iff_equal by simp
lemma mod_minus_minus [simp]: "(-a) mod (-b) = - (a mod b)"
using mod_mult_mult1 [of "- 1" a b] by simp
lemma div_minus_right: "a div (-b) = (-a) div b"
using div_minus_minus [of "-a" b] by simp
lemma mod_minus_right: "a mod (-b) = - ((-a) mod b)"
using mod_minus_minus [of "-a" b] by simp
lemma div_minus1_right [simp]: "a div (-1) = -a"
using div_minus_right [of a 1] by simp
lemma mod_minus1_right [simp]: "a mod (-1) = 0"
using mod_minus_right [of a 1] by simp
lemma minus_mod_self2 [simp]:
"(a - b) mod b = a mod b"
by (simp add: mod_diff_right_eq)
lemma minus_mod_self1 [simp]:
"(b - a) mod b = - a mod b"
using mod_add_self2 [of "- a" b] by simp
end
subsubsection {* Parity and division *}
class semiring_div_parity = semiring_div + comm_semiring_1_diff_distrib + numeral +
assumes parity: "a mod 2 = 0 \<or> a mod 2 = 1"
assumes one_mod_two_eq_one [simp]: "1 mod 2 = 1"
assumes zero_not_eq_two: "0 \<noteq> 2"
begin
lemma parity_cases [case_names even odd]:
assumes "a mod 2 = 0 \<Longrightarrow> P"
assumes "a mod 2 = 1 \<Longrightarrow> P"
shows P
using assms parity by blast
lemma one_div_two_eq_zero [simp]:
"1 div 2 = 0"
proof (cases "2 = 0")
case True then show ?thesis by simp
next
case False
from mod_div_equality have "1 div 2 * 2 + 1 mod 2 = 1" .
with one_mod_two_eq_one have "1 div 2 * 2 + 1 = 1" by simp
then have "1 div 2 * 2 = 0" by (simp add: ac_simps add_left_imp_eq del: mult_eq_0_iff)
then have "1 div 2 = 0 \<or> 2 = 0" by simp
with False show ?thesis by auto
qed
lemma not_mod_2_eq_0_eq_1 [simp]:
"a mod 2 \<noteq> 0 \<longleftrightarrow> a mod 2 = 1"
by (cases a rule: parity_cases) simp_all
lemma not_mod_2_eq_1_eq_0 [simp]:
"a mod 2 \<noteq> 1 \<longleftrightarrow> a mod 2 = 0"
by (cases a rule: parity_cases) simp_all
subclass semiring_parity
proof (unfold_locales, unfold dvd_eq_mod_eq_0 not_mod_2_eq_0_eq_1)
show "1 mod 2 = 1"
by (fact one_mod_two_eq_one)
next
fix a b
assume "a mod 2 = 1"
moreover assume "b mod 2 = 1"
ultimately show "(a + b) mod 2 = 0"
using mod_add_eq [of a b 2] by simp
next
fix a b
assume "(a * b) mod 2 = 0"
then have "(a mod 2) * (b mod 2) = 0"
by (cases "a mod 2 = 0") (simp_all add: mod_mult_eq [of a b 2])
then show "a mod 2 = 0 \<or> b mod 2 = 0"
by (rule divisors_zero)
next
fix a
assume "a mod 2 = 1"
then have "a = a div 2 * 2 + 1" using mod_div_equality [of a 2] by simp
then show "\<exists>b. a = b + 1" ..
qed
lemma even_iff_mod_2_eq_zero:
"even a \<longleftrightarrow> a mod 2 = 0"
by (fact dvd_eq_mod_eq_0)
lemma even_succ_div_two [simp]:
"even a \<Longrightarrow> (a + 1) div 2 = a div 2"
by (cases "a = 0") (auto elim!: evenE dest: mult_not_zero)
lemma odd_succ_div_two [simp]:
"odd a \<Longrightarrow> (a + 1) div 2 = a div 2 + 1"
by (auto elim!: oddE simp add: zero_not_eq_two [symmetric] add.assoc)
lemma even_two_times_div_two:
"even a \<Longrightarrow> 2 * (a div 2) = a"
by (fact dvd_mult_div_cancel)
lemma odd_two_times_div_two_succ [simp]:
"odd a \<Longrightarrow> 2 * (a div 2) + 1 = a"
using mod_div_equality2 [of 2 a] by (simp add: even_iff_mod_2_eq_zero)
end
subsection {* Generic numeral division with a pragmatic type class *}
text {*
The following type class contains everything necessary to formulate
a division algorithm in ring structures with numerals, restricted
to its positive segments. This is its primary motiviation, and it
could surely be formulated using a more fine-grained, more algebraic
and less technical class hierarchy.
*}
class semiring_numeral_div = semiring_div + comm_semiring_1_diff_distrib + linordered_semidom +
assumes le_add_diff_inverse2: "b \<le> a \<Longrightarrow> a - b + b = a"
assumes div_less: "0 \<le> a \<Longrightarrow> a < b \<Longrightarrow> a div b = 0"
and mod_less: " 0 \<le> a \<Longrightarrow> a < b \<Longrightarrow> a mod b = a"
and div_positive: "0 < b \<Longrightarrow> b \<le> a \<Longrightarrow> a div b > 0"
and mod_less_eq_dividend: "0 \<le> a \<Longrightarrow> a mod b \<le> a"
and pos_mod_bound: "0 < b \<Longrightarrow> a mod b < b"
and pos_mod_sign: "0 < b \<Longrightarrow> 0 \<le> a mod b"
and mod_mult2_eq: "0 \<le> c \<Longrightarrow> a mod (b * c) = b * (a div b mod c) + a mod b"
and div_mult2_eq: "0 \<le> c \<Longrightarrow> a div (b * c) = a div b div c"
assumes discrete: "a < b \<longleftrightarrow> a + 1 \<le> b"
begin
lemma mult_div_cancel:
"b * (a div b) = a - a mod b"
proof -
have "b * (a div b) + a mod b = a"
using mod_div_equality [of a b] by (simp add: ac_simps)
then have "b * (a div b) + a mod b - a mod b = a - a mod b"
by simp
then show ?thesis
by simp
qed
subclass semiring_div_parity
proof
fix a
show "a mod 2 = 0 \<or> a mod 2 = 1"
proof (rule ccontr)
assume "\<not> (a mod 2 = 0 \<or> a mod 2 = 1)"
then have "a mod 2 \<noteq> 0" and "a mod 2 \<noteq> 1" by simp_all
have "0 < 2" by simp
with pos_mod_bound pos_mod_sign have "0 \<le> a mod 2" "a mod 2 < 2" by simp_all
with `a mod 2 \<noteq> 0` have "0 < a mod 2" by simp
with discrete have "1 \<le> a mod 2" by simp
with `a mod 2 \<noteq> 1` have "1 < a mod 2" by simp
with discrete have "2 \<le> a mod 2" by simp
with `a mod 2 < 2` show False by simp
qed
next
show "1 mod 2 = 1"
by (rule mod_less) simp_all
next
show "0 \<noteq> 2"
by simp
qed
lemma divmod_digit_1:
assumes "0 \<le> a" "0 < b" and "b \<le> a mod (2 * b)"
shows "2 * (a div (2 * b)) + 1 = a div b" (is "?P")
and "a mod (2 * b) - b = a mod b" (is "?Q")
proof -
from assms mod_less_eq_dividend [of a "2 * b"] have "b \<le> a"
by (auto intro: trans)
with `0 < b` have "0 < a div b" by (auto intro: div_positive)
then have [simp]: "1 \<le> a div b" by (simp add: discrete)
with `0 < b` have mod_less: "a mod b < b" by (simp add: pos_mod_bound)
def w \<equiv> "a div b mod 2" with parity have w_exhaust: "w = 0 \<or> w = 1" by auto
have mod_w: "a mod (2 * b) = a mod b + b * w"
by (simp add: w_def mod_mult2_eq ac_simps)
from assms w_exhaust have "w = 1"
by (auto simp add: mod_w) (insert mod_less, auto)
with mod_w have mod: "a mod (2 * b) = a mod b + b" by simp
have "2 * (a div (2 * b)) = a div b - w"
by (simp add: w_def div_mult2_eq mult_div_cancel ac_simps)
with `w = 1` have div: "2 * (a div (2 * b)) = a div b - 1" by simp
then show ?P and ?Q
by (simp_all add: div mod add_implies_diff [symmetric] le_add_diff_inverse2)
qed
lemma divmod_digit_0:
assumes "0 < b" and "a mod (2 * b) < b"
shows "2 * (a div (2 * b)) = a div b" (is "?P")
and "a mod (2 * b) = a mod b" (is "?Q")
proof -
def w \<equiv> "a div b mod 2" with parity have w_exhaust: "w = 0 \<or> w = 1" by auto
have mod_w: "a mod (2 * b) = a mod b + b * w"
by (simp add: w_def mod_mult2_eq ac_simps)
moreover have "b \<le> a mod b + b"
proof -
from `0 < b` pos_mod_sign have "0 \<le> a mod b" by blast
then have "0 + b \<le> a mod b + b" by (rule add_right_mono)
then show ?thesis by simp
qed
moreover note assms w_exhaust
ultimately have "w = 0" by auto
with mod_w have mod: "a mod (2 * b) = a mod b" by simp
have "2 * (a div (2 * b)) = a div b - w"
by (simp add: w_def div_mult2_eq mult_div_cancel ac_simps)
with `w = 0` have div: "2 * (a div (2 * b)) = a div b" by simp
then show ?P and ?Q
by (simp_all add: div mod)
qed
definition divmod :: "num \<Rightarrow> num \<Rightarrow> 'a \<times> 'a"
where
"divmod m n = (numeral m div numeral n, numeral m mod numeral n)"
lemma fst_divmod [simp]:
"fst (divmod m n) = numeral m div numeral n"
by (simp add: divmod_def)
lemma snd_divmod [simp]:
"snd (divmod m n) = numeral m mod numeral n"
by (simp add: divmod_def)
definition divmod_step :: "num \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'a \<times> 'a"
where
"divmod_step l qr = (let (q, r) = qr
in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
else (2 * q, r))"
text {*
This is a formulation of one step (referring to one digit position)
in school-method division: compare the dividend at the current
digit position with the remainder from previous division steps
and evaluate accordingly.
*}
lemma divmod_step_eq [code]:
"divmod_step l (q, r) = (if numeral l \<le> r
then (2 * q + 1, r - numeral l) else (2 * q, r))"
by (simp add: divmod_step_def)
lemma divmod_step_simps [simp]:
"r < numeral l \<Longrightarrow> divmod_step l (q, r) = (2 * q, r)"
"numeral l \<le> r \<Longrightarrow> divmod_step l (q, r) = (2 * q + 1, r - numeral l)"
by (auto simp add: divmod_step_eq not_le)
text {*
This is a formulation of school-method division.
If the divisor is smaller than the dividend, terminate.
If not, shift the dividend to the right until termination
occurs and then reiterate single division steps in the
opposite direction.
