(* Title: HOL/Groups.thy
Author: Gertrud Bauer, Steven Obua, Lawrence C Paulson, Markus Wenzel, Jeremy Avigad
*)
section {* Groups, also combined with orderings *}
theory Groups
imports Orderings
begin
subsection {* Dynamic facts *}
named_theorems ac_simps "associativity and commutativity simplification rules"
text{* The rewrites accumulated in @{text algebra_simps} deal with the
classical algebraic structures of groups, rings and family. They simplify
terms by multiplying everything out (in case of a ring) and bringing sums and
products into a canonical form (by ordered rewriting). As a result it decides
group and ring equalities but also helps with inequalities.
Of course it also works for fields, but it knows nothing about multiplicative
inverses or division. This is catered for by @{text field_simps}. *}
named_theorems algebra_simps "algebra simplification rules"
text{* Lemmas @{text field_simps} multiply with denominators in (in)equations
if they can be proved to be non-zero (for equations) or positive/negative
(for inequations). Can be too aggressive and is therefore separate from the
more benign @{text algebra_simps}. *}
named_theorems field_simps "algebra simplification rules for fields"
subsection {* Abstract structures *}
text {*
These locales provide basic structures for interpretation into
bigger structures; extensions require careful thinking, otherwise
undesired effects may occur due to interpretation.
*}
locale semigroup =
fixes f :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70)
assumes assoc [ac_simps]: "a * b * c = a * (b * c)"
locale abel_semigroup = semigroup +
assumes commute [ac_simps]: "a * b = b * a"
begin
lemma left_commute [ac_simps]:
"b * (a * c) = a * (b * c)"
proof -
have "(b * a) * c = (a * b) * c"
by (simp only: commute)
then show ?thesis
by (simp only: assoc)
qed
end
locale monoid = semigroup +
fixes z :: 'a ("1")
assumes left_neutral [simp]: "1 * a = a"
assumes right_neutral [simp]: "a * 1 = a"
locale comm_monoid = abel_semigroup +
fixes z :: 'a ("1")
assumes comm_neutral: "a * 1 = a"
begin
sublocale monoid
by default (simp_all add: commute comm_neutral)
end
subsection {* Generic operations *}
class zero =
fixes zero :: 'a ("0")
class one =
fixes one :: 'a ("1")
hide_const (open) zero one
lemma Let_0 [simp]: "Let 0 f = f 0"
unfolding Let_def ..
lemma Let_1 [simp]: "Let 1 f = f 1"
unfolding Let_def ..
setup {*
Reorient_Proc.add
(fn Const(@{const_name Groups.zero}, _) => true
| Const(@{const_name Groups.one}, _) => true
| _ => false)
*}
simproc_setup reorient_zero ("0 = x") = Reorient_Proc.proc
simproc_setup reorient_one ("1 = x") = Reorient_Proc.proc
typed_print_translation {*
let
fun tr' c = (c, fn ctxt => fn T => fn ts =>
if null ts andalso Printer.type_emphasis ctxt T then
Syntax.const @{syntax_const "_constrain"} $ Syntax.const c $
Syntax_Phases.term_of_typ ctxt T
else raise Match);
in map tr' [@{const_syntax Groups.one}, @{const_syntax Groups.zero}] end;
*} -- {* show types that are presumably too general *}
class plus =
fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65)
class minus =
fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65)
class uminus =
fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80)
class times =
fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70)
subsection {* Semigroups and Monoids *}
class semigroup_add = plus +
assumes add_assoc [algebra_simps, field_simps]: "(a + b) + c = a + (b + c)"
begin
sublocale add!: semigroup plus
by default (fact add_assoc)
end
hide_fact add_assoc
class ab_semigroup_add = semigroup_add +
assumes add_commute [algebra_simps, field_simps]: "a + b = b + a"
begin
sublocale add!: abel_semigroup plus
by default (fact add_commute)
declare add.left_commute [algebra_simps, field_simps]
theorems add_ac = add.assoc add.commute add.left_commute
end
hide_fact add_commute
theorems add_ac = add.assoc add.commute add.left_commute
class semigroup_mult = times +
assumes mult_assoc [algebra_simps, field_simps]: "(a * b) * c = a * (b * c)"
begin
sublocale mult!: semigroup times
by default (fact mult_assoc)
end
hide_fact mult_assoc
class ab_semigroup_mult = semigroup_mult +
assumes mult_commute [algebra_simps, field_simps]: "a * b = b * a"
begin
sublocale mult!: abel_semigroup times
by default (fact mult_commute)
declare mult.left_commute [algebra_simps, field_simps]
theorems mult_ac = mult.assoc mult.commute mult.left_commute
end
hide_fact mult_commute
theorems mult_ac = mult.assoc mult.commute mult.left_commute
class monoid_add = zero + semigroup_add +
assumes add_0_left: "0 + a = a"
and add_0_right: "a + 0 = a"
begin
sublocale add!: monoid plus 0
by default (fact add_0_left add_0_right)+
end
lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0"
by (fact eq_commute)
class comm_monoid_add = zero + ab_semigroup_add +
assumes add_0: "0 + a = a"
begin
subclass monoid_add
by default (simp_all add: add_0 add.commute [of _ 0])
sublocale add!: comm_monoid plus 0
by default (simp add: ac_simps)
end
class monoid_mult = one + semigroup_mult +
assumes mult_1_left: "1 * a = a"
and mult_1_right: "a * 1 = a"
begin
sublocale mult!: monoid times 1
by default (fact mult_1_left mult_1_right)+
end
lemma one_reorient: "1 = x \<longleftrightarrow> x = 1"
by (fact eq_commute)
class comm_monoid_mult = one + ab_semigroup_mult +
assumes mult_1: "1 * a = a"
begin
subclass monoid_mult
by default (simp_all add: mult_1 mult.commute [of _ 1])
sublocale mult!: comm_monoid times 1
by default (simp add: ac_simps)
end
class cancel_semigroup_add = semigroup_add +
assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c"
begin
lemma add_left_cancel [simp]:
"a + b = a + c \<longleftrightarrow> b = c"
by (blast dest: add_left_imp_eq)
lemma add_right_cancel [simp]:
"b + a = c + a \<longleftrightarrow> b = c"
by (blast dest: add_right_imp_eq)
end
class cancel_ab_semigroup_add = ab_semigroup_add + minus +
assumes add_diff_cancel_left' [simp]: "(a + b) - a = b"
assumes diff_diff_add [algebra_simps, field_simps]: "a - b - c = a - (b + c)"
begin
lemma add_diff_cancel_right' [simp]:
"(a + b) - b = a"
using add_diff_cancel_left' [of b a] by (simp add: ac_simps)
subclass cancel_semigroup_add
proof
fix a b c :: 'a
assume "a + b = a + c"
then have "a + b - a = a + c - a"
by simp
then show "b = c"
by simp
next
fix a b c :: 'a
assume "b + a = c + a"
then have "b + a - a = c + a - a"
by simp
then show "b = c"
by simp
qed
lemma add_diff_cancel_left [simp]:
"(c + a) - (c + b) = a - b"
unfolding diff_diff_add [symmetric] by simp
lemma add_diff_cancel_right [simp]:
"(a + c) - (b + c) = a - b"
using add_diff_cancel_left [symmetric] by (simp add: ac_simps)
lemma diff_right_commute:
"a - c - b = a - b - c"
by (simp add: diff_diff_add add.commute)
end
class cancel_comm_monoid_add = cancel_ab_semigroup_add + comm_monoid_add
begin
lemma diff_zero [simp]:
"a - 0 = a"
using add_diff_cancel_right' [of a 0] by simp
lemma diff_cancel [simp]:
"a - a = 0"
proof -
have "(a + 0) - (a + 0) = 0" by (simp only: add_diff_cancel_left diff_zero)
then show ?thesis by simp
qed
lemma add_implies_diff:
assumes "c + b = a"
shows "c = a - b"
proof -
from assms have "(b + c) - (b + 0) = a - b" by (simp add: add.commute)
then show "c = a - b" by simp
qed
end
class comm_monoid_diff = cancel_comm_monoid_add +
assumes zero_diff [simp]: "0 - a = 0"
begin
lemma diff_add_zero [simp]:
"a - (a + b) = 0"
proof -
have "a - (a + b) = (a + 0) - (a + b)" by simp
also have "\<dots> = 0" by (simp only: add_diff_cancel_left zero_diff)
finally show ?thesis .
qed
end
subsection {* Groups *}
class group_add = minus + uminus + monoid_add +
assumes left_minus [simp]: "- a + a = 0"
assumes add_uminus_conv_diff [simp]: "a + (- b) = a - b"
begin
lemma diff_conv_add_uminus:
"a - b = a + (- b)"
by simp
lemma minus_unique:
assumes "a + b = 0" shows "- a = b"
proof -
have "- a = - a + (a + b)" using assms by simp
also have "\<dots> = b" by (simp add: add.assoc [symmetric])
finally show ?thesis .
qed
lemma minus_zero [simp]: "- 0 = 0"
proof -
have "0 + 0 = 0" by (rule add_0_right)
thus "- 0 = 0" by (rule minus_unique)
qed
lemma minus_minus [simp]: "- (- a) = a"
proof -
have "- a + a = 0" by (rule left_minus)
thus "- (- a) = a" by (rule minus_unique)
qed
lemma right_minus: "a + - a = 0"
proof -
have "a + - a = - (- a) + - a" by simp
also have "\<dots> = 0" by (rule left_minus)
finally show ?thesis .
qed
lemma diff_self [simp]:
"a - a = 0"
using right_minus [of a] by simp
subclass cancel_semigroup_add
proof
fix a b c :: 'a
assume "a + b = a + c"
then have "- a + a + b = - a + a + c"
unfolding add.assoc by simp
then show "b = c" by simp
next
fix a b c :: 'a
assume "b + a = c + a"
then have "b + a + - a = c + a + - a" by simp
then show "b = c" unfolding add.assoc by simp
qed
lemma minus_add_cancel [simp]:
"- a + (a + b) = b"
by (simp add: add.assoc [symmetric])
lemma add_minus_cancel [simp]:
"a + (- a + b) = b"
by (simp add: add.assoc [symmetric])
lemma diff_add_cancel [simp]:
"a - b + b = a"
by (simp only: diff_conv_add_uminus add.assoc) simp
lemma add_diff_cancel [simp]:
"a + b - b = a"
by (simp only: diff_conv_add_uminus add.assoc) simp
lemma minus_add:
"- (a + b) = - b + - a"
proof -
have "(a + b) + (- b + - a) = 0"
by (simp only: add.assoc add_minus_cancel) simp
then show "- (a + b) = - b + - a"
by (rule minus_unique)
qed
lemma right_minus_eq [simp]:
"a - b = 0 \<longleftrightarrow> a = b"
proof
assume "a - b = 0"
have "a = (a - b) + b" by (simp add: add.assoc)
also have "\<dots> = b" using `a - b = 0` by simp
finally show "a = b" .