*}
lemma divmod_divmod_step [code]:
"divmod m n = (if m < n then (0, numeral m)
else divmod_step n (divmod m (Num.Bit0 n)))"
proof (cases "m < n")
case True then have "numeral m < numeral n" by simp
then show ?thesis
by (simp add: prod_eq_iff div_less mod_less)
next
case False
have "divmod m n =
divmod_step n (numeral m div (2 * numeral n),
numeral m mod (2 * numeral n))"
proof (cases "numeral n \<le> numeral m mod (2 * numeral n)")
case True
with divmod_step_simps
have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) =
(2 * (numeral m div (2 * numeral n)) + 1, numeral m mod (2 * numeral n) - numeral n)"
by blast
moreover from True divmod_digit_1 [of "numeral m" "numeral n"]
have "2 * (numeral m div (2 * numeral n)) + 1 = numeral m div numeral n"
and "numeral m mod (2 * numeral n) - numeral n = numeral m mod numeral n"
by simp_all
ultimately show ?thesis by (simp only: divmod_def)
next
case False then have *: "numeral m mod (2 * numeral n) < numeral n"
by (simp add: not_le)
with divmod_step_simps
have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) =
(2 * (numeral m div (2 * numeral n)), numeral m mod (2 * numeral n))"
by blast
moreover from * divmod_digit_0 [of "numeral n" "numeral m"]
have "2 * (numeral m div (2 * numeral n)) = numeral m div numeral n"
and "numeral m mod (2 * numeral n) = numeral m mod numeral n"
by (simp_all only: zero_less_numeral)
ultimately show ?thesis by (simp only: divmod_def)
qed
then have "divmod m n =
divmod_step n (numeral m div numeral (Num.Bit0 n),
numeral m mod numeral (Num.Bit0 n))"
by (simp only: numeral.simps distrib mult_1)
then have "divmod m n = divmod_step n (divmod m (Num.Bit0 n))"
by (simp add: divmod_def)
with False show ?thesis by simp
qed
lemma divmod_eq [simp]:
"m < n \<Longrightarrow> divmod m n = (0, numeral m)"
"n \<le> m \<Longrightarrow> divmod m n = divmod_step n (divmod m (Num.Bit0 n))"
by (auto simp add: divmod_divmod_step [of m n])
lemma divmod_cancel [simp, code]:
"divmod (Num.Bit0 m) (Num.Bit0 n) = (case divmod m n of (q, r) \<Rightarrow> (q, 2 * r))" (is ?P)
"divmod (Num.Bit1 m) (Num.Bit0 n) = (case divmod m n of (q, r) \<Rightarrow> (q, 2 * r + 1))" (is ?Q)
proof -
have *: "\<And>q. numeral (Num.Bit0 q) = 2 * numeral q"
"\<And>q. numeral (Num.Bit1 q) = 2 * numeral q + 1"
by (simp_all only: numeral_mult numeral.simps distrib) simp_all
have "1 div 2 = 0" "1 mod 2 = 1" by (auto intro: div_less mod_less)
then show ?P and ?Q
by (simp_all add: prod_eq_iff split_def * [of m] * [of n] mod_mult_mult1
div_mult2_eq [of _ _ 2] mod_mult2_eq [of _ _ 2] add.commute del: numeral_times_numeral)
qed
text {* Special case: divisibility *}
definition divides_aux :: "'a \<times> 'a \<Rightarrow> bool"
where
"divides_aux qr \<longleftrightarrow> snd qr = 0"
lemma divides_aux_eq [simp]:
"divides_aux (q, r) \<longleftrightarrow> r = 0"
by (simp add: divides_aux_def)
lemma dvd_numeral_simp [simp]:
"numeral m dvd numeral n \<longleftrightarrow> divides_aux (divmod n m)"
by (simp add: divmod_def mod_eq_0_iff_dvd)
end
hide_fact (open) le_add_diff_inverse2
-- {* restore simple accesses for more general variants of theorems *}
subsection {* Division on @{typ nat} *}
text {*
We define @{const div} and @{const mod} on @{typ nat} by means
of a characteristic relation with two input arguments
@{term "m\<Colon>nat"}, @{term "n\<Colon>nat"} and two output arguments
@{term "q\<Colon>nat"}(uotient) and @{term "r\<Colon>nat"}(emainder).
*}
definition divmod_nat_rel :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat \<Rightarrow> bool" where
"divmod_nat_rel m n qr \<longleftrightarrow>
m = fst qr * n + snd qr \<and>
(if n = 0 then fst qr = 0 else if n > 0 then 0 \<le> snd qr \<and> snd qr < n else n < snd qr \<and> snd qr \<le> 0)"
text {* @{const divmod_nat_rel} is total: *}
lemma divmod_nat_rel_ex:
obtains q r where "divmod_nat_rel m n (q, r)"
proof (cases "n = 0")
case True with that show thesis
by (auto simp add: divmod_nat_rel_def)
next
case False
have "\<exists>q r. m = q * n + r \<and> r < n"
proof (induct m)
case 0 with `n \<noteq> 0`
have "(0\<Colon>nat) = 0 * n + 0 \<and> 0 < n" by simp
then show ?case by blast
next
case (Suc m) then obtain q' r'
where m: "m = q' * n + r'" and n: "r' < n" by auto
then show ?case proof (cases "Suc r' < n")
case True
from m n have "Suc m = q' * n + Suc r'" by simp
with True show ?thesis by blast
next
case False then have "n \<le> Suc r'" by auto
moreover from n have "Suc r' \<le> n" by auto
ultimately have "n = Suc r'" by auto
with m have "Suc m = Suc q' * n + 0" by simp
with `n \<noteq> 0` show ?thesis by blast
qed
qed
with that show thesis
using `n \<noteq> 0` by (auto simp add: divmod_nat_rel_def)
qed
text {* @{const divmod_nat_rel} is injective: *}
lemma divmod_nat_rel_unique:
assumes "divmod_nat_rel m n qr"
and "divmod_nat_rel m n qr'"
shows "qr = qr'"
proof (cases "n = 0")
case True with assms show ?thesis
by (cases qr, cases qr')
(simp add: divmod_nat_rel_def)
next
case False
have aux: "\<And>q r q' r'. q' * n + r' = q * n + r \<Longrightarrow> r < n \<Longrightarrow> q' \<le> (q\<Colon>nat)"
apply (rule leI)
apply (subst less_iff_Suc_add)
apply (auto simp add: add_mult_distrib)
done
from `n \<noteq> 0` assms have *: "fst qr = fst qr'"
by (auto simp add: divmod_nat_rel_def intro: order_antisym dest: aux sym)
with assms have "snd qr = snd qr'"
by (simp add: divmod_nat_rel_def)
with * show ?thesis by (cases qr, cases qr') simp
qed
text {*
We instantiate divisibility on the natural numbers by
means of @{const divmod_nat_rel}:
*}
definition divmod_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat" where
"divmod_nat m n = (THE qr. divmod_nat_rel m n qr)"
lemma divmod_nat_rel_divmod_nat:
"divmod_nat_rel m n (divmod_nat m n)"
proof -
from divmod_nat_rel_ex
obtain qr where rel: "divmod_nat_rel m n qr" .
then show ?thesis
by (auto simp add: divmod_nat_def intro: theI elim: divmod_nat_rel_unique)
qed
lemma divmod_nat_unique:
assumes "divmod_nat_rel m n qr"
shows "divmod_nat m n = qr"
using assms by (auto intro: divmod_nat_rel_unique divmod_nat_rel_divmod_nat)
instantiation nat :: semiring_div
begin
definition div_nat where
"m div n = fst (divmod_nat m n)"
lemma fst_divmod_nat [simp]:
"fst (divmod_nat m n) = m div n"
by (simp add: div_nat_def)
definition mod_nat where
"m mod n = snd (divmod_nat m n)"
lemma snd_divmod_nat [simp]:
"snd (divmod_nat m n) = m mod n"
by (simp add: mod_nat_def)
lemma divmod_nat_div_mod:
"divmod_nat m n = (m div n, m mod n)"
by (simp add: prod_eq_iff)
lemma div_nat_unique:
assumes "divmod_nat_rel m n (q, r)"
shows "m div n = q"
using assms by (auto dest!: divmod_nat_unique simp add: prod_eq_iff)
lemma mod_nat_unique:
assumes "divmod_nat_rel m n (q, r)"
shows "m mod n = r"
using assms by (auto dest!: divmod_nat_unique simp add: prod_eq_iff)
lemma divmod_nat_rel: "divmod_nat_rel m n (m div n, m mod n)"
using divmod_nat_rel_divmod_nat by (simp add: divmod_nat_div_mod)
lemma divmod_nat_zero: "divmod_nat m 0 = (0, m)"
by (simp add: divmod_nat_unique divmod_nat_rel_def)
lemma divmod_nat_zero_left: "divmod_nat 0 n = (0, 0)"
by (simp add: divmod_nat_unique divmod_nat_rel_def)
lemma divmod_nat_base: "m < n \<Longrightarrow> divmod_nat m n = (0, m)"
by (simp add: divmod_nat_unique divmod_nat_rel_def)
lemma divmod_nat_step:
assumes "0 < n" and "n \<le> m"
shows "divmod_nat m n = (Suc ((m - n) div n), (m - n) mod n)"
proof (rule divmod_nat_unique)
have "divmod_nat_rel (m - n) n ((m - n) div n, (m - n) mod n)"
by (rule divmod_nat_rel)
thus "divmod_nat_rel m n (Suc ((m - n) div n), (m - n) mod n)"
unfolding divmod_nat_rel_def using assms by auto
qed
text {* The ''recursion'' equations for @{const div} and @{const mod} *}
lemma div_less [simp]:
fixes m n :: nat
assumes "m < n"
shows "m div n = 0"
using assms divmod_nat_base by (simp add: prod_eq_iff)
lemma le_div_geq:
fixes m n :: nat
assumes "0 < n" and "n \<le> m"
shows "m div n = Suc ((m - n) div n)"
using assms divmod_nat_step by (simp add: prod_eq_iff)
lemma mod_less [simp]:
fixes m n :: nat
assumes "m < n"
shows "m mod n = m"
using assms divmod_nat_base by (simp add: prod_eq_iff)
lemma le_mod_geq:
fixes m n :: nat
assumes "n \<le> m"
shows "m mod n = (m - n) mod n"
using assms divmod_nat_step by (cases "n = 0") (simp_all add: prod_eq_iff)
instance proof
fix m n :: nat
show "m div n * n + m mod n = m"
using divmod_nat_rel [of m n] by (simp add: divmod_nat_rel_def)
next
fix m n q :: nat
assume "n \<noteq> 0"
then show "(q + m * n) div n = m + q div n"
by (induct m) (simp_all add: le_div_geq)
next
fix m n q :: nat
assume "m \<noteq> 0"
hence "\<And>a b. divmod_nat_rel n q (a, b) \<Longrightarrow> divmod_nat_rel (m * n) (m * q) (a, m * b)"
unfolding divmod_nat_rel_def
by (auto split: split_if_asm, simp_all add: algebra_simps)
moreover from divmod_nat_rel have "divmod_nat_rel n q (n div q, n mod q)" .
ultimately have "divmod_nat_rel (m * n) (m * q) (n div q, m * (n mod q))" .