next
assume "a = b" thus "a - b = 0" by simp
qed
lemma eq_iff_diff_eq_0:
"a = b \<longleftrightarrow> a - b = 0"
by (fact right_minus_eq [symmetric])
lemma diff_0 [simp]:
"0 - a = - a"
by (simp only: diff_conv_add_uminus add_0_left)
lemma diff_0_right [simp]:
"a - 0 = a"
by (simp only: diff_conv_add_uminus minus_zero add_0_right)
lemma diff_minus_eq_add [simp]:
"a - - b = a + b"
by (simp only: diff_conv_add_uminus minus_minus)
lemma neg_equal_iff_equal [simp]:
"- a = - b \<longleftrightarrow> a = b"
proof
assume "- a = - b"
hence "- (- a) = - (- b)" by simp
thus "a = b" by simp
next
assume "a = b"
thus "- a = - b" by simp
qed
lemma neg_equal_0_iff_equal [simp]:
"- a = 0 \<longleftrightarrow> a = 0"
by (subst neg_equal_iff_equal [symmetric]) simp
lemma neg_0_equal_iff_equal [simp]:
"0 = - a \<longleftrightarrow> 0 = a"
by (subst neg_equal_iff_equal [symmetric]) simp
text{*The next two equations can make the simplifier loop!*}
lemma equation_minus_iff:
"a = - b \<longleftrightarrow> b = - a"
proof -
have "- (- a) = - b \<longleftrightarrow> - a = b" by (rule neg_equal_iff_equal)
thus ?thesis by (simp add: eq_commute)
qed
lemma minus_equation_iff:
"- a = b \<longleftrightarrow> - b = a"
proof -
have "- a = - (- b) \<longleftrightarrow> a = -b" by (rule neg_equal_iff_equal)
thus ?thesis by (simp add: eq_commute)
qed
lemma eq_neg_iff_add_eq_0:
"a = - b \<longleftrightarrow> a + b = 0"
proof
assume "a = - b" then show "a + b = 0" by simp
next
assume "a + b = 0"
moreover have "a + (b + - b) = (a + b) + - b"
by (simp only: add.assoc)
ultimately show "a = - b" by simp
qed
lemma add_eq_0_iff2:
"a + b = 0 \<longleftrightarrow> a = - b"
by (fact eq_neg_iff_add_eq_0 [symmetric])
lemma neg_eq_iff_add_eq_0:
"- a = b \<longleftrightarrow> a + b = 0"
by (auto simp add: add_eq_0_iff2)
lemma add_eq_0_iff:
"a + b = 0 \<longleftrightarrow> b = - a"
by (auto simp add: neg_eq_iff_add_eq_0 [symmetric])
lemma minus_diff_eq [simp]:
"- (a - b) = b - a"
by (simp only: neg_eq_iff_add_eq_0 diff_conv_add_uminus add.assoc minus_add_cancel) simp
lemma add_diff_eq [algebra_simps, field_simps]:
"a + (b - c) = (a + b) - c"
by (simp only: diff_conv_add_uminus add.assoc)
lemma diff_add_eq_diff_diff_swap:
"a - (b + c) = a - c - b"
by (simp only: diff_conv_add_uminus add.assoc minus_add)
lemma diff_eq_eq [algebra_simps, field_simps]:
"a - b = c \<longleftrightarrow> a = c + b"
by auto
lemma eq_diff_eq [algebra_simps, field_simps]:
"a = c - b \<longleftrightarrow> a + b = c"
by auto
lemma diff_diff_eq2 [algebra_simps, field_simps]:
"a - (b - c) = (a + c) - b"
by (simp only: diff_conv_add_uminus add.assoc) simp
lemma diff_eq_diff_eq:
"a - b = c - d \<Longrightarrow> a = b \<longleftrightarrow> c = d"
by (simp only: eq_iff_diff_eq_0 [of a b] eq_iff_diff_eq_0 [of c d])
end
class ab_group_add = minus + uminus + comm_monoid_add +
assumes ab_left_minus: "- a + a = 0"
assumes ab_diff_conv_add_uminus: "a - b = a + (- b)"
begin
subclass group_add
proof qed (simp_all add: ab_left_minus ab_diff_conv_add_uminus)
subclass cancel_comm_monoid_add
proof
fix a b c :: 'a
have "b + a - a = b"
by simp
then show "a + b - a = b"
by (simp add: ac_simps)
show "a - b - c = a - (b + c)"
by (simp add: algebra_simps)
qed
lemma uminus_add_conv_diff [simp]:
"- a + b = b - a"
by (simp add: add.commute)
lemma minus_add_distrib [simp]:
"- (a + b) = - a + - b"
by (simp add: algebra_simps)
lemma diff_add_eq [algebra_simps, field_simps]:
"(a - b) + c = (a + c) - b"
by (simp add: algebra_simps)
end
subsection {* (Partially) Ordered Groups *}
text {*
The theory of partially ordered groups is taken from the books:
\begin{itemize}
\item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979
\item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
\end{itemize}
Most of the used notions can also be looked up in
\begin{itemize}
\item @{url "http://www.mathworld.com"} by Eric Weisstein et. al.
\item \emph{Algebra I} by van der Waerden, Springer.