thus "(m * n) div (m * q) = n div q" by (rule div_nat_unique)
next
fix n :: nat show "n div 0 = 0"
by (simp add: div_nat_def divmod_nat_zero)
next
fix n :: nat show "0 div n = 0"
by (simp add: div_nat_def divmod_nat_zero_left)
qed
end
lemma divmod_nat_if [code]: "divmod_nat m n = (if n = 0 \<or> m < n then (0, m) else
let (q, r) = divmod_nat (m - n) n in (Suc q, r))"
by (simp add: prod_eq_iff case_prod_beta not_less le_div_geq le_mod_geq)
text {* Simproc for cancelling @{const div} and @{const mod} *}
ML_file "~~/src/Provers/Arith/cancel_div_mod.ML"
ML {*
structure Cancel_Div_Mod_Nat = Cancel_Div_Mod
(
val div_name = @{const_name div};
val mod_name = @{const_name mod};
val mk_binop = HOLogic.mk_binop;
val mk_plus = HOLogic.mk_binop @{const_name Groups.plus};
val dest_plus = HOLogic.dest_bin @{const_name Groups.plus} HOLogic.natT;
fun mk_sum [] = HOLogic.zero
| mk_sum [t] = t
| mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
fun dest_sum tm =
if HOLogic.is_zero tm then []
else
(case try HOLogic.dest_Suc tm of
SOME t => HOLogic.Suc_zero :: dest_sum t
| NONE =>
(case try dest_plus tm of
SOME (t, u) => dest_sum t @ dest_sum u
| NONE => [tm]));
val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
(@{thm add_0_left} :: @{thm add_0_right} :: @{thms ac_simps}))
)
*}
simproc_setup cancel_div_mod_nat ("(m::nat) + n") = {* K Cancel_Div_Mod_Nat.proc *}
subsubsection {* Quotient *}
lemma div_geq: "0 < n \<Longrightarrow> \<not> m < n \<Longrightarrow> m div n = Suc ((m - n) div n)"
by (simp add: le_div_geq linorder_not_less)
lemma div_if: "0 < n \<Longrightarrow> m div n = (if m < n then 0 else Suc ((m - n) div n))"
by (simp add: div_geq)
lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)"
by simp
lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)"
by simp
lemma div_positive:
fixes m n :: nat
assumes "n > 0"
assumes "m \<ge> n"
shows "m div n > 0"
proof -
from `m \<ge> n` obtain q where "m = n + q"
by (auto simp add: le_iff_add)
with `n > 0` show ?thesis by simp
qed
lemma div_eq_0_iff: "(a div b::nat) = 0 \<longleftrightarrow> a < b \<or> b = 0"
by (metis div_less div_positive div_by_0 gr0I less_numeral_extra(3) not_less)
subsubsection {* Remainder *}
lemma mod_less_divisor [simp]:
fixes m n :: nat
assumes "n > 0"
shows "m mod n < (n::nat)"
using assms divmod_nat_rel [of m n] unfolding divmod_nat_rel_def by auto
lemma mod_Suc_le_divisor [simp]:
"m mod Suc n \<le> n"
using mod_less_divisor [of "Suc n" m] by arith
lemma mod_less_eq_dividend [simp]:
fixes m n :: nat
shows "m mod n \<le> m"
proof (rule add_leD2)
from mod_div_equality have "m div n * n + m mod n = m" .
then show "m div n * n + m mod n \<le> m" by auto
qed
lemma mod_geq: "\<not> m < (n\<Colon>nat) \<Longrightarrow> m mod n = (m - n) mod n"
by (simp add: le_mod_geq linorder_not_less)
lemma mod_if: "m mod (n\<Colon>nat) = (if m < n then m else (m - n) mod n)"
by (simp add: le_mod_geq)
lemma mod_1 [simp]: "m mod Suc 0 = 0"
by (induct m) (simp_all add: mod_geq)
(* a simple rearrangement of mod_div_equality: *)
lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)"
using mod_div_equality2 [of n m] by arith
lemma mod_le_divisor[simp]: "0 < n \<Longrightarrow> m mod n \<le> (n::nat)"
apply (drule mod_less_divisor [where m = m])
apply simp
done
subsubsection {* Quotient and Remainder *}
lemma divmod_nat_rel_mult1_eq:
"divmod_nat_rel b c (q, r)
\<Longrightarrow> divmod_nat_rel (a * b) c (a * q + a * r div c, a * r mod c)"
by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps)
lemma div_mult1_eq:
"(a * b) div c = a * (b div c) + a * (b mod c) div (c::nat)"
by (blast intro: divmod_nat_rel_mult1_eq [THEN div_nat_unique] divmod_nat_rel)
lemma divmod_nat_rel_add1_eq:
"divmod_nat_rel a c (aq, ar) \<Longrightarrow> divmod_nat_rel b c (bq, br)
\<Longrightarrow> divmod_nat_rel (a + b) c (aq + bq + (ar + br) div c, (ar + br) mod c)"
by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps)
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
lemma div_add1_eq:
"(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)"
by (blast intro: divmod_nat_rel_add1_eq [THEN div_nat_unique] divmod_nat_rel)
lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c"
apply (cut_tac m = q and n = c in mod_less_divisor)
apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto)
apply (erule_tac P = "%x. lhs < rhs x" for lhs rhs in ssubst)
apply (simp add: add_mult_distrib2)
done
lemma divmod_nat_rel_mult2_eq:
"divmod_nat_rel a b (q, r)
\<Longrightarrow> divmod_nat_rel a (b * c) (q div c, b *(q mod c) + r)"
by (auto simp add: mult.commute mult.left_commute divmod_nat_rel_def add_mult_distrib2 [symmetric] mod_lemma)
lemma div_mult2_eq: "a div (b * c) = (a div b) div (c::nat)"
by (force simp add: divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN div_nat_unique])
lemma mod_mult2_eq: "a mod (b * c) = b * (a div b mod c) + a mod (b::nat)"
by (auto simp add: mult.commute divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN mod_nat_unique])
instance nat :: semiring_numeral_div
by intro_classes (auto intro: div_positive simp add: mult_div_cancel mod_mult2_eq div_mult2_eq)
subsubsection {* Further Facts about Quotient and Remainder *}
lemma div_1 [simp]:
"m div Suc 0 = m"
using div_by_1 [of m] by simp
(* Monotonicity of div in first argument *)
lemma div_le_mono [rule_format (no_asm)]:
"\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)"
apply (case_tac "k=0", simp)
apply (induct "n" rule: nat_less_induct, clarify)
apply (case_tac "n<k")
(* 1 case n<k *)
apply simp
(* 2 case n >= k *)
apply (case_tac "m<k")
(* 2.1 case m<k *)
apply simp
(* 2.2 case m>=k *)
apply (simp add: div_geq diff_le_mono)
done
(* Antimonotonicity of div in second argument *)
lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)"
apply (subgoal_tac "0<n")
prefer 2 apply simp
apply (induct_tac k rule: nat_less_induct)
apply (rename_tac "k")
apply (case_tac "k<n", simp)
apply (subgoal_tac "~ (k<m) ")
prefer 2 apply simp
apply (simp add: div_geq)
apply (subgoal_tac "(k-n) div n \<le> (k-m) div n")
prefer 2
apply (blast intro: div_le_mono diff_le_mono2)
apply (rule le_trans, simp)
apply (simp)
done
lemma div_le_dividend [simp]: "m div n \<le> (m::nat)"
apply (case_tac "n=0", simp)
apply (subgoal_tac "m div n \<le> m div 1", simp)
apply (rule div_le_mono2)
apply (simp_all (no_asm_simp))
done
(* Similar for "less than" *)
lemma div_less_dividend [simp]:
"\<lbrakk>(1::nat) < n; 0 < m\<rbrakk> \<Longrightarrow> m div n < m"
apply (induct m rule: nat_less_induct)
apply (rename_tac "m")
apply (case_tac "m<n", simp)
apply (subgoal_tac "0<n")
prefer 2 apply simp
apply (simp add: div_geq)
apply (case_tac "n<m")
apply (subgoal_tac "(m-n) div n < (m-n) ")
apply (rule impI less_trans_Suc)+
apply assumption
apply (simp_all)
done
text{*A fact for the mutilated chess board*}
lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"
apply (case_tac "n=0", simp)
apply (induct "m" rule: nat_less_induct)
apply (case_tac "Suc (na) <n")
(* case Suc(na) < n *)
apply (frule lessI [THEN less_trans], simp add: less_not_refl3)
(* case n \<le> Suc(na) *)
apply (simp add: linorder_not_less le_Suc_eq mod_geq)
apply (auto simp add: Suc_diff_le le_mod_geq)
done
lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"
by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1]
(*Loses information, namely we also have r<d provided d is nonzero*)
lemma mod_eqD:
fixes m d r q :: nat
assumes "m mod d = r"
shows "\<exists>q. m = r + q * d"
proof -
from mod_div_equality obtain q where "q * d + m mod d = m" by blast
with assms have "m = r + q * d" by simp
then show ?thesis ..
qed
lemma split_div:
"P(n div k :: nat) =
((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))"
(is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
proof
assume P: ?P
show ?Q
proof (cases)
assume "k = 0"
with P show ?Q by simp
next
assume not0: "k \<noteq> 0"
thus ?Q
proof (simp, intro allI impI)
fix i j
assume n: "n = k*i + j" and j: "j < k"
show "P i"
proof (cases)
assume "i = 0"
with n j P show "P i" by simp
next
assume "i \<noteq> 0"
with not0 n j P show "P i" by(simp add:ac_simps)
qed
qed
qed
next
assume Q: ?Q
show ?P
proof (cases)
assume "k = 0"
with Q show ?P by simp
next
assume not0: "k \<noteq> 0"
with Q have R: ?R by simp
from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
show ?P by simp
qed
qed
lemma split_div_lemma:
assumes "0 < n"
shows "n * q \<le> m \<and> m < n * Suc q \<longleftrightarrow> q = ((m\<Colon>nat) div n)" (is "?lhs \<longleftrightarrow> ?rhs")
proof
assume ?rhs
with mult_div_cancel have nq: "n * q = m - (m mod n)" by simp
then have A: "n * q \<le> m" by simp
have "n - (m mod n) > 0" using mod_less_divisor assms by auto
then have "m < m + (n - (m mod n))" by simp
then have "m < n + (m - (m mod n))" by simp
with nq have "m < n + n * q" by simp
then have B: "m < n * Suc q" by simp
from A B show ?lhs ..
next
assume P: ?lhs
then have "divmod_nat_rel m n (q, m - n * q)"
unfolding divmod_nat_rel_def by (auto simp add: ac_simps)
with divmod_nat_rel_unique divmod_nat_rel [of m n]
have "(q, m - n * q) = (m div n, m mod n)" by auto
then show ?rhs by simp
qed
theorem split_div':
"P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or>
(\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))"
apply (case_tac "0 < n")
apply (simp only: add: split_div_lemma)
apply simp_all
done
lemma split_mod:
"P(n mod k :: nat) =
((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))"
(is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
proof
assume P: ?P
show ?Q
proof (cases)
assume "k = 0"
with P show ?Q by simp
next
assume not0: "k \<noteq> 0"
thus ?Q
proof (simp, intro allI impI)
fix i j
assume "n = k*i + j" "j < k"
thus "P j" using not0 P by (simp add: ac_simps)
qed
qed
next
assume Q: ?Q
show ?P
proof (cases)
assume "k = 0"
with Q show ?P by simp
next
assume not0: "k \<noteq> 0"
with Q have R: ?R by simp
from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
show ?P by simp
qed
qed
theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n"
using mod_div_equality [of m n] by arith
lemma div_mod_equality': "(m::nat) div n * n = m - m mod n"
using mod_div_equality [of m n] by arith
(* FIXME: very similar to mult_div_cancel *)
lemma div_eq_dividend_iff: "a \<noteq> 0 \<Longrightarrow> (a :: nat) div b = a \<longleftrightarrow> b = 1"
apply rule
apply (cases "b = 0")
apply simp_all
apply (metis (full_types) One_nat_def Suc_lessI div_less_dividend less_not_refl3)
done
subsubsection {* An ``induction'' law for modulus arithmetic. *}
lemma mod_induct_0:
assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
and base: "P i" and i: "i<p"
shows "P 0"
proof (rule ccontr)
assume contra: "\<not>(P 0)"
from i have p: "0<p" by simp
have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k")
proof
fix k
show "?A k"
proof (induct k)
show "?A 0" by simp -- "by contradiction"
next
fix n
assume ih: "?A n"
show "?A (Suc n)"
proof (clarsimp)
assume y: "P (p - Suc n)"
have n: "Suc n < p"
proof (rule ccontr)
assume "\<not>(Suc n < p)"
hence "p - Suc n = 0"
by simp
with y contra show "False"
by simp
qed
hence n2: "Suc (p - Suc n) = p-n" by arith
from p have "p - Suc n < p" by arith
with y step have z: "P ((Suc (p - Suc n)) mod p)"
by blast
show "False"
proof (cases "n=0")
case True
with z n2 contra show ?thesis by simp
next
case False
with p have "p-n < p" by arith
with z n2 False ih show ?thesis by simp
qed
qed
qed
qed
moreover
from i obtain k where "0<k \<and> i+k=p"
by (blast dest: less_imp_add_positive)
hence "0<k \<and> i=p-k" by auto
moreover
note base
ultimately
show "False" by blast
qed
lemma mod_induct:
assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
and base: "P i" and i: "i<p" and j: "j<p"
shows "P j"
proof -
have "\<forall>j<p. P j"
proof
fix j
show "j<p \<longrightarrow> P j" (is "?A j")
proof (induct j)
from step base i show "?A 0"
by (auto elim: mod_induct_0)
next
fix k
assume ih: "?A k"
show "?A (Suc k)"
proof
assume suc: "Suc k < p"
hence k: "k<p" by simp
with ih have "P k" ..
with step k have "P (Suc k mod p)"
by blast
moreover
from suc have "Suc k mod p = Suc k"
by simp
ultimately
show "P (Suc k)" by simp
qed
qed
qed
with j show ?thesis by blast
qed
lemma div2_Suc_Suc [simp]: "Suc (Suc m) div 2 = Suc (m div 2)"
by (simp add: numeral_2_eq_2 le_div_geq)
lemma mod2_Suc_Suc [simp]: "Suc (Suc m) mod 2 = m mod 2"
by (simp add: numeral_2_eq_2 le_mod_geq)
lemma add_self_div_2 [simp]: "(m + m) div 2 = (m::nat)"
by (simp add: mult_2 [symmetric])
lemma mod2_gr_0 [simp]: "0 < (m\<Colon>nat) mod 2 \<longleftrightarrow> m mod 2 = 1"
proof -
{ fix n :: nat have "(n::nat) < 2 \<Longrightarrow> n = 0 \<or> n = 1" by (cases n) simp_all }
moreover have "m mod 2 < 2" by simp
ultimately have "m mod 2 = 0 \<or> m mod 2 = 1" .
then show ?thesis by auto
qed
text{*These lemmas collapse some needless occurrences of Suc:
at least three Sucs, since two and fewer are rewritten back to Suc again!
We already have some rules to simplify operands smaller than 3.*}
lemma div_Suc_eq_div_add3 [simp]: "m div (Suc (Suc (Suc n))) = m div (3+n)"
by (simp add: Suc3_eq_add_3)
lemma mod_Suc_eq_mod_add3 [simp]: "m mod (Suc (Suc (Suc n))) = m mod (3+n)"
by (simp add: Suc3_eq_add_3)
lemma Suc_div_eq_add3_div: "(Suc (Suc (Suc m))) div n = (3+m) div n"
by (simp add: Suc3_eq_add_3)
lemma Suc_mod_eq_add3_mod: "(Suc (Suc (Suc m))) mod n = (3+m) mod n"
by (simp add: Suc3_eq_add_3)
lemmas Suc_div_eq_add3_div_numeral [simp] = Suc_div_eq_add3_div [of _ "numeral v"] for v
lemmas Suc_mod_eq_add3_mod_numeral [simp] = Suc_mod_eq_add3_mod [of _ "numeral v"] for v
lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1"
apply (induct "m")
apply (simp_all add: mod_Suc)
done
declare Suc_times_mod_eq [of "numeral w", simp] for w
lemma Suc_div_le_mono [simp]: "n div k \<le> (Suc n) div k"
by (simp add: div_le_mono)
lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2"
by (cases n) simp_all
lemma div_2_gt_zero [simp]: assumes A: "(1::nat) < n" shows "0 < n div 2"
proof -
from A have B: "0 < n - 1" and C: "n - 1 + 1 = n" by simp_all
from Suc_n_div_2_gt_zero [OF B] C show ?thesis by simp
qed
lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n"
proof -
have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp
also have "... = Suc m mod n" by (rule mod_mult_self3)
finally show ?thesis .
qed
lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n"
apply (subst mod_Suc [of m])
apply (subst mod_Suc [of "m mod n"], simp)
done
lemma mod_2_not_eq_zero_eq_one_nat:
fixes n :: nat
shows "n mod 2 \<noteq> 0 \<longleftrightarrow> n mod 2 = 1"
by (fact not_mod_2_eq_0_eq_1)
lemma even_Suc_div_two [simp]:
"even n \<Longrightarrow> Suc n div 2 = n div 2"
using even_succ_div_two [of n] by simp
lemma odd_Suc_div_two [simp]:
"odd n \<Longrightarrow> Suc n div 2 = Suc (n div 2)"
using odd_succ_div_two [of n] by simp
lemma odd_two_times_div_two_nat [simp]:
"odd n \<Longrightarrow> 2 * (n div 2) = n - (1 :: nat)"
using odd_two_times_div_two_succ [of n] by simp
lemma odd_Suc_minus_one [simp]:
"odd n \<Longrightarrow> Suc (n - Suc 0) = n"
by (auto elim: oddE)
lemma parity_induct [case_names zero even odd]:
assumes zero: "P 0"
assumes even: "\<And>n. P n \<Longrightarrow> P (2 * n)"
assumes odd: "\<And>n. P n \<Longrightarrow> P (Suc (2 * n))"
shows "P n"
proof (induct n rule: less_induct)
case (less n)
show "P n"
proof (cases "n = 0")
case True with zero show ?thesis by simp
next
case False
with less have hyp: "P (n div 2)" by simp
show ?thesis
proof (cases "even n")
case True
with hyp even [of "n div 2"] show ?thesis
by simp
next
case False
with hyp odd [of "n div 2"] show ?thesis
by simp
qed
qed
qed
subsection {* Division on @{typ int} *}
definition divmod_int_rel :: "int \<Rightarrow> int \<Rightarrow> int \<times> int \<Rightarrow> bool" where
--{*definition of quotient and remainder*}
"divmod_int_rel a b = (\<lambda>(q, r). a = b * q + r \<and>
(if 0 < b then 0 \<le> r \<and> r < b else if b < 0 then b < r \<and> r \<le> 0 else q = 0))"
text {*
The following algorithmic devlopment actually echos what has already
been developed in class @{class semiring_numeral_div}. In the long
run it seems better to derive division on @{typ int} just from
division on @{typ nat} and instantiate @{class semiring_numeral_div}
accordingly.
*}
definition adjust :: "int \<Rightarrow> int \<times> int \<Rightarrow> int \<times> int" where
--{*for the division algorithm*}
"adjust b = (\<lambda>(q, r). if 0 \<le> r - b then (2 * q + 1, r - b)
else (2 * q, r))"
text{*algorithm for the case @{text "a\<ge>0, b>0"}*}
function posDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
"posDivAlg a b = (if a < b \<or> b \<le> 0 then (0, a)
else adjust b (posDivAlg a (2 * b)))"
by auto
termination by (relation "measure (\<lambda>(a, b). nat (a - b + 1))")
(auto simp add: mult_2)
text{*algorithm for the case @{text "a<0, b>0"}*}
function negDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
"negDivAlg a b = (if 0 \<le>a + b \<or> b \<le> 0 then (-1, a + b)
else adjust b (negDivAlg a (2 * b)))"
by auto
termination by (relation "measure (\<lambda>(a, b). nat (- a - b))")
(auto simp add: mult_2)
text{*algorithm for the general case @{term "b\<noteq>0"}*}
definition divmod_int :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
--{*The full division algorithm considers all possible signs for a, b
including the special case @{text "a=0, b<0"} because
@{term negDivAlg} requires @{term "a<0"}.*}
"divmod_int a b = (if 0 \<le> a then if 0 \<le> b then posDivAlg a b
else if a = 0 then (0, 0)
else apsnd uminus (negDivAlg (-a) (-b))
else
if 0 < b then negDivAlg a b
else apsnd uminus (posDivAlg (-a) (-b)))"
instantiation int :: Divides.div
begin
definition div_int where
"a div b = fst (divmod_int a b)"
lemma fst_divmod_int [simp]:
"fst (divmod_int a b) = a div b"
by (simp add: div_int_def)
definition mod_int where
"a mod b = snd (divmod_int a b)"
lemma snd_divmod_int [simp]:
"snd (divmod_int a b) = a mod b"
by (simp add: mod_int_def)
instance ..