\end{itemize}
*}
class ordered_ab_semigroup_add = order + ab_semigroup_add +
assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b"
begin
lemma add_right_mono:
"a \<le> b \<Longrightarrow> a + c \<le> b + c"
by (simp add: add.commute [of _ c] add_left_mono)
text {* non-strict, in both arguments *}
lemma add_mono:
"a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d"
apply (erule add_right_mono [THEN order_trans])
apply (simp add: add.commute add_left_mono)
done
end
class ordered_cancel_ab_semigroup_add =
ordered_ab_semigroup_add + cancel_ab_semigroup_add
begin
lemma add_strict_left_mono:
"a < b \<Longrightarrow> c + a < c + b"
by (auto simp add: less_le add_left_mono)
lemma add_strict_right_mono:
"a < b \<Longrightarrow> a + c < b + c"
by (simp add: add.commute [of _ c] add_strict_left_mono)
text{*Strict monotonicity in both arguments*}
lemma add_strict_mono:
"a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
apply (erule add_strict_right_mono [THEN less_trans])
apply (erule add_strict_left_mono)
done
lemma add_less_le_mono:
"a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d"
apply (erule add_strict_right_mono [THEN less_le_trans])
apply (erule add_left_mono)
done
lemma add_le_less_mono:
"a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
apply (erule add_right_mono [THEN le_less_trans])
apply (erule add_strict_left_mono)
done
end
class ordered_ab_semigroup_add_imp_le =
ordered_cancel_ab_semigroup_add +
assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b"
begin
lemma add_less_imp_less_left:
assumes less: "c + a < c + b" shows "a < b"
proof -
from less have le: "c + a <= c + b" by (simp add: order_le_less)
have "a <= b"
apply (insert le)
apply (drule add_le_imp_le_left)
by (insert le, drule add_le_imp_le_left, assumption)
moreover have "a \<noteq> b"
proof (rule ccontr)
assume "~(a \<noteq> b)"
then have "a = b" by simp
then have "c + a = c + b" by simp
with less show "False"by simp
qed
ultimately show "a < b" by (simp add: order_le_less)
qed
lemma add_less_imp_less_right:
"a + c < b + c \<Longrightarrow> a < b"
apply (rule add_less_imp_less_left [of c])
apply (simp add: add.commute)
done
lemma add_less_cancel_left [simp]:
"c + a < c + b \<longleftrightarrow> a < b"
by (blast intro: add_less_imp_less_left add_strict_left_mono)
lemma add_less_cancel_right [simp]:
"a + c < b + c \<longleftrightarrow> a < b"
by (blast intro: add_less_imp_less_right add_strict_right_mono)
lemma add_le_cancel_left [simp]:
"c + a \<le> c + b \<longleftrightarrow> a \<le> b"
by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono)
lemma add_le_cancel_right [simp]:
"a + c \<le> b + c \<longleftrightarrow> a \<le> b"
by (simp add: add.commute [of a c] add.commute [of b c])
lemma add_le_imp_le_right:
"a + c \<le> b + c \<Longrightarrow> a \<le> b"
by simp
lemma max_add_distrib_left:
"max x y + z = max (x + z) (y + z)"
unfolding max_def by auto
lemma min_add_distrib_left:
"min x y + z = min (x + z) (y + z)"
unfolding min_def by auto
lemma max_add_distrib_right:
"x + max y z = max (x + y) (x + z)"
unfolding max_def by auto
lemma min_add_distrib_right:
"x + min y z = min (x + y) (x + z)"
unfolding min_def by auto
end
class ordered_cancel_comm_monoid_diff = comm_monoid_diff + ordered_ab_semigroup_add_imp_le +
assumes le_iff_add: "a \<le> b \<longleftrightarrow> (\<exists>c. b = a + c)"
begin
context
fixes a b
assumes "a \<le> b"
begin
lemma add_diff_inverse:
"a + (b - a) = b"
using `a \<le> b` by (auto simp add: le_iff_add)
lemma add_diff_assoc:
"c + (b - a) = c + b - a"
using `a \<le> b` by (auto simp add: le_iff_add add.left_commute [of c])
lemma add_diff_assoc2:
"b - a + c = b + c - a"
using `a \<le> b` by (auto simp add: le_iff_add add.assoc)
lemma diff_add_assoc:
"c + b - a = c + (b - a)"
using `a \<le> b` by (simp add: add.commute add_diff_assoc)
lemma diff_add_assoc2:
"b + c - a = b - a + c"
using `a \<le> b`by (simp add: add.commute add_diff_assoc)
lemma diff_diff_right:
"c - (b - a) = c + a - b"
by (simp add: add_diff_inverse add_diff_cancel_left [of a c "b - a", symmetric] add.commute)
lemma diff_add:
"b - a + a = b"
by (simp add: add.commute add_diff_inverse)
lemma le_add_diff:
"c \<le> b + c - a"
by (auto simp add: add.commute diff_add_assoc2 le_iff_add)
lemma le_imp_diff_is_add:
"a \<le> b \<Longrightarrow> b - a = c \<longleftrightarrow> b = c + a"
by (auto simp add: add.commute add_diff_inverse)
lemma le_diff_conv2:
"c \<le> b - a \<longleftrightarrow> c + a \<le> b" (is "?P \<longleftrightarrow> ?Q")
proof
assume ?P
then have "c + a \<le> b - a + a" by (rule add_right_mono)
then show ?Q by (simp add: add_diff_inverse add.commute)
next
assume ?Q
then have "a + c \<le> a + (b - a)" by (simp add: add_diff_inverse add.commute)
then show ?P by simp
qed
end
end
subsection {* Support for reasoning about signs *}
class ordered_comm_monoid_add =
ordered_cancel_ab_semigroup_add + comm_monoid_add
begin
lemma add_pos_nonneg:
assumes "0 < a" and "0 \<le> b" shows "0 < a + b"
proof -
have "0 + 0 < a + b"
using assms by (rule add_less_le_mono)
then show ?thesis by simp
qed
lemma add_pos_pos:
assumes "0 < a" and "0 < b" shows "0 < a + b"
by (rule add_pos_nonneg) (insert assms, auto)
lemma add_nonneg_pos:
assumes "0 \<le> a" and "0 < b" shows "0 < a + b"
proof -
have "0 + 0 < a + b"
using assms by (rule add_le_less_mono)
then show ?thesis by simp
qed
lemma add_nonneg_nonneg [simp]:
assumes "0 \<le> a" and "0 \<le> b" shows "0 \<le> a + b"
proof -
have "0 + 0 \<le> a + b"
using assms by (rule add_mono)
then show ?thesis by simp
qed
lemma add_neg_nonpos:
assumes "a < 0" and "b \<le> 0" shows "a + b < 0"
proof -
have "a + b < 0 + 0"
using assms by (rule add_less_le_mono)
then show ?thesis by simp
qed
lemma add_neg_neg:
assumes "a < 0" and "b < 0" shows "a + b < 0"
by (rule add_neg_nonpos) (insert assms, auto)
lemma add_nonpos_neg:
assumes "a \<le> 0" and "b < 0" shows "a + b < 0"
proof -
have "a + b < 0 + 0"
using assms by (rule add_le_less_mono)
then show ?thesis by simp
qed
lemma add_nonpos_nonpos:
assumes "a \<le> 0" and "b \<le> 0" shows "a + b \<le> 0"
proof -
have "a + b \<le> 0 + 0"
using assms by (rule add_mono)
then show ?thesis by simp
qed
lemmas add_sign_intros =
add_pos_nonneg add_pos_pos add_nonneg_pos add_nonneg_nonneg
add_neg_nonpos add_neg_neg add_nonpos_neg add_nonpos_nonpos
lemma add_nonneg_eq_0_iff:
assumes x: "0 \<le> x" and y: "0 \<le> y"
shows "x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
proof (intro iffI conjI)
have "x = x + 0" by simp
also have "x + 0 \<le> x + y" using y by (rule add_left_mono)
also assume "x + y = 0"
also have "0 \<le> x" using x .
finally show "x = 0" .
next
have "y = 0 + y" by simp
also have "0 + y \<le> x + y" using x by (rule add_right_mono)
also assume "x + y = 0"
also have "0 \<le> y" using y .
finally show "y = 0" .
next
assume "x = 0 \<and> y = 0"
then show "x + y = 0" by simp
qed
lemma add_increasing:
"0 \<le> a \<Longrightarrow> b \<le> c \<Longrightarrow> b \<le> a + c"
by (insert add_mono [of 0 a b c], simp)
lemma add_increasing2:
"0 \<le> c \<Longrightarrow> b \<le> a \<Longrightarrow> b \<le> a + c"
by (simp add: add_increasing add.commute [of a])
lemma add_strict_increasing:
"0 < a \<Longrightarrow> b \<le> c \<Longrightarrow> b < a + c"
by (insert add_less_le_mono [of 0 a b c], simp)
lemma add_strict_increasing2:
"0 \<le> a \<Longrightarrow> b < c \<Longrightarrow> b < a + c"
by (insert add_le_less_mono [of 0 a b c], simp)
end
class ordered_ab_group_add =
ab_group_add + ordered_ab_semigroup_add
begin
subclass ordered_cancel_ab_semigroup_add ..
subclass ordered_ab_semigroup_add_imp_le
proof
fix a b c :: 'a
assume "c + a \<le> c + b"
hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)
hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add.assoc)
thus "a \<le> b" by simp
qed
subclass ordered_comm_monoid_add ..
lemma add_less_same_cancel1 [simp]:
"b + a < b \<longleftrightarrow> a < 0"
using add_less_cancel_left [of _ _ 0] by simp
lemma add_less_same_cancel2 [simp]:
"a + b < b \<longleftrightarrow> a < 0"
using add_less_cancel_right [of _ _ 0] by simp
lemma less_add_same_cancel1 [simp]:
"a < a + b \<longleftrightarrow> 0 < b"
using add_less_cancel_left [of _ 0] by simp
lemma less_add_same_cancel2 [simp]:
"a < b + a \<longleftrightarrow> 0 < b"
using add_less_cancel_right [of 0] by simp
lemma add_le_same_cancel1 [simp]:
"b + a \<le> b \<longleftrightarrow> a \<le> 0"
using add_le_cancel_left [of _ _ 0] by simp
lemma add_le_same_cancel2 [simp]:
"a + b \<le> b \<longleftrightarrow> a \<le> 0"
using add_le_cancel_right [of _ _ 0] by simp
lemma le_add_same_cancel1 [simp]:
"a \<le> a + b \<longleftrightarrow> 0 \<le> b"
using add_le_cancel_left [of _ 0] by simp
lemma le_add_same_cancel2 [simp]:
"a \<le> b + a \<longleftrightarrow> 0 \<le> b"
using add_le_cancel_right [of 0] by simp
lemma max_diff_distrib_left:
shows "max x y - z = max (x - z) (y - z)"
using max_add_distrib_left [of x y "- z"] by simp
lemma min_diff_distrib_left:
shows "min x y - z = min (x - z) (y - z)"
using min_add_distrib_left [of x y "- z"] by simp
lemma le_imp_neg_le:
assumes "a \<le> b" shows "-b \<le> -a"
proof -
have "-a+a \<le> -a+b" using `a \<le> b` by (rule add_left_mono)
then have "0 \<le> -a+b" by simp
then have "0 + (-b) \<le> (-a + b) + (-b)" by (rule add_right_mono)