end
lemma divmod_int_mod_div:
"divmod_int p q = (p div q, p mod q)"
by (simp add: prod_eq_iff)
text{*
Here is the division algorithm in ML:
\begin{verbatim}
fun posDivAlg (a,b) =
if a<b then (0,a)
else let val (q,r) = posDivAlg(a, 2*b)
in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
end
fun negDivAlg (a,b) =
if 0\<le>a+b then (~1,a+b)
else let val (q,r) = negDivAlg(a, 2*b)
in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
end;
fun negateSnd (q,r:int) = (q,~r);
fun divmod (a,b) = if 0\<le>a then
if b>0 then posDivAlg (a,b)
else if a=0 then (0,0)
else negateSnd (negDivAlg (~a,~b))
else
if 0<b then negDivAlg (a,b)
else negateSnd (posDivAlg (~a,~b));
\end{verbatim}
*}
subsubsection {* Uniqueness and Monotonicity of Quotients and Remainders *}
lemma unique_quotient_lemma:
"[| b*q' + r' \<le> b*q + r; 0 \<le> r'; r' < b; r < b |]
==> q' \<le> (q::int)"
apply (subgoal_tac "r' + b * (q'-q) \<le> r")
prefer 2 apply (simp add: right_diff_distrib)
apply (subgoal_tac "0 < b * (1 + q - q') ")
apply (erule_tac [2] order_le_less_trans)
prefer 2 apply (simp add: right_diff_distrib distrib_left)
apply (subgoal_tac "b * q' < b * (1 + q) ")
prefer 2 apply (simp add: right_diff_distrib distrib_left)
apply (simp add: mult_less_cancel_left)
done
lemma unique_quotient_lemma_neg:
"[| b*q' + r' \<le> b*q + r; r \<le> 0; b < r; b < r' |]
==> q \<le> (q'::int)"
by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma,
auto)
lemma unique_quotient:
"[| divmod_int_rel a b (q, r); divmod_int_rel a b (q', r') |]
==> q = q'"
apply (simp add: divmod_int_rel_def linorder_neq_iff split: split_if_asm)
apply (blast intro: order_antisym
dest: order_eq_refl [THEN unique_quotient_lemma]
order_eq_refl [THEN unique_quotient_lemma_neg] sym)+
done
lemma unique_remainder:
"[| divmod_int_rel a b (q, r); divmod_int_rel a b (q', r') |]
==> r = r'"
apply (subgoal_tac "q = q'")
apply (simp add: divmod_int_rel_def)
apply (blast intro: unique_quotient)
done
subsubsection {* Correctness of @{term posDivAlg}, the Algorithm for Non-Negative Dividends *}
text{*And positive divisors*}
lemma adjust_eq [simp]:
"adjust b (q, r) =
(let diff = r - b in
if 0 \<le> diff then (2 * q + 1, diff)
else (2*q, r))"
by (simp add: Let_def adjust_def)
declare posDivAlg.simps [simp del]
text{*use with a simproc to avoid repeatedly proving the premise*}
lemma posDivAlg_eqn:
"0 < b ==>
posDivAlg a b = (if a<b then (0,a) else adjust b (posDivAlg a (2*b)))"
by (rule posDivAlg.simps [THEN trans], simp)
text{*Correctness of @{term posDivAlg}: it computes quotients correctly*}
theorem posDivAlg_correct:
assumes "0 \<le> a" and "0 < b"
shows "divmod_int_rel a b (posDivAlg a b)"
using assms
apply (induct a b rule: posDivAlg.induct)
apply auto
apply (simp add: divmod_int_rel_def)
apply (subst posDivAlg_eqn, simp add: distrib_left)
apply (case_tac "a < b")
apply simp_all
apply (erule splitE)
apply (auto simp add: distrib_left Let_def ac_simps mult_2_right)
done
subsubsection {* Correctness of @{term negDivAlg}, the Algorithm for Negative Dividends *}
text{*And positive divisors*}
declare negDivAlg.simps [simp del]
text{*use with a simproc to avoid repeatedly proving the premise*}
lemma negDivAlg_eqn:
"0 < b ==>
negDivAlg a b =
(if 0\<le>a+b then (-1,a+b) else adjust b (negDivAlg a (2*b)))"
by (rule negDivAlg.simps [THEN trans], simp)
(*Correctness of negDivAlg: it computes quotients correctly
It doesn't work if a=0 because the 0/b equals 0, not -1*)
lemma negDivAlg_correct:
assumes "a < 0" and "b > 0"
shows "divmod_int_rel a b (negDivAlg a b)"
using assms
apply (induct a b rule: negDivAlg.induct)
apply (auto simp add: linorder_not_le)
apply (simp add: divmod_int_rel_def)
apply (subst negDivAlg_eqn, assumption)
apply (case_tac "a + b < (0\<Colon>int)")
apply simp_all
apply (erule splitE)
apply (auto simp add: distrib_left Let_def ac_simps mult_2_right)
done
subsubsection {* Existence Shown by Proving the Division Algorithm to be Correct *}
(*the case a=0*)
lemma divmod_int_rel_0: "divmod_int_rel 0 b (0, 0)"
by (auto simp add: divmod_int_rel_def linorder_neq_iff)
lemma posDivAlg_0 [simp]: "posDivAlg 0 b = (0, 0)"
by (subst posDivAlg.simps, auto)
lemma posDivAlg_0_right [simp]: "posDivAlg a 0 = (0, a)"
by (subst posDivAlg.simps, auto)
lemma negDivAlg_minus1 [simp]: "negDivAlg (- 1) b = (- 1, b - 1)"
by (subst negDivAlg.simps, auto)
lemma divmod_int_rel_neg: "divmod_int_rel (-a) (-b) qr ==> divmod_int_rel a b (apsnd uminus qr)"
by (auto simp add: divmod_int_rel_def)
lemma divmod_int_correct: "divmod_int_rel a b (divmod_int a b)"
apply (cases "b = 0", simp add: divmod_int_def divmod_int_rel_def)
by (force simp add: linorder_neq_iff divmod_int_rel_0 divmod_int_def divmod_int_rel_neg
posDivAlg_correct negDivAlg_correct)
lemma divmod_int_unique:
assumes "divmod_int_rel a b qr"
shows "divmod_int a b = qr"
using assms divmod_int_correct [of a b]
using unique_quotient [of a b] unique_remainder [of a b]
by (metis pair_collapse)
lemma divmod_int_rel_div_mod: "divmod_int_rel a b (a div b, a mod b)"
using divmod_int_correct by (simp add: divmod_int_mod_div)
lemma div_int_unique: "divmod_int_rel a b (q, r) \<Longrightarrow> a div b = q"
by (simp add: divmod_int_rel_div_mod [THEN unique_quotient])
lemma mod_int_unique: "divmod_int_rel a b (q, r) \<Longrightarrow> a mod b = r"
by (simp add: divmod_int_rel_div_mod [THEN unique_remainder])
instance int :: ring_div
proof
fix a b :: int
show "a div b * b + a mod b = a"
using divmod_int_rel_div_mod [of a b]
unfolding divmod_int_rel_def by (simp add: mult.commute)
next
fix a b c :: int
assume "b \<noteq> 0"
hence "divmod_int_rel (a + c * b) b (c + a div b, a mod b)"
using divmod_int_rel_div_mod [of a b]
unfolding divmod_int_rel_def by (auto simp: algebra_simps)
thus "(a + c * b) div b = c + a div b"
by (rule div_int_unique)
next
fix a b c :: int
assume "c \<noteq> 0"
hence "\<And>q r. divmod_int_rel a b (q, r)
\<Longrightarrow> divmod_int_rel (c * a) (c * b) (q, c * r)"
unfolding divmod_int_rel_def
by - (rule linorder_cases [of 0 b], auto simp: algebra_simps
mult_less_0_iff zero_less_mult_iff mult_strict_right_mono
mult_strict_right_mono_neg zero_le_mult_iff mult_le_0_iff)
hence "divmod_int_rel (c * a) (c * b) (a div b, c * (a mod b))"
using divmod_int_rel_div_mod [of a b] .
thus "(c * a) div (c * b) = a div b"
by (rule div_int_unique)
next
fix a :: int show "a div 0 = 0"
by (rule div_int_unique, simp add: divmod_int_rel_def)
next
fix a :: int show "0 div a = 0"
by (rule div_int_unique, auto simp add: divmod_int_rel_def)
qed
text{*Basic laws about division and remainder*}
lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)"
by (fact mod_div_equality2 [symmetric])
text {* Tool setup *}
ML {*
structure Cancel_Div_Mod_Int = Cancel_Div_Mod
(
val div_name = @{const_name div};
val mod_name = @{const_name mod};
val mk_binop = HOLogic.mk_binop;
val mk_sum = Arith_Data.mk_sum HOLogic.intT;
val dest_sum = Arith_Data.dest_sum;
val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
(@{thm diff_conv_add_uminus} :: @{thms add_0_left add_0_right} @ @{thms ac_simps}))
)
*}
simproc_setup cancel_div_mod_int ("(k::int) + l") = {* K Cancel_Div_Mod_Int.proc *}
lemma pos_mod_conj: "(0::int) < b \<Longrightarrow> 0 \<le> a mod b \<and> a mod b < b"
using divmod_int_correct [of a b]
by (auto simp add: divmod_int_rel_def prod_eq_iff)
lemmas pos_mod_sign [simp] = pos_mod_conj [THEN conjunct1]
and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2]
lemma neg_mod_conj: "b < (0::int) \<Longrightarrow> a mod b \<le> 0 \<and> b < a mod b"
using divmod_int_correct [of a b]
by (auto simp add: divmod_int_rel_def prod_eq_iff)
lemmas neg_mod_sign [simp] = neg_mod_conj [THEN conjunct1]
and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2]
subsubsection {* General Properties of div and mod *}
lemma div_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a div b = 0"
apply (rule div_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
lemma div_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a div b = 0"
apply (rule div_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
lemma div_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a div b = -1"
apply (rule div_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
(*There is no div_neg_pos_trivial because 0 div b = 0 would supersede it*)
lemma mod_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a mod b = a"
apply (rule_tac q = 0 in mod_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
lemma mod_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a mod b = a"
apply (rule_tac q = 0 in mod_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
lemma mod_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a mod b = a+b"
apply (rule_tac q = "-1" in mod_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
text{*There is no @{text mod_neg_pos_trivial}.*}
subsubsection {* Laws for div and mod with Unary Minus *}
lemma zminus1_lemma:
"divmod_int_rel a b (q, r) ==> b \<noteq> 0
==> divmod_int_rel (-a) b (if r=0 then -q else -q - 1,
if r=0 then 0 else b-r)"
by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff right_diff_distrib)
lemma zdiv_zminus1_eq_if:
"b \<noteq> (0::int)
==> (-a) div b =
(if a mod b = 0 then - (a div b) else - (a div b) - 1)"
by (blast intro: divmod_int_rel_div_mod [THEN zminus1_lemma, THEN div_int_unique])
lemma zmod_zminus1_eq_if:
"(-a::int) mod b = (if a mod b = 0 then 0 else b - (a mod b))"
apply (case_tac "b = 0", simp)
apply (blast intro: divmod_int_rel_div_mod [THEN zminus1_lemma, THEN mod_int_unique])
done
lemma zmod_zminus1_not_zero:
fixes k l :: int
shows "- k mod l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
unfolding zmod_zminus1_eq_if by auto
lemma zdiv_zminus2_eq_if:
"b \<noteq> (0::int)
==> a div (-b) =
(if a mod b = 0 then - (a div b) else - (a div b) - 1)"
by (simp add: zdiv_zminus1_eq_if div_minus_right)
lemma zmod_zminus2_eq_if:
"a mod (-b::int) = (if a mod b = 0 then 0 else (a mod b) - b)"
by (simp add: zmod_zminus1_eq_if mod_minus_right)
lemma zmod_zminus2_not_zero:
fixes k l :: int
shows "k mod - l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
unfolding zmod_zminus2_eq_if by auto
subsubsection {* Computation of Division and Remainder *}
lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1"
by (simp add: div_int_def divmod_int_def)
lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1"
by (simp add: mod_int_def divmod_int_def)
text{*a positive, b positive *}
lemma div_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a div b = fst (posDivAlg a b)"
by (simp add: div_int_def divmod_int_def)
lemma mod_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a mod b = snd (posDivAlg a b)"
by (simp add: mod_int_def divmod_int_def)
text{*a negative, b positive *}
lemma div_neg_pos: "[| a < 0; 0 < b |] ==> a div b = fst (negDivAlg a b)"
by (simp add: div_int_def divmod_int_def)
lemma mod_neg_pos: "[| a < 0; 0 < b |] ==> a mod b = snd (negDivAlg a b)"
by (simp add: mod_int_def divmod_int_def)
text{*a positive, b negative *}
lemma div_pos_neg:
"[| 0 < a; b < 0 |] ==> a div b = fst (apsnd uminus (negDivAlg (-a) (-b)))"
by (simp add: div_int_def divmod_int_def)
lemma mod_pos_neg:
"[| 0 < a; b < 0 |] ==> a mod b = snd (apsnd uminus (negDivAlg (-a) (-b)))"
by (simp add: mod_int_def divmod_int_def)
text{*a negative, b negative *}
lemma div_neg_neg:
"[| a < 0; b \<le> 0 |] ==> a div b = fst (apsnd uminus (posDivAlg (-a) (-b)))"
by (simp add: div_int_def divmod_int_def)
lemma mod_neg_neg:
"[| a < 0; b \<le> 0 |] ==> a mod b = snd (apsnd uminus (posDivAlg (-a) (-b)))"
by (simp add: mod_int_def divmod_int_def)
text {*Simplify expresions in which div and mod combine numerical constants*}
lemma int_div_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a div b = q"
by (rule div_int_unique [of a b q r]) (simp add: divmod_int_rel_def)
lemma int_div_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a div b = q"
by (rule div_int_unique [of a b q r],
simp add: divmod_int_rel_def)
lemma int_mod_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a mod b = r"
by (rule mod_int_unique [of a b q r],
simp add: divmod_int_rel_def)
lemma int_mod_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a mod b = r"
by (rule mod_int_unique [of a b q r],
simp add: divmod_int_rel_def)
text {*
numeral simprocs -- high chance that these can be replaced
by divmod algorithm from @{class semiring_numeral_div}
*}
ML {*
local
val mk_number = HOLogic.mk_number HOLogic.intT
val plus = @{term "plus :: int \<Rightarrow> int \<Rightarrow> int"}
val times = @{term "times :: int \<Rightarrow> int \<Rightarrow> int"}
val zero = @{term "0 :: int"}
val less = @{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"}
val le = @{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"}
val simps = @{thms arith_simps} @ @{thms rel_simps} @ [@{thm numeral_1_eq_1 [symmetric]}]
fun prove ctxt goal = Goal.prove ctxt [] [] (HOLogic.mk_Trueprop goal)
(K (ALLGOALS (full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps simps))));
fun binary_proc proc ctxt ct =
(case Thm.term_of ct of
_ $ t $ u =>
(case try (apply2 (`(snd o HOLogic.dest_number))) (t, u) of
SOME args => proc ctxt args
| NONE => NONE)
| _ => NONE);
in
fun divmod_proc posrule negrule =
binary_proc (fn ctxt => fn ((a, t), (b, u)) =>
if b = 0 then NONE
else
let
val (q, r) = apply2 mk_number (Integer.div_mod a b)
val goal1 = HOLogic.mk_eq (t, plus $ (times $ u $ q) $ r)
val (goal2, goal3, rule) =
if b > 0
then (le $ zero $ r, less $ r $ u, posrule RS eq_reflection)
else (le $ r $ zero, less $ u $ r, negrule RS eq_reflection)
in SOME (rule OF map (prove ctxt) [goal1, goal2, goal3]) end)
end
*}
simproc_setup binary_int_div
("numeral m div numeral n :: int" |
"numeral m div - numeral n :: int" |
"- numeral m div numeral n :: int" |
"- numeral m div - numeral n :: int") =
{* K (divmod_proc @{thm int_div_pos_eq} @{thm int_div_neg_eq}) *}
simproc_setup binary_int_mod
("numeral m mod numeral n :: int" |
"numeral m mod - numeral n :: int" |
"- numeral m mod numeral n :: int" |
"- numeral m mod - numeral n :: int") =
{* K (divmod_proc @{thm int_mod_pos_eq} @{thm int_mod_neg_eq}) *}
lemmas posDivAlg_eqn_numeral [simp] =
posDivAlg_eqn [of "numeral v" "numeral w", OF zero_less_numeral] for v w
lemmas negDivAlg_eqn_numeral [simp] =
negDivAlg_eqn [of "numeral v" "- numeral w", OF zero_less_numeral] for v w
text {* Special-case simplification: @{text "\<plusminus>1 div z"} and @{text "\<plusminus>1 mod z"} *}
lemma [simp]:
shows div_one_bit0: "1 div numeral (Num.Bit0 v) = (0 :: int)"
and mod_one_bit0: "1 mod numeral (Num.Bit0 v) = (1 :: int)"
and div_one_bit1: "1 div numeral (Num.Bit1 v) = (0 :: int)"
and mod_one_bit1: "1 mod numeral (Num.Bit1 v) = (1 :: int)"
and div_one_neg_numeral: "1 div - numeral v = (- 1 :: int)"
and mod_one_neg_numeral: "1 mod - numeral v = (1 :: int) - numeral v"
by (simp_all del: arith_special
add: div_pos_pos mod_pos_pos div_pos_neg mod_pos_neg posDivAlg_eqn)
lemma [simp]:
shows div_neg_one_numeral: "- 1 div numeral v = (- 1 :: int)"
and mod_neg_one_numeral: "- 1 mod numeral v = numeral v - (1 :: int)"
and div_neg_one_neg_bit0: "- 1 div - numeral (Num.Bit0 v) = (0 :: int)"
and mod_neg_one_neb_bit0: "- 1 mod - numeral (Num.Bit0 v) = (- 1 :: int)"
and div_neg_one_neg_bit1: "- 1 div - numeral (Num.Bit1 v) = (0 :: int)"
and mod_neg_one_neb_bit1: "- 1 mod - numeral (Num.Bit1 v) = (- 1 :: int)"
by (simp_all add: div_eq_minus1 zmod_minus1)
subsubsection {* Monotonicity in the First Argument (Dividend) *}
lemma zdiv_mono1: "[| a \<le> a'; 0 < (b::int) |] ==> a div b \<le> a' div b"
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
apply (rule unique_quotient_lemma)
apply (erule subst)
apply (erule subst, simp_all)
done
lemma zdiv_mono1_neg: "[| a \<le> a'; (b::int) < 0 |] ==> a' div b \<le> a div b"
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
apply (rule unique_quotient_lemma_neg)
apply (erule subst)
apply (erule subst, simp_all)
done
subsubsection {* Monotonicity in the Second Argument (Divisor) *}
lemma q_pos_lemma:
"[| 0 \<le> b'*q' + r'; r' < b'; 0 < b' |] ==> 0 \<le> (q'::int)"
apply (subgoal_tac "0 < b'* (q' + 1) ")
apply (simp add: zero_less_mult_iff)
apply (simp add: distrib_left)
done
lemma zdiv_mono2_lemma:
"[| b*q + r = b'*q' + r'; 0 \<le> b'*q' + r';
r' < b'; 0 \<le> r; 0 < b'; b' \<le> b |]
==> q \<le> (q'::int)"
apply (frule q_pos_lemma, assumption+)
apply (subgoal_tac "b*q < b* (q' + 1) ")
apply (simp add: mult_less_cancel_left)
apply (subgoal_tac "b*q = r' - r + b'*q'")
prefer 2 apply simp
apply (simp (no_asm_simp) add: distrib_left)
apply (subst add.commute, rule add_less_le_mono, arith)
apply (rule mult_right_mono, auto)
done
lemma zdiv_mono2:
"[| (0::int) \<le> a; 0 < b'; b' \<le> b |] ==> a div b \<le> a div b'"
apply (subgoal_tac "b \<noteq> 0")
prefer 2 apply arith
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
apply (rule zdiv_mono2_lemma)
apply (erule subst)
apply (erule subst, simp_all)
done
lemma q_neg_lemma:
"[| b'*q' + r' < 0; 0 \<le> r'; 0 < b' |] ==> q' \<le> (0::int)"
apply (subgoal_tac "b'*q' < 0")
apply (simp add: mult_less_0_iff, arith)
done
lemma zdiv_mono2_neg_lemma:
"[| b*q + r = b'*q' + r'; b'*q' + r' < 0;
r < b; 0 \<le> r'; 0 < b'; b' \<le> b |]
==> q' \<le> (q::int)"
apply (frule q_neg_lemma, assumption+)
apply (subgoal_tac "b*q' < b* (q + 1) ")
apply (simp add: mult_less_cancel_left)
apply (simp add: distrib_left)
apply (subgoal_tac "b*q' \<le> b'*q'")
prefer 2 apply (simp add: mult_right_mono_neg, arith)
done
lemma zdiv_mono2_neg:
"[| a < (0::int); 0 < b'; b' \<le> b |] ==> a div b' \<le> a div b"
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
apply (rule zdiv_mono2_neg_lemma)
apply (erule subst)
apply (erule subst, simp_all)
done
subsubsection {* More Algebraic Laws for div and mod *}
text{*proving (a*b) div c = a * (b div c) + a * (b mod c) *}
lemma zmult1_lemma:
"[| divmod_int_rel b c (q, r) |]
==> divmod_int_rel (a * b) c (a*q + a*r div c, a*r mod c)"
by (auto simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left ac_simps)
lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)"
apply (case_tac "c = 0", simp)
apply (blast intro: divmod_int_rel_div_mod [THEN zmult1_lemma, THEN div_int_unique])
done
text{*proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) *}
lemma zadd1_lemma:
"[| divmod_int_rel a c (aq, ar); divmod_int_rel b c (bq, br) |]
==> divmod_int_rel (a+b) c (aq + bq + (ar+br) div c, (ar+br) mod c)"
by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left)
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
lemma zdiv_zadd1_eq:
"(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)"
apply (case_tac "c = 0", simp)
apply (blast intro: zadd1_lemma [OF divmod_int_rel_div_mod divmod_int_rel_div_mod] div_int_unique)
done
lemma posDivAlg_div_mod:
assumes "k \<ge> 0"
and "l \<ge> 0"
shows "posDivAlg k l = (k div l, k mod l)"
proof (cases "l = 0")
case True then show ?thesis by (simp add: posDivAlg.simps)
next
case False with assms posDivAlg_correct
have "divmod_int_rel k l (fst (posDivAlg k l), snd (posDivAlg k l))"
by simp
from div_int_unique [OF this] mod_int_unique [OF this]
show ?thesis by simp
qed
lemma negDivAlg_div_mod:
assumes "k < 0"
and "l > 0"
shows "negDivAlg k l = (k div l, k mod l)"
proof -
from assms have "l \<noteq> 0" by simp
from assms negDivAlg_correct
have "divmod_int_rel k l (fst (negDivAlg k l), snd (negDivAlg k l))"
by simp
from div_int_unique [OF this] mod_int_unique [OF this]
show ?thesis by simp
qed
lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)"
by (simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
(* REVISIT: should this be generalized to all semiring_div types? *)
lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1]
lemma zmod_zdiv_equality':
"(m\<Colon>int) mod n = m - (m div n) * n"
using mod_div_equality [of m n] by arith
subsubsection {* Proving @{term "a div (b * c) = (a div b) div c"} *}
(*The condition c>0 seems necessary. Consider that 7 div ~6 = ~2 but
7 div 2 div ~3 = 3 div ~3 = ~1. The subcase (a div b) mod c = 0 seems
to cause particular problems.*)
text{*first, four lemmas to bound the remainder for the cases b<0 and b>0 *}
lemma zmult2_lemma_aux1: "[| (0::int) < c; b < r; r \<le> 0 |] ==> b * c < b * (q mod c) + r"
apply (subgoal_tac "b * (c - q mod c) < r * 1")
apply (simp add: algebra_simps)
apply (rule order_le_less_trans)
apply (erule_tac [2] mult_strict_right_mono)
apply (rule mult_left_mono_neg)
using add1_zle_eq[of "q mod c"]apply(simp add: algebra_simps)
apply (simp)
apply (simp)
done
lemma zmult2_lemma_aux2:
"[| (0::int) < c; b < r; r \<le> 0 |] ==> b * (q mod c) + r \<le> 0"
apply (subgoal_tac "b * (q mod c) \<le> 0")
apply arith
apply (simp add: mult_le_0_iff)
done
lemma zmult2_lemma_aux3: "[| (0::int) < c; 0 \<le> r; r < b |] ==> 0 \<le> b * (q mod c) + r"
apply (subgoal_tac "0 \<le> b * (q mod c) ")
apply arith
apply (simp add: zero_le_mult_iff)
done
lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \<le> r; r < b |] ==> b * (q mod c) + r < b * c"
apply (subgoal_tac "r * 1 < b * (c - q mod c) ")
apply (simp add: right_diff_distrib)
apply (rule order_less_le_trans)
apply (erule mult_strict_right_mono)
apply (rule_tac [2] mult_left_mono)
apply simp
using add1_zle_eq[of "q mod c"] apply (simp add: algebra_simps)
apply simp
done
lemma zmult2_lemma: "[| divmod_int_rel a b (q, r); 0 < c |]
==> divmod_int_rel a (b * c) (q div c, b*(q mod c) + r)"
by (auto simp add: mult.assoc divmod_int_rel_def linorder_neq_iff
zero_less_mult_iff distrib_left [symmetric]
zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4 mult_less_0_iff split: split_if_asm)
lemma zdiv_zmult2_eq:
fixes a b c :: int
shows "0 \<le> c \<Longrightarrow> a div (b * c) = (a div b) div c"
apply (case_tac "b = 0", simp)
apply (force simp add: le_less divmod_int_rel_div_mod [THEN zmult2_lemma, THEN div_int_unique])
done
lemma zmod_zmult2_eq:
fixes a b c :: int
shows "0 \<le> c \<Longrightarrow> a mod (b * c) = b * (a div b mod c) + a mod b"
apply (case_tac "b = 0", simp)
apply (force simp add: le_less divmod_int_rel_div_mod [THEN zmult2_lemma, THEN mod_int_unique])
done
lemma div_pos_geq:
fixes k l :: int
assumes "0 < l" and "l \<le> k"
shows "k div l = (k - l) div l + 1"
proof -
have "k = (k - l) + l" by simp
then obtain j where k: "k = j + l" ..