then show ?thesis by (simp add: algebra_simps)
qed
lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b"
proof
assume "- b \<le> - a"
hence "- (- a) \<le> - (- b)" by (rule le_imp_neg_le)
thus "a\<le>b" by simp
next
assume "a\<le>b"
thus "-b \<le> -a" by (rule le_imp_neg_le)
qed
lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a"
by (subst neg_le_iff_le [symmetric], simp)
lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0"
by (subst neg_le_iff_le [symmetric], simp)
lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b"
by (force simp add: less_le)
lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a"
by (subst neg_less_iff_less [symmetric], simp)
lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0"
by (subst neg_less_iff_less [symmetric], simp)
text{*The next several equations can make the simplifier loop!*}
lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a"
proof -
have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
thus ?thesis by simp
qed
lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a"
proof -
have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
thus ?thesis by simp
qed
lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a"
proof -
have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)
have "(- (- a) <= -b) = (b <= - a)"
apply (auto simp only: le_less)
apply (drule mm)
apply (simp_all)
apply (drule mm[simplified], assumption)
done
then show ?thesis by simp
qed
lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a"
by (auto simp add: le_less minus_less_iff)
lemma diff_less_0_iff_less [simp]:
"a - b < 0 \<longleftrightarrow> a < b"
proof -
have "a - b < 0 \<longleftrightarrow> a + (- b) < b + (- b)" by simp
also have "... \<longleftrightarrow> a < b" by (simp only: add_less_cancel_right)
finally show ?thesis .
qed
lemmas less_iff_diff_less_0 = diff_less_0_iff_less [symmetric]
lemma diff_less_eq [algebra_simps, field_simps]:
"a - b < c \<longleftrightarrow> a < c + b"
apply (subst less_iff_diff_less_0 [of a])
apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
apply (simp add: algebra_simps)
done
lemma less_diff_eq[algebra_simps, field_simps]:
"a < c - b \<longleftrightarrow> a + b < c"
apply (subst less_iff_diff_less_0 [of "a + b"])
apply (subst less_iff_diff_less_0 [of a])
apply (simp add: algebra_simps)
done
lemma diff_le_eq[algebra_simps, field_simps]: "a - b \<le> c \<longleftrightarrow> a \<le> c + b"
by (auto simp add: le_less diff_less_eq )
lemma le_diff_eq[algebra_simps, field_simps]: "a \<le> c - b \<longleftrightarrow> a + b \<le> c"
by (auto simp add: le_less less_diff_eq)
lemma diff_le_0_iff_le [simp]:
"a - b \<le> 0 \<longleftrightarrow> a \<le> b"
by (simp add: algebra_simps)
lemmas le_iff_diff_le_0 = diff_le_0_iff_le [symmetric]
lemma diff_eq_diff_less:
"a - b = c - d \<Longrightarrow> a < b \<longleftrightarrow> c < d"
by (auto simp only: less_iff_diff_less_0 [of a b] less_iff_diff_less_0 [of c d])
lemma diff_eq_diff_less_eq:
"a - b = c - d \<Longrightarrow> a \<le> b \<longleftrightarrow> c \<le> d"
by (auto simp only: le_iff_diff_le_0 [of a b] le_iff_diff_le_0 [of c d])
lemma diff_mono: "a \<le> b \<Longrightarrow> d \<le> c \<Longrightarrow> a - c \<le> b - d"
by (simp add: field_simps add_mono)
lemma diff_left_mono: "b \<le> a \<Longrightarrow> c - a \<le> c - b"
by (simp add: field_simps)
lemma diff_right_mono: "a \<le> b \<Longrightarrow> a - c \<le> b - c"
by (simp add: field_simps)
lemma diff_strict_mono: "a < b \<Longrightarrow> d < c \<Longrightarrow> a - c < b - d"
by (simp add: field_simps add_strict_mono)
lemma diff_strict_left_mono: "b < a \<Longrightarrow> c - a < c - b"
by (simp add: field_simps)
lemma diff_strict_right_mono: "a < b \<Longrightarrow> a - c < b - c"
by (simp add: field_simps)
end
ML_file "Tools/group_cancel.ML"
simproc_setup group_cancel_add ("a + b::'a::ab_group_add") =
{* fn phi => fn ss => try Group_Cancel.cancel_add_conv *}
simproc_setup group_cancel_diff ("a - b::'a::ab_group_add") =
{* fn phi => fn ss => try Group_Cancel.cancel_diff_conv *}
simproc_setup group_cancel_eq ("a = (b::'a::ab_group_add)") =
{* fn phi => fn ss => try Group_Cancel.cancel_eq_conv *}
simproc_setup group_cancel_le ("a \<le> (b::'a::ordered_ab_group_add)") =
{* fn phi => fn ss => try Group_Cancel.cancel_le_conv *}
simproc_setup group_cancel_less ("a < (b::'a::ordered_ab_group_add)") =
{* fn phi => fn ss => try Group_Cancel.cancel_less_conv *}
class linordered_ab_semigroup_add =
linorder + ordered_ab_semigroup_add
class linordered_cancel_ab_semigroup_add =
linorder + ordered_cancel_ab_semigroup_add
begin
subclass linordered_ab_semigroup_add ..
subclass ordered_ab_semigroup_add_imp_le
proof
fix a b c :: 'a
assume le: "c + a <= c + b"
show "a <= b"
proof (rule ccontr)
assume w: "~ a \<le> b"
hence "b <= a" by (simp add: linorder_not_le)
hence le2: "c + b <= c + a" by (rule add_left_mono)
have "a = b"
apply (insert le)
apply (insert le2)
apply (drule antisym, simp_all)
done
with w show False
by (simp add: linorder_not_le [symmetric])
qed
qed
end
class linordered_ab_group_add = linorder + ordered_ab_group_add
begin
subclass linordered_cancel_ab_semigroup_add ..
lemma equal_neg_zero [simp]:
"a = - a \<longleftrightarrow> a = 0"
proof
assume "a = 0" then show "a = - a" by simp
next
assume A: "a = - a" show "a = 0"
proof (cases "0 \<le> a")
case True with A have "0 \<le> - a" by auto
with le_minus_iff have "a \<le> 0" by simp
with True show ?thesis by (auto intro: order_trans)
next
case False then have B: "a \<le> 0" by auto
with A have "- a \<le> 0" by auto
with B show ?thesis by (auto intro: order_trans)
qed
qed
lemma neg_equal_zero [simp]:
"- a = a \<longleftrightarrow> a = 0"
by (auto dest: sym)
lemma neg_less_eq_nonneg [simp]:
"- a \<le> a \<longleftrightarrow> 0 \<le> a"
proof
assume A: "- a \<le> a" show "0 \<le> a"
proof (rule classical)
assume "\<not> 0 \<le> a"
then have "a < 0" by auto
with A have "- a < 0" by (rule le_less_trans)
then show ?thesis by auto
qed
next
assume A: "0 \<le> a" show "- a \<le> a"
proof (rule order_trans)
show "- a \<le> 0" using A by (simp add: minus_le_iff)
next
show "0 \<le> a" using A .
qed
qed
lemma neg_less_pos [simp]:
"- a < a \<longleftrightarrow> 0 < a"
by (auto simp add: less_le)
lemma less_eq_neg_nonpos [simp]:
"a \<le> - a \<longleftrightarrow> a \<le> 0"
using neg_less_eq_nonneg [of "- a"] by simp
lemma less_neg_neg [simp]:
"a < - a \<longleftrightarrow> a < 0"
using neg_less_pos [of "- a"] by simp
lemma double_zero [simp]:
"a + a = 0 \<longleftrightarrow> a = 0"
proof
assume assm: "a + a = 0"
then have a: "- a = a" by (rule minus_unique)
then show "a = 0" by (simp only: neg_equal_zero)
qed simp
lemma double_zero_sym [simp]:
"0 = a + a \<longleftrightarrow> a = 0"
by (rule, drule sym) simp_all
lemma zero_less_double_add_iff_zero_less_single_add [simp]:
"0 < a + a \<longleftrightarrow> 0 < a"
proof
assume "0 < a + a"
then have "0 - a < a" by (simp only: diff_less_eq)
then have "- a < a" by simp
then show "0 < a" by simp
next
assume "0 < a"
with this have "0 + 0 < a + a"
by (rule add_strict_mono)
then show "0 < a + a" by simp
qed
lemma zero_le_double_add_iff_zero_le_single_add [simp]:
"0 \<le> a + a \<longleftrightarrow> 0 \<le> a"
by (auto simp add: le_less)
lemma double_add_less_zero_iff_single_add_less_zero [simp]:
"a + a < 0 \<longleftrightarrow> a < 0"
proof -
have "\<not> a + a < 0 \<longleftrightarrow> \<not> a < 0"
by (simp add: not_less)
then show ?thesis by simp
qed
lemma double_add_le_zero_iff_single_add_le_zero [simp]:
"a + a \<le> 0 \<longleftrightarrow> a \<le> 0"
proof -
have "\<not> a + a \<le> 0 \<longleftrightarrow> \<not> a \<le> 0"
by (simp add: not_le)
then show ?thesis by simp
qed
lemma minus_max_eq_min:
"- max x y = min (-x) (-y)"
by (auto simp add: max_def min_def)
lemma minus_min_eq_max:
"- min x y = max (-x) (-y)"
by (auto simp add: max_def min_def)
end
class abs =
fixes abs :: "'a \<Rightarrow> 'a"
begin
notation (xsymbols)
abs ("\<bar>_\<bar>")
notation (HTML output)
abs ("\<bar>_\<bar>")
end
class sgn =
fixes sgn :: "'a \<Rightarrow> 'a"
class abs_if = minus + uminus + ord + zero + abs +
assumes abs_if: "\<bar>a\<bar> = (if a < 0 then - a else a)"
class sgn_if = minus + uminus + zero + one + ord + sgn +
assumes sgn_if: "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
begin
lemma sgn0 [simp]: "sgn 0 = 0"
by (simp add:sgn_if)
end
class ordered_ab_group_add_abs = ordered_ab_group_add + abs +
assumes abs_ge_zero [simp]: "\<bar>a\<bar> \<ge> 0"
and abs_ge_self: "a \<le> \<bar>a\<bar>"
and abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
and abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>"
and abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
begin
lemma abs_minus_le_zero: "- \<bar>a\<bar> \<le> 0"
unfolding neg_le_0_iff_le by simp
lemma abs_of_nonneg [simp]:
assumes nonneg: "0 \<le> a" shows "\<bar>a\<bar> = a"
proof (rule antisym)
from nonneg le_imp_neg_le have "- a \<le> 0" by simp
from this nonneg have "- a \<le> a" by (rule order_trans)
then show "\<bar>a\<bar> \<le> a" by (auto intro: abs_leI)
qed (rule abs_ge_self)
lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>"
by (rule antisym)
(auto intro!: abs_ge_self abs_leI order_trans [of "- \<bar>a\<bar>" 0 "\<bar>a\<bar>"])
lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0"
proof -
have "\<bar>a\<bar> = 0 \<Longrightarrow> a = 0"