with assms show ?thesis by simp
qed
lemma mod_pos_geq:
fixes k l :: int
assumes "0 < l" and "l \<le> k"
shows "k mod l = (k - l) mod l"
proof -
have "k = (k - l) + l" by simp
then obtain j where k: "k = j + l" ..
with assms show ?thesis by simp
qed
subsubsection {* Splitting Rules for div and mod *}
text{*The proofs of the two lemmas below are essentially identical*}
lemma split_pos_lemma:
"0<k ==>
P(n div k :: int)(n mod k) = (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i j)"
apply (rule iffI, clarify)
apply (erule_tac P="P x y" for x y in rev_mp)
apply (subst mod_add_eq)
apply (subst zdiv_zadd1_eq)
apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial)
txt{*converse direction*}
apply (drule_tac x = "n div k" in spec)
apply (drule_tac x = "n mod k" in spec, simp)
done
lemma split_neg_lemma:
"k<0 ==>
P(n div k :: int)(n mod k) = (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i j)"
apply (rule iffI, clarify)
apply (erule_tac P="P x y" for x y in rev_mp)
apply (subst mod_add_eq)
apply (subst zdiv_zadd1_eq)
apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial)
txt{*converse direction*}
apply (drule_tac x = "n div k" in spec)
apply (drule_tac x = "n mod k" in spec, simp)
done
lemma split_zdiv:
"P(n div k :: int) =
((k = 0 --> P 0) &
(0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i)) &
(k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i)))"
apply (case_tac "k=0", simp)
apply (simp only: linorder_neq_iff)
apply (erule disjE)
apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"]
split_neg_lemma [of concl: "%x y. P x"])
done
lemma split_zmod:
"P(n mod k :: int) =
((k = 0 --> P n) &
(0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P j)) &
(k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P j)))"
apply (case_tac "k=0", simp)
apply (simp only: linorder_neq_iff)
apply (erule disjE)
apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"]
split_neg_lemma [of concl: "%x y. P y"])
done
text {* Enable (lin)arith to deal with @{const div} and @{const mod}
when these are applied to some constant that is of the form
@{term "numeral k"}: *}
declare split_zdiv [of _ _ "numeral k", arith_split] for k
declare split_zmod [of _ _ "numeral k", arith_split] for k
subsubsection {* Computing @{text "div"} and @{text "mod"} with shifting *}
lemma pos_divmod_int_rel_mult_2:
assumes "0 \<le> b"
assumes "divmod_int_rel a b (q, r)"
shows "divmod_int_rel (1 + 2*a) (2*b) (q, 1 + 2*r)"
using assms unfolding divmod_int_rel_def by auto
declaration {* K (Lin_Arith.add_simps @{thms uminus_numeral_One}) *}
lemma neg_divmod_int_rel_mult_2:
assumes "b \<le> 0"
assumes "divmod_int_rel (a + 1) b (q, r)"
shows "divmod_int_rel (1 + 2*a) (2*b) (q, 2*r - 1)"
using assms unfolding divmod_int_rel_def by auto
text{*computing div by shifting *}
lemma pos_zdiv_mult_2: "(0::int) \<le> a ==> (1 + 2*b) div (2*a) = b div a"
using pos_divmod_int_rel_mult_2 [OF _ divmod_int_rel_div_mod]
by (rule div_int_unique)
lemma neg_zdiv_mult_2:
assumes A: "a \<le> (0::int)" shows "(1 + 2*b) div (2*a) = (b+1) div a"
using neg_divmod_int_rel_mult_2 [OF A divmod_int_rel_div_mod]
by (rule div_int_unique)
(* FIXME: add rules for negative numerals *)
lemma zdiv_numeral_Bit0 [simp]:
"numeral (Num.Bit0 v) div numeral (Num.Bit0 w) =
numeral v div (numeral w :: int)"
unfolding numeral.simps unfolding mult_2 [symmetric]
by (rule div_mult_mult1, simp)
lemma zdiv_numeral_Bit1 [simp]:
"numeral (Num.Bit1 v) div numeral (Num.Bit0 w) =
(numeral v div (numeral w :: int))"
unfolding numeral.simps
unfolding mult_2 [symmetric] add.commute [of _ 1]
by (rule pos_zdiv_mult_2, simp)
lemma pos_zmod_mult_2:
fixes a b :: int
assumes "0 \<le> a"
shows "(1 + 2 * b) mod (2 * a) = 1 + 2 * (b mod a)"
using pos_divmod_int_rel_mult_2 [OF assms divmod_int_rel_div_mod]
by (rule mod_int_unique)
lemma neg_zmod_mult_2:
fixes a b :: int
assumes "a \<le> 0"
shows "(1 + 2 * b) mod (2 * a) = 2 * ((b + 1) mod a) - 1"
using neg_divmod_int_rel_mult_2 [OF assms divmod_int_rel_div_mod]
by (rule mod_int_unique)
(* FIXME: add rules for negative numerals *)
lemma zmod_numeral_Bit0 [simp]:
"numeral (Num.Bit0 v) mod numeral (Num.Bit0 w) =
(2::int) * (numeral v mod numeral w)"
unfolding numeral_Bit0 [of v] numeral_Bit0 [of w]
unfolding mult_2 [symmetric] by (rule mod_mult_mult1)
lemma zmod_numeral_Bit1 [simp]:
"numeral (Num.Bit1 v) mod numeral (Num.Bit0 w) =
2 * (numeral v mod numeral w) + (1::int)"
unfolding numeral_Bit1 [of v] numeral_Bit0 [of w]
unfolding mult_2 [symmetric] add.commute [of _ 1]
by (rule pos_zmod_mult_2, simp)
lemma zdiv_eq_0_iff:
"(i::int) div k = 0 \<longleftrightarrow> k=0 \<or> 0\<le>i \<and> i<k \<or> i\<le>0 \<and> k<i" (is "?L = ?R")
proof
assume ?L
have "?L \<longrightarrow> ?R" by (rule split_zdiv[THEN iffD2]) simp
with `?L` show ?R by blast
next
assume ?R thus ?L
by(auto simp: div_pos_pos_trivial div_neg_neg_trivial)
qed
subsubsection {* Quotients of Signs *}
lemma div_neg_pos_less0: "[| a < (0::int); 0 < b |] ==> a div b < 0"
apply (subgoal_tac "a div b \<le> -1", force)
apply (rule order_trans)
apply (rule_tac a' = "-1" in zdiv_mono1)
apply (auto simp add: div_eq_minus1)
done
lemma div_nonneg_neg_le0: "[| (0::int) \<le> a; b < 0 |] ==> a div b \<le> 0"
by (drule zdiv_mono1_neg, auto)
lemma div_nonpos_pos_le0: "[| (a::int) \<le> 0; b > 0 |] ==> a div b \<le> 0"
by (drule zdiv_mono1, auto)
text{* Now for some equivalences of the form @{text"a div b >=< 0 \<longleftrightarrow> \<dots>"}
conditional upon the sign of @{text a} or @{text b}. There are many more.