proof (rule antisym)
assume zero: "\<bar>a\<bar> = 0"
with abs_ge_self show "a \<le> 0" by auto
from zero have "\<bar>-a\<bar> = 0" by simp
with abs_ge_self [of "- a"] have "- a \<le> 0" by auto
with neg_le_0_iff_le show "0 \<le> a" by auto
qed
then show ?thesis by auto
qed
lemma abs_zero [simp]: "\<bar>0\<bar> = 0"
by simp
lemma abs_0_eq [simp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0"
proof -
have "0 = \<bar>a\<bar> \<longleftrightarrow> \<bar>a\<bar> = 0" by (simp only: eq_ac)
thus ?thesis by simp
qed
lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0"
proof
assume "\<bar>a\<bar> \<le> 0"
then have "\<bar>a\<bar> = 0" by (rule antisym) simp
thus "a = 0" by simp
next
assume "a = 0"
thus "\<bar>a\<bar> \<le> 0" by simp
qed
lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0"
by (simp add: less_le)
lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0"
proof -
have a: "\<And>x y. x \<le> y \<Longrightarrow> \<not> y < x" by auto
show ?thesis by (simp add: a)
qed
lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>"
proof -
have "- a \<le> \<bar>-a\<bar>" by (rule abs_ge_self)
then show ?thesis by simp
qed
lemma abs_minus_commute:
"\<bar>a - b\<bar> = \<bar>b - a\<bar>"
proof -
have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" by (simp only: abs_minus_cancel)
also have "... = \<bar>b - a\<bar>" by simp
finally show ?thesis .
qed
lemma abs_of_pos: "0 < a \<Longrightarrow> \<bar>a\<bar> = a"
by (rule abs_of_nonneg, rule less_imp_le)
lemma abs_of_nonpos [simp]:
assumes "a \<le> 0" shows "\<bar>a\<bar> = - a"
proof -
let ?b = "- a"
have "- ?b \<le> 0 \<Longrightarrow> \<bar>- ?b\<bar> = - (- ?b)"
unfolding abs_minus_cancel [of "?b"]
unfolding neg_le_0_iff_le [of "?b"]
unfolding minus_minus by (erule abs_of_nonneg)
then show ?thesis using assms by auto
qed
lemma abs_of_neg: "a < 0 \<Longrightarrow> \<bar>a\<bar> = - a"
by (rule abs_of_nonpos, rule less_imp_le)
lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b"
by (insert abs_ge_self, blast intro: order_trans)
lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b"
by (insert abs_le_D1 [of "- a"], simp)
lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b"
by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>"
proof -
have "\<bar>a\<bar> = \<bar>b + (a - b)\<bar>"
by (simp add: algebra_simps)
then have "\<bar>a\<bar> \<le> \<bar>b\<bar> + \<bar>a - b\<bar>"
by (simp add: abs_triangle_ineq)
then show ?thesis
by (simp add: algebra_simps)
qed
lemma abs_triangle_ineq2_sym: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>b - a\<bar>"
by (simp only: abs_minus_commute [of b] abs_triangle_ineq2)
lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>"
by (simp add: abs_le_iff abs_triangle_ineq2 abs_triangle_ineq2_sym)
lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
proof -
have "\<bar>a - b\<bar> = \<bar>a + - b\<bar>" by (simp add: algebra_simps)
also have "... \<le> \<bar>a\<bar> + \<bar>- b\<bar>" by (rule abs_triangle_ineq)
finally show ?thesis by simp
qed
lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>"
proof -
have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: algebra_simps)
also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
finally show ?thesis .
qed
lemma abs_add_abs [simp]:
"\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" (is "?L = ?R")
proof (rule antisym)
show "?L \<ge> ?R" by(rule abs_ge_self)
next
have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq)
also have "\<dots> = ?R" by simp
finally show "?L \<le> ?R" .
qed
end
hide_fact (open) ab_diff_conv_add_uminus add_0 mult_1 ab_left_minus
lemmas add_0 = add_0_left -- \<open>FIXME duplicate\<close>
lemmas mult_1 = mult_1_left -- \<open>FIXME duplicate\<close>
lemmas ab_left_minus = left_minus -- \<open>FIXME duplicate\<close>
lemmas diff_diff_eq = diff_diff_add -- \<open>FIXME duplicate\<close>
subsection {* Tools setup *}
lemma add_mono_thms_linordered_semiring:
fixes i j k :: "'a\<Colon>ordered_ab_semigroup_add"
shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l"
and "i = j \<and> k = l \<Longrightarrow> i + k = j + l"
by (rule add_mono, clarify+)+
lemma add_mono_thms_linordered_field:
fixes i j k :: "'a\<Colon>ordered_cancel_ab_semigroup_add"
shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l"
and "i = j \<and> k < l \<Longrightarrow> i + k < j + l"
and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"
and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"
and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"
by (auto intro: add_strict_right_mono add_strict_left_mono
add_less_le_mono add_le_less_mono add_strict_mono)
code_identifier
code_module Groups \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
end