They should all be simp rules unless that causes too much search. *}
lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \<le> a div b) = (0 \<le> a)"
apply auto
apply (drule_tac [2] zdiv_mono1)
apply (auto simp add: linorder_neq_iff)
apply (simp (no_asm_use) add: linorder_not_less [symmetric])
apply (blast intro: div_neg_pos_less0)
done
lemma neg_imp_zdiv_nonneg_iff:
"b < (0::int) ==> (0 \<le> a div b) = (a \<le> (0::int))"
apply (subst div_minus_minus [symmetric])
apply (subst pos_imp_zdiv_nonneg_iff, auto)
done
(*But not (a div b \<le> 0 iff a\<le>0); consider a=1, b=2 when a div b = 0.*)
lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)"
by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff)
lemma pos_imp_zdiv_pos_iff:
"0<k \<Longrightarrow> 0 < (i::int) div k \<longleftrightarrow> k \<le> i"
using pos_imp_zdiv_nonneg_iff[of k i] zdiv_eq_0_iff[of i k]
by arith
(*Again the law fails for \<le>: consider a = -1, b = -2 when a div b = 0*)
lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)"
by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff)
lemma nonneg1_imp_zdiv_pos_iff:
"(0::int) <= a \<Longrightarrow> (a div b > 0) = (a >= b & b>0)"
apply rule
apply rule
using div_pos_pos_trivial[of a b]apply arith
apply(cases "b=0")apply simp
using div_nonneg_neg_le0[of a b]apply arith
using int_one_le_iff_zero_less[of "a div b"] zdiv_mono1[of b a b]apply simp
done
lemma zmod_le_nonneg_dividend: "(m::int) \<ge> 0 ==> m mod k \<le> m"
apply (rule split_zmod[THEN iffD2])
apply(fastforce dest: q_pos_lemma intro: split_mult_pos_le)
done
subsubsection {* The Divides Relation *}
lemma dvd_eq_mod_eq_0_numeral:
"numeral x dvd (numeral y :: 'a) \<longleftrightarrow> numeral y mod numeral x = (0 :: 'a::semiring_div)"
by (fact dvd_eq_mod_eq_0)
subsubsection {* Further properties *}
lemma zmult_div_cancel: "(n::int) * (m div n) = m - (m mod n)"
using zmod_zdiv_equality[where a="m" and b="n"]
by (simp add: algebra_simps) (* FIXME: generalize *)
instance int :: semiring_numeral_div
by intro_classes (auto intro: zmod_le_nonneg_dividend
simp add: zmult_div_cancel
pos_imp_zdiv_pos_iff div_pos_pos_trivial mod_pos_pos_trivial
zmod_zmult2_eq zdiv_zmult2_eq)
lemma zdiv_int: "int (a div b) = (int a) div (int b)"
apply (subst split_div, auto)
apply (subst split_zdiv, auto)
apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in unique_quotient)
apply (auto simp add: divmod_int_rel_def of_nat_mult)
done
lemma zmod_int: "int (a mod b) = (int a) mod (int b)"
apply (subst split_mod, auto)
apply (subst split_zmod, auto)
apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia
in unique_remainder)
apply (auto simp add: divmod_int_rel_def of_nat_mult)
done
lemma abs_div: "(y::int) dvd x \<Longrightarrow> abs (x div y) = abs x div abs y"
by (unfold dvd_def, cases "y=0", auto simp add: abs_mult)
text{*Suggested by Matthias Daum*}
lemma int_power_div_base:
"\<lbrakk>0 < m; 0 < k\<rbrakk> \<Longrightarrow> k ^ m div k = (k::int) ^ (m - Suc 0)"
apply (subgoal_tac "k ^ m = k ^ ((m - Suc 0) + Suc 0)")
apply (erule ssubst)
apply (simp only: power_add)
apply simp_all
done
text {* by Brian Huffman *}
lemma zminus_zmod: "- ((x::int) mod m) mod m = - x mod m"
by (rule mod_minus_eq [symmetric])
lemma zdiff_zmod_left: "(x mod m - y) mod m = (x - y) mod (m::int)"
by (rule mod_diff_left_eq [symmetric])
lemma zdiff_zmod_right: "(x - y mod m) mod m = (x - y) mod (m::int)"
by (rule mod_diff_right_eq [symmetric])
lemmas zmod_simps =
mod_add_left_eq [symmetric]
mod_add_right_eq [symmetric]
mod_mult_right_eq[symmetric]
mod_mult_left_eq [symmetric]
power_mod
zminus_zmod zdiff_zmod_left zdiff_zmod_right
text {* Distributive laws for function @{text nat}. *}
lemma nat_div_distrib: "0 \<le> x \<Longrightarrow> nat (x div y) = nat x div nat y"
apply (rule linorder_cases [of y 0])
apply (simp add: div_nonneg_neg_le0)
apply simp
apply (simp add: nat_eq_iff pos_imp_zdiv_nonneg_iff zdiv_int)
done
(*Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't*)
lemma nat_mod_distrib:
"\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> nat (x mod y) = nat x mod nat y"
apply (case_tac "y = 0", simp)
apply (simp add: nat_eq_iff zmod_int)
done
text {* transfer setup *}
lemma transfer_nat_int_functions:
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) div (nat y) = nat (x div y)"
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) mod (nat y) = nat (x mod y)"
by (auto simp add: nat_div_distrib nat_mod_distrib)
lemma transfer_nat_int_function_closures:
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x div y >= 0"
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x mod y >= 0"
apply (cases "y = 0")
apply (auto simp add: pos_imp_zdiv_nonneg_iff)
apply (cases "y = 0")
apply auto
done
declare transfer_morphism_nat_int [transfer add return:
transfer_nat_int_functions
transfer_nat_int_function_closures
]
lemma transfer_int_nat_functions:
"(int x) div (int y) = int (x div y)"
"(int x) mod (int y) = int (x mod y)"
by (auto simp add: zdiv_int zmod_int)
lemma transfer_int_nat_function_closures:
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x div y)"
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x mod y)"
by (simp_all only: is_nat_def transfer_nat_int_function_closures)
declare transfer_morphism_int_nat [transfer add return:
transfer_int_nat_functions
transfer_int_nat_function_closures
]
text{*Suggested by Matthias Daum*}
lemma int_div_less_self: "\<lbrakk>0 < x; 1 < k\<rbrakk> \<Longrightarrow> x div k < (x::int)"
apply (subgoal_tac "nat x div nat k < nat x")
apply (simp add: nat_div_distrib [symmetric])
apply (rule Divides.div_less_dividend, simp_all)
done
lemma zmod_eq_dvd_iff: "(x::int) mod n = y mod n \<longleftrightarrow> n dvd x - y"
proof
assume H: "x mod n = y mod n"
hence "x mod n - y mod n = 0" by simp
hence "(x mod n - y mod n) mod n = 0" by simp
hence "(x - y) mod n = 0" by (simp add: mod_diff_eq[symmetric])
thus "n dvd x - y" by (simp add: dvd_eq_mod_eq_0)
next
assume H: "n dvd x - y"
then obtain k where k: "x-y = n*k" unfolding dvd_def by blast
hence "x = n*k + y" by simp
hence "x mod n = (n*k + y) mod n" by simp
thus "x mod n = y mod n" by (simp add: mod_add_left_eq)
qed
lemma nat_mod_eq_lemma: assumes xyn: "(x::nat) mod n = y mod n" and xy:"y \<le> x"
shows "\<exists>q. x = y + n * q"
proof-
from xy have th: "int x - int y = int (x - y)" by simp
from xyn have "int x mod int n = int y mod int n"
by (simp add: zmod_int [symmetric])
hence "int n dvd int x - int y" by (simp only: zmod_eq_dvd_iff[symmetric])
hence "n dvd x - y" by (simp add: th zdvd_int)
then show ?thesis using xy unfolding dvd_def apply clarsimp apply (rule_tac x="k" in exI) by arith
qed
lemma nat_mod_eq_iff: "(x::nat) mod n = y mod n \<longleftrightarrow> (\<exists>q1 q2. x + n * q1 = y + n * q2)"
(is "?lhs = ?rhs")
proof
assume H: "x mod n = y mod n"
{assume xy: "x \<le> y"
from H have th: "y mod n = x mod n" by simp
from nat_mod_eq_lemma[OF th xy] have ?rhs
apply clarify apply (rule_tac x="q" in exI) by (rule exI[where x="0"], simp)}
moreover
{assume xy: "y \<le> x"
from nat_mod_eq_lemma[OF H xy] have ?rhs
apply clarify apply (rule_tac x="0" in exI) by (rule_tac x="q" in exI, simp)}
ultimately show ?rhs using linear[of x y] by blast
next
assume ?rhs then obtain q1 q2 where q12: "x + n * q1 = y + n * q2" by blast
hence "(x + n * q1) mod n = (y + n * q2) mod n" by simp
thus ?lhs by simp
qed
text {*
This re-embedding of natural division on integers goes back to the
time when numerals had been signed numerals. It should
now be replaced by the algorithm developed in @{class semiring_numeral_div}.
*}
lemma div_nat_numeral [simp]:
"(numeral v :: nat) div numeral v' = nat (numeral v div numeral v')"
by (simp add: nat_div_distrib)
lemma one_div_nat_numeral [simp]:
"Suc 0 div numeral v' = nat (1 div numeral v')"
by (subst nat_div_distrib, simp_all)
lemma mod_nat_numeral [simp]:
"(numeral v :: nat) mod numeral v' = nat (numeral v mod numeral v')"
by (simp add: nat_mod_distrib)
lemma one_mod_nat_numeral [simp]:
"Suc 0 mod numeral v' = nat (1 mod numeral v')"
by (subst nat_mod_distrib) simp_all
subsubsection {* Tools setup *}
text {* Nitpick *}
lemmas [nitpick_unfold] = dvd_eq_mod_eq_0 mod_div_equality' zmod_zdiv_equality'
subsubsection {* Code generation *}
definition divmod_abs :: "int \<Rightarrow> int \<Rightarrow> int \<times> int"
where
"divmod_abs k l = (\<bar>k\<bar> div \<bar>l\<bar>, \<bar>k\<bar> mod \<bar>l\<bar>)"
lemma fst_divmod_abs [simp]:
"fst (divmod_abs k l) = \<bar>k\<bar> div \<bar>l\<bar>"
by (simp add: divmod_abs_def)
lemma snd_divmod_abs [simp]:
"snd (divmod_abs k l) = \<bar>k\<bar> mod \<bar>l\<bar>"
by (simp add: divmod_abs_def)
lemma divmod_abs_code [code]:
"divmod_abs (Int.Pos k) (Int.Pos l) = divmod k l"
"divmod_abs (Int.Neg k) (Int.Neg l) = divmod k l"
"divmod_abs (Int.Neg k) (Int.Pos l) = divmod k l"
"divmod_abs (Int.Pos k) (Int.Neg l) = divmod k l"
"divmod_abs j 0 = (0, \<bar>j\<bar>)"
"divmod_abs 0 j = (0, 0)"
by (simp_all add: prod_eq_iff)
lemma divmod_int_divmod_abs:
"divmod_int k l = (if k = 0 then (0, 0) else if l = 0 then (0, k) else
apsnd ((op *) (sgn l)) (if 0 < l \<and> 0 \<le> k \<or> l < 0 \<and> k < 0
then divmod_abs k l
else (let (r, s) = divmod_abs k l in
if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))"
proof -
have aux: "\<And>q::int. - k = l * q \<longleftrightarrow> k = l * - q" by auto
show ?thesis
by (simp add: prod_eq_iff split_def Let_def)
(auto simp add: aux not_less not_le zdiv_zminus1_eq_if
zmod_zminus1_eq_if zdiv_zminus2_eq_if zmod_zminus2_eq_if)
qed
lemma divmod_int_code [code]:
"divmod_int k l = (if k = 0 then (0, 0) else if l = 0 then (0, k) else
apsnd ((op *) (sgn l)) (if sgn k = sgn l
then divmod_abs k l
else (let (r, s) = divmod_abs k l in
if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))"
proof -
have "k \<noteq> 0 \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> 0 < l \<and> 0 \<le> k \<or> l < 0 \<and> k < 0 \<longleftrightarrow> sgn k = sgn l"
by (auto simp add: not_less sgn_if)
then show ?thesis by (simp add: divmod_int_divmod_abs)
qed
hide_const (open) divmod_abs
code_identifier
code_module Divides \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
